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ABSTRACT OF THE DISSERTATION 

 

The dissertation presents modeling and control of a six degrees-of-freedom 

Stewart platform mounted on a moving vehicle or a ship. A Stewart platform consists 

of two parallel plates, referred to as top and base plates, which are connected by six 

actuated legs. 

For safe transportation of a patient or sensitive equipment, a compensation 

mechanism is required to stabilize the motion induced by a vehicle or ship. In a medical 

room of a hospital ship, the rotation and vertical translation of the floor must be properly 

isolated from the wave-induced motion of the ship. On a moving vehicle, when a patient 

is transported by ambulance in an emergency, a patient receives accelerations in 

longitudinal and lateral directions. The accelerations can be reduced by actively 

controlling the angles of a bed. Then it becomes essential to design an active 

compensation system for a surgery table or bed installed on the top plate of a Stewart 

platform in a vehicle and ship. The contents of the dissertation are summarized as 

follows. 

Firstly, Chapter 1 describes the background, motivation, and objective of this 

dissertation.  

In Chapter 2, the moving frame method is employed to describe the kinematics 

of the three-dimensional multibody system. A brief introduction to the moving frame 

method is also presented. For the manipulator system comprised of jointed bodies, a 

graph tree is utilized, which visually illustrates how the constituent bodies are 

connected to each other. At the end of the chapter, the workspace analysis is performed 

considering kinematic and joint constraints, and the boundary of the workspace is 

searched numerically. 

In Chapter 3, analytical equations of motion are developed for a Stewart 

platform whose motion of the base plate is moved and prescribed. In the kinetic analysis, 

the principle of virtual work is employed, in which system virtual displacements are 

expressed through B-matrix by essential virtual displacements, reflecting the 

connection of the rigid body system. The resulting equations of motion are used to 

experimentally assess the performance of a model-based controller to stabilize the top 

plate from the motion of the base plate. To compare the control performance of inverse 

dynamics control which utilize the equations of motion with that of inverse kinematics 
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control, scale model experiments are presented, showing better tracking performance 

of the inverse dynamics control. 

 In Chapter 4, to compensate a time-delay due to measurement, computation and 

tracking time, Long Short Term Memory (LSTM), a deep learning method for time 

series forecasting, is applied to forecast future motion caused by a ship or a moving 

vehicle. Then scale model experiments are performed employing model predictive 

control. Combining with the LSTM forecasting of future base motion, the tracking 

performance and compensation rate are improved compared with simple inverse 

dynamics control without forecasting. 

Finally, this dissertation is concluded in Chapter 5, including the summary of 

each chapter.  
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CHAPTER 1: INTRODUCTION  

1.1 Background 

An emergency ambulance service is important to quickly transport patients as 

providing immediate life-saving care. The injured or sick patients during emergency 

transportation receive accelerations in longitudinal and lateral directions as the vehicle 

travels. It has been pointed out that this change in acceleration affects the 

hemodynamics of the patients and causes blood pressure fluctuations, which may 

worsen the condition of patients with heart disease and brain disease [1]. Therefore, 

compensation systems have been proposed to reduce the accelerations acting on 

patients by actively tilting a bed in an ambulance according to the accelerations acting 

on the vehicle [2-5]. 

In addition, a medical ship performs an increasingly crucial role as a floating 

hospital which provides primary care to injured and ill persons in disaster relief and to 

those who have not been able to receive medical treatment in isolated islands. However, 

due to the rolling, pitching, and heaving motions of ships induced by ocean waves, 

medical operations become challenging tasks. Especially, to perform teleoperated 

surgery, the surgery table and the base of robot arms must be stabilized for accurate 

surgical operations. 

Furthermore, when manipulators, which require precise positioning, operate in 

moving vehicles or ships, the control tasks become overwhelming due to undesirable 

large rigid-body rotation and translation of the tool mount. For safe transportation of 

sensitive equipment using a vehicle, the transmission of undesirable rotation and 

translation induced by the moving vehicle should be mitigated. 

To remedy these situations, it becomes beneficial to develop a Stewart platform 

to compensate undesirable translation, rotation, and acceleration of a vehicle and ship 

by stabilizing the orientation and crude position of its platform or top table, onto which 

various precision tools or bed are attached. A Stewart platform consists of two parallel 

plates, referred to as top and base plates, which are connected by six linear actuators 

[6]. By attaching the equipment or the manipulator to the top plate of the Stewart 

platform and optimally actuating the six legs, the top plate’s position and orientation 

are maintained in desirable configuration even if the base plate moves due to the motion 

of the ship or the vehicle.  
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1.2 Previous Study for a Base-Fixed Stewart Platform 

Base-fixed Stewart platforms have been popularly utilized in flight simulators, 

vehicle driving simulators, and immersed virtual-reality theaters in amusement parks. 

Kinematics and dynamics of fixed-base Stewart platforms have been investigated by 

many researchers to control the platforms to enable those applications, for example [7-

11]. For design and control of the platforms, equations of motion must be derived. 

To derive equations of motion for multi-body systems, there are three methods 

available: (i) the Newton-Euler method, (ii) Lagrange’s method, and (iii) the variational 

methods. For real-time control of a Stewart platform whose base plate is fixed, 

equations of motion were derived by previous researchers [9,10,12] using the Newton-

Euler method which results in Newton-Euler type equations with reaction forces and 

couples. By eliminating those reactions, compact equations of motion were obtained in 

vector form involving vector cross products. Other researchers [8,13,14] employed 

Lagrange’s method to derive compact equations of motion directly without involving 

reaction forces and couples. In addition, the variational methods were also employed to 

derive the equations of motion [15] including Kane’s method [16]. Notably, for general 

multi-body systems, Wittenburg [17] presented a versatile method for systematically 

deriving equations of motion utilizing the principle of virtual power. This is a weighted-

residual equation incorporating Newton’s and Euler’s equations for constituent bodies 

and has not been derived variationally from a physical principle 

Control applications to the base-fixed Stewart platforms have been studied from 

simple PID control to linear and nonlinear control scheme such as inverse dynamic 

control [11], robust control using 𝐻! control [11,18], sliding mode control [19-23], and 

model predictive control [24, 25]. 

 

1.3 Previous Study for a Base-Moving Stewart Platform 

In contrast, for base-moving Stewart platforms, only a couple of applications 

have been reported. Previous researchers employed proportional-derivative (PD) 

controllers using inverse kinematics derived from geometrical relations [26, 27]. Due 

to the complexity of the problem, velocity computations and derivation of equations of 

motion for a base-moving Stewart platform has not been reported. For effective and fast 

position control of the top plate of a base-moving Stewart platform it is desirable to 

derive equations of motion to explore nonlinear control schemes. 
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When implementing active control with actuators, there exists a time delay from 

the time when the mount motion is measured until the states of the bed reach their target 

states. This delay causes tracking error for the system. Then, to actively compensate 

ship motion incorporating the time delays in real-time measurements, computation, and 

tracking, autoregressive (AR) model was used to estimate the system states [28]. AR 

model can be used to forecast steady time series data but is not applicable to unsteady 

motion such as a sudden large wave and vehicle acceleration.   

 

1.4 Objectives 

In response to the need described above, the objectives of this study are: 

1. To present kinematics, including velocity computations of a Stewart platform 

whose base plate translates and rotates. 

2. To develop the equations of motion for a nonlinear system of base-moving 

Stewart platform. 

3. To forecast the future motion of moving objects to compensate time delay and 

enhance the tracking accuracy. 

4. To apply a nonlinear control scheme while accounting for constraints, inertia, 

nonlinearity, and forecasting. 

 

1.5 Outline of the Dissertation 

This dissertation consists of five major chapters. The present chapter, Chapter 

1, introduce the background, previous studies, and objectives. 

Chapter 2 presents kinematic computations of a Stewart platform under 

prescribed mount motion where a moving frame method is employed to facilitate 

accurate description of the kinematics [29, 30]. In the moving frame method, vector 

bases of body-attached coordinate frames are explicitly shown to express vectors and 

rotation matrices. Writing the vector bases with Frankel’s compact notation [31], the 

difficulty and ambiguity of the vector method to express the velocity and acceleration 

vectors of a moving point relative to a moving body are resolved. In addition, a graph 

representation is employed to describe joint connections of the platform to identify 

closed loops [17]. Finally, the workspace analysis is performed for design. 

Chapter 3 describes the development of the equations of motion for a translating 

and rotating Stewart platform utilizing the principle of virtual work. The analytical 
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equations of motion are presented in matrix form for dynamic analyses of the platform. 

It is expected that the resulting equations will be critical for the design and control of a 

base-moving Stewart platform. At the end of the chapter, experimental results utilizing 

a scale model are presented to compare the control performance of an inverse dynamics 

controller to that of an inverse kinematics controller.  

Chapter 4 presents the time series forecasting of future mount motion and 

adaptation of model predictive control (MPC). To forecast future motion acting on a 

vehicle or floor of a ship, Long Short Term Memory (LSTM) [32], one of the deep 

learning methods which has a Recurrent Neural Network (RNN) structure, is used as a 

time series forecasting method for predicting future data using past data. Then MPC is 

designed for the base-moving Stewart platform in which the optimization problem for 

the nonlinear system must be solved numerically. To this end, a continuation and 

generalized minimum residual method (C/GMRES) is adopted to realize fast 

computation within a sampling time [33]. Through the use of LSTM and MPC, scale 

model experiments are carried out to evaluate the effectiveness.  

Finally, Chapter 5 concludes the dissertation by denoting the unique 

contribution of this study. 
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CHAPTER 2: KINEMATICS OF A BASE-MOVING STEWART PLATFORM 

2.1  Introduction 

Regarding the representation of configuration spaces of multi-body systems, 

Joseph-Louis Lagrange (1736-1813) defined configuration spaces using vectors 

consisting of generalized coordinates or displacements. Fortunately, in the early 20th 

century, due to the advent of matrix Lie groups pioneered by Sophus Lie (1842-1899), 

in addition to vectors in	ℝ" , the set of differentiable rotation matrices: the special 

orthogonal group SO(3) has been utilized to define the configuration space of multi-

body systems [34]. Specifically, in the configuration space of a multi-body system, each 

rigid body is mathematically expressed by the position vector of the origin of a body-

attached coordinate system in ℝ# , expressed with respect to an inertial coordinate 

system, and the rotation matrix in SO(3) of the body-attached coordinate axes from the 

inertial coordinate axes [29,30,35]. 

In this chapter, first, the multi-body connection of a base-moving Stewart 

platform is expressed by using a directed graph to reveal closed loops [17]. Second, by 

attaching principal coordinate systems to constituent bodies at their centers of mass, 

moving coordinate frames are defined. Coordinate frames are also attached to joints. 

Third, to define the configuration space of the Stewart platform, the connections of 

body- and joint-attached coordinate frames are expressed mathematically employing 

the special Euclidian group, SE(3), which combines both SO(3) and ℝ#. Fourth, loop 

closure constraints are obtained along a representative closed loop in the configuration 

space (as well as in velocities). They are solved analytically for inverse kinematics. 

Fifth, velocities of moving frames are computed incorporating the Lie algebra: so(3) of 

SO(3). The advantage of expressing the frame connections by using SE(3)-matrices is 

that the readers can compute frame velocities unambiguously since the coordinate 

vector bases are explicitly shown. Finally, in the Appendix 2.A, workspace analysis is 

performed for the preliminary design of a Stewart platform. The velocities of body-

attached coordinate frames computed here are utilized to derive analytical equations of 

motion for inverse dynamics control in Chapter 3. 
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2.2 Description of a Stewart Platform  

Figure 2.1 illustrates a Stewart platform in its reference configuration. To 

identify bodies of the multi-rigid body system, body numbers are assigned to 

constituent bodies and shown in a pair of parentheses. Body-(0): base plate is attached 

to the floor of a moving ship or a vehicle. As a result, the base plate translates and 

rotates due to the motion of the vehicle. Body-(13) represents a top plate or platform on 

which some sensitive equipment or a manipulator is mounted. Body-(0) and body-(13) 

are connected by six identical legs, referred to as leg-(k), k=1,⋯,6. Leg-(k) consists of 

lower leg, body-(2k-1), and upper leg, body-(2k), jointed by an actuated translational 

joint, ATJ-(k), between them. The objective of a controller is to maintain a desired 

attitude of the top plate to mitigate the motion of the base plate by changing their ATJ 

lengths at each time. 

In leg-(k) shown in Fig. 2.1, the lower leg, body-(2k-1), is jointed to body-(0) 

by a universal joint (UJ), named UJ-(k), whereas the upper leg, body-(2k), is jointed to 

body-(13) by a spherical joint (SJ), called SJ-(k). The base yoke of UJ-(k) is fixed to 

body-(0), which journals one axis of the UJ cross. The cross of UJ-(k) is referred to as 

UJ-(k) cross. Its center is located at a point 𝐵$. The attachment of the lower leg, body-

(2k-1), to the other axis of UJ-(k) cross is facilitated by the yoke hub at the lower end 

of body-(2k-1) to pivot freely around this axis. The upper end of the upper leg, body-

(2k), has a spherical ball, referred to as SJ-(k) ball, with its center at point 𝑇$ . The 

spherical ball fits into the SJ-(k) socket fixed to body-(13).   

 

   
(a)      (b) 

Figure 2.1: A Stewart platform 
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A directed graph of the Stewart platform is presented in Fig. 2.2(a). In the graph 

vertices represent rigid bodies, and lines show joint connections. The graph is “modified” 

by enlarging the vertices for the base plate, body-(0), and the top plate, body-(13), to 

show the leg attachment points 𝐵$  for universal joints, UJ-(k), and 𝑇$  for spherical 

joints, SJ-(k), for leg-(k), 𝑘 = 1,⋯ , 6. In the graph body-(14), not shown in Fig. 2.1, 

represents a manipulator, which is rigidly attached to the top plate. 

 

          
(a)          (b) 

Figure 2.2: (a) A modified directed graph and (b) representative closed loop 

 

The graph in Fig. 2.2(a) reveals that there are closed loops formed by 15 pairs 

of different legs. Instead of dealing with individual pairs, the loop closure constraints 

can be treated efficiently by considering a generic closed loop shown in Fig. 2.2(b). The 

loop is formed by a free link between body-(0) and body-(13), shown by a broken line, 

and leg-(k). In the figure, C(α) represent the center of mass of body-(α). Along path (i) 

one starts from the center of mass of body-(0), C(0), moves along the free link to that of 

body-(13), C(13), and heads toward the center Tk of the semi-spherical cavity of SJ-(k) 

socket, which is rigidly attached to body-(13). Along path (ii) one starts from C(0) to the 

center Bk of UJ-(k) cross, moves along the axis of leg-(k) passing the centers of mass of 

body-(2k-1), C(2k-1), and body-(2k), C(2k), and reaches the center Tk of SJ-(k) ball. Finally, 

one fits SJ-(k) ball of the upper leg into SJ-(k) socket on body-(13). This fitting of SJ-

(k) ball into SJ-(k) socket is mathematically described by loop closure constraints. 
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To commence kinematics the configuration space is defined along the generic 

closed loop in Fig. 2.2(b) by attaching orthonormal coordinate systems at the centers of 

mass of constituent bodies as well as at the joints. The completion of both paths yields 

configurational loop closure constraints at SJ-(k). Then velocities of the attached 

coordinate frames will be computed to obtain: (i) the loop-closure constrains on 

velocities and (ii) the translational and angular velocities of each body at its center of 

mass, which will be utilized in chapter 3 to compute the equations of motion for the 

Stewart platform. 

 

2.3 Configuration Space Defined by Coordinate Frames 

The configuration space is defined along each path of the generic closed loop in 

Fig. 2.2(b) by attaching moving coordinate frames at joints and the centers of mass of 

rigid bodies and expressing their interconnections. 

2.3.1 Coordinate Frames Along Path (i) 

Figure 2.3 depicts the free link between body-(0) and body-(13), shown in Fig. 

2.2(b). To begin, an inertial coordinate frame is defined to express position vectors of 

the origins of moving coordinate frames. 

 
Figure 2.3: A relative representation of the top-plate frame from the base-plate frame 
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2.3.1.1 Inertial Frame 

A fixed cartesian coordinate system {x1  x2  x3} is defined with its origin, 

expressed by zero vector 0. The unit vectors of the coordinate axes define a vector basis 

(𝐞!" 𝐞#" 𝐞$" ), which is compactly written as 𝐞" utilizing Frankel’s notation [31]. The 

vector basis 𝐞% and its origin 0 define the inertial coordinate frame written as: (𝐞", 0), 

[29, 30] 

Using the inertial vector basis 𝐞", the position vector of the center of mass, for 

example, C(0) of body-(0) is expressed as: 

 𝐫%
(')(𝑡) = 	𝐞"𝑥%

(')(𝑡), (2.1a) 

where 

 𝐞" ≡ (𝐞!" 𝐞#" 𝐞$" ), (2.1b) 

 𝑥%
(')(𝑡) ≡ *

𝑥!%
(')(𝑡)

𝑥#%
(')(𝑡)

𝑥$%
(')(𝑡)

+. (2.1c) 

In Frankel’s notation, all vector bases are stored in 1 × 3 row matrices and 

components in 3 × 1 column matrices. In this dissertation, {x1  x2  x3} is exclusively 

used for the inertial coordinate system, while {s1  s2  s3} is used for body-attached, 

orthonormal coordinate systems. Furthermore, only right-handed coordinate systems 

are considered. 

2.3.1.2 Body-(0) Frame: ,𝐞(𝟎)(𝒕) 𝐫𝑪
(𝟎)(𝒕). 

To define the body-(0) coordinate frame a principal coordinate system {𝑠!
(') 𝑠#

(') 

𝑠$
(')} is attached to body-(0) at its center of mass, C(0), with the 𝑠$

(')-axis normal to the 

plane of the base plate, spanned by the 𝑠!
(') , 𝑠#

(')-axes. The coordinate unit vectors 

define the vector basis 𝐞(')(𝑡) ≡ (𝐞!
(')(𝑡)  𝐞#

(')(𝑡)  𝐞$
(')(𝑡)). Using the vector basis 𝐞(')(𝑡) 

and the position vector of its origin 𝐫&
(()(𝑡) , the body-(0) frame is defined as 

,𝐞(')(𝑡) 𝐫%
(')(𝑡).. The configuration of body-(0) is defined by expressing its frame 

connection to (𝐞%  0). To this end, the attitude of 𝐞(')(𝑡) relative to 𝐞" is expressed using 

a 3 × 3 rotation matrix	𝑅(')(𝑡) with determinant one: 

 𝐞(')(𝑡) = 𝐞"𝑅(')(𝑡), (2.2a) 
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where 

 𝐞(')(𝑡) ≡ ,𝐞!
(')(𝑡) 𝐞#

(')(𝑡) 𝐞$
(')(𝑡).. (2.2b) 

In the expanded form, the rotation matrix is written as: 

 𝑅(')(𝑡) ≡

⎣
⎢
⎢
⎡𝑅!!

(')(𝑡) 𝑅!#
(')(𝑡) 𝑅!$

(')(𝑡)

𝑅#!
(')(𝑡) 𝑅##

(')(𝑡) 𝑅#$
(')(𝑡)

𝑅$!
(')(𝑡) 𝑅$#

(')(𝑡) 𝑅$$
(')(𝑡)⎦

⎥
⎥
⎤
 (2.2c) 

Equation (2.2a) is read as “𝐞(')(𝑡) is obtained by applying the rotation 𝑅(')(𝑡) to 

𝐞"”. The inverse relation of Eq. (2.2a) is  

 𝐞" = 𝐞(')(𝑡),𝑅(')(𝑡).+ (2.2d) 

where a superposed ‘T’ attached to a matrix symbol implies the transposition of the 

matrix.  

Using Eq. (2.2a) and the components 𝑥%
(')(𝑡)  of 𝐫%

(')(𝑡)  in Eq. (2.1c), the 

connection of ,𝐞(')(𝑡) 𝐫%
(')(𝑡).   to (𝐞" 𝟎)  is defined by using a 4 × 4 frame-

connection matrix 𝐸(()(𝑡) as: 

,𝐞(')(𝑡) 𝐫%
(')(𝑡). = (𝐞" 𝟎)	𝐸(')(𝑡),   (2.3a) 

where 

𝐸(')(𝑡) = 9𝑅
(')(𝑡) 𝑥%

(')(𝑡)
0!×$ 1

<,     (2.3b) 

and 0!×$ ≡ (0 0 0).  

Equation (2.3a) shows that  ,𝐞(')(𝑡) 𝐫%
(')(𝑡).  is obtained by applying the 

rotation 𝑅(')(𝑡) and the parallel translation 𝑥%
(')(𝑡) to (𝐞" 𝟎).  

In this chapter, an inertial coordinate frame is selected to be the body-(0) frame 

at t = 0, i.e.,	(𝐞" 𝟎) = ,𝐞(')(0) 𝐫%
(')(0). , with initial values 𝑥%

(')(0) = 0 and 𝑅(')(0) =

𝐼$ : the 3 × 3 identity matrix in Eq. (2.3b). 

The set of differentiable rotation matrices forms the special orthogonal group: 

SO(3) [31, 34], and that of differentiable frame connection matrices forms the special 

Euclidean group [29, 30, 35]. (Here, the adjective “special” means that all member 

matrices have a determinant one.) Both SO(3) and SE(3) are matrix Lie groups with the 

basic group properties, expressed for SE(3): (i) their products belong to SE(3), (ii) their 

inverse matrices belong to SE(3), and (iii) associativity holds in matrix multiplications, 
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for example [31, 34]. The members of SO(3) also satisfy the same group properties. As 

Lie matrix groups, SO(3) and SE(3) come with their Lie algebras: so(3) and se(3), 

respectively, which describe the flow of matrix members with time near their identity 

matrix. In dynamics, the Lie algebras express angular velocities and translational 

velocities of each body [29, 30]. 

In robotics, frame connection matrices of SE(3) are called homogeneous 

transformations, see for example [35], where the time rate of transformations, 

comparable to the Lie algebra, are not mentioned. Also, in robotics using the screw 

theory [36] and the product of exponentials formula [37], homogeneous coordinates of 

SE(3) were utilized to derive equations of motion by Murray et al. [38].  

Returning to path (i) in Fig. 2.2 (b) and Fig. 2.3 along with the free link, the 

frame is defined for the top plate, body-(13). 

2.3.1.3 Body-(13) Frame: ,𝐞(𝟏𝟑)(𝒕) 𝐫𝑪
(𝟏𝟑)(𝒕). 

A principal coordinate system {𝑠!
(!$) 𝑠#

(!$) 𝑠$
(!$)} is attached to body-(13) at its 

center of mass, C(13), with the 𝑠$
(!$)-axis normal to the plane of the plate. The coordinate 

vector basis 𝐞(!$)(𝑡)  is defined by the unit coordinate vectors as: 	𝐞(!$)(𝑡) ≡

,𝐞!
(!$)(𝑡) 𝐞#

(!$)(𝑡) 𝐞$
(!$)(𝑡).. The position vector of C(13) is expressed by 𝐫%

(!$)(𝑡). Now, 

body-(13) frame is defined as: ,𝐞(!$)(𝑡) 𝐫%
(!$)(𝑡).. As illustrated in Fig. 2.3, 𝐫%

(!$)(𝑡) is 

expressed by adding the relative position vector of C(13) measured from C(0), written as  

𝐬%
(!$ '⁄ )(𝑡) = 𝐞(')(𝑡)𝑠%

(!$ '⁄ )(𝑡)  to 𝐫%
(')(𝑡) . The rotation of 𝐞(!$)(𝑡)  relative to 𝐞(')(𝑡)  is 

expressed by 𝑅(!$ '⁄ )(𝑡) . As a result, the connection of ,𝐞(!$)(𝑡) 𝐫%
(!$)(𝑡).  to  

,𝐞(')(𝑡) 𝐫%
(')(𝑡). is expressed by the frame connection matrix 𝐸(!$ '⁄ )(𝑡) as: 

,𝐞(!$)(𝑡) 𝐫%
(!$)(𝑡). = ,𝐞(')(𝑡) 𝐫%

(')(𝑡).𝐸(!$ '⁄ )(𝑡),  (2.4a) 

where 

𝐸(!$ '⁄ )(𝑡) ≡ 9𝑅
(!$/')(𝑡) 𝑠%

(!$/')(𝑡)
0!×$ 1

<.    (2.4b) 

In this dissertation, the matrices or vectors with a superscript "(𝑗 𝑖⁄ )" imply those 

of frame-(	𝑗) relative to frame-(	𝑖). Therefore, for example, in Eq. (2.4a), 𝐸(!$ '⁄ )(𝑡) 

expressed the frame connection of body-(13) frame relative to body-(0) frame. 

In the reference configuration at t = 0, shown in Fig. 2.1, ,𝐞(!$)(0) 𝐫%
(!$)(0). is 

obtained by parallel translating body-(0) frame ,𝐞(')(0) 𝐫%
(')(0). vertically from C(0) 
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to C(13) by distance ℎF(')  without any rotation. Therefore, the initial values of the 

elements of 𝐸(!$ '⁄ )(0) are: 𝑅(!$ '⁄ )(0) = 𝐼$ and 𝑠%
(!$ '⁄ )(0) = ℎF(')𝑒$, where 𝑒$ represents 

a 3 × 1 unit column matrix: 𝑒$ ≡ (0 0 1)+. 

Next along path (i) from C(13) one advances to SJ-(k) socket with its center at Tk. 

2.3.1.4 SJ-(k) Socket Frame at 𝑻𝒌 on Body-(13): H𝐞𝑻𝒌
(𝐒𝐉	𝟏𝟑)(𝒕) 𝐫𝑻𝒌(𝒕)I 

  
(a)                                     (b) 

Figure 2.4: (a) A plane view of the top plate, body-(13) and (b) an elevation for the socket of a 

spherical joint at Tk 

 

In Fig. 2.4 (a) T1, T2, …, T6 on the circle of radius 𝑟̂5
(!$) express the centers of 

the semi-spherical cavity of sockets of six spherical joints (SJs). They form a hexagon, 

obtained by truncating an equilateral triangle by the radius 𝑟̂5
(!$) , which is slightly 

smaller than the radius of the circumscribing circle of the triangle. The relative 

coordinates 𝑠̂+"
(!$) of point Tk with respect to	𝐞(!$)(𝑡) remain constant: 

 𝐬+"
(!$)(𝑡) = 𝐞(!$)(𝑡)𝑠̂+"

(!$),			𝑘	 = 	1, 2, …	, 6	, (2.5a) 

where 𝑠̂$	+"
(!$) = −ℎF67

(!$) as shown in Fig. 2.4 (b): 

 𝑠̂+"
(!$) =

⎝

⎛
𝑟̂5
(!$)cos𝜃F8

(!$)

𝑟̂5
(!$)sin𝜃F8

(!$)

	−ℎF67
(!$)

⎠

⎞ (2.5b) 

and denoting the truncation angle by 𝛥𝜃F(!$), which is less than 𝜋/3, 𝜃F8
(!$) in Fig. 2.4 (a) 

is expressed as: 
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𝜃F!
(!$) = 9

$
− !

#
𝛥𝜃F(!$)   , 𝜃F#

(!$) = 9
$
+ !

#
𝛥𝜃F(!$),     

      𝜃F$
(!$) = 𝜋 − !

#
𝛥𝜃F(!$) ,  𝜃F:

(!$) = 𝜋 + !
#
𝛥𝜃F(!$),          (2.5c) 

𝜃F;
(!$) = ;9

$
− !

#
𝛥𝜃F(!$),   𝜃F<

(!$) = ;9
$
+ !

#
𝛥𝜃F(!$).     

In this dissertation, time independent quantities are shown with superposed hat: “^”. 

Along path (i) SJ-(k) socket frame at Tk on body-(13):	H𝐞+"
(=>	!$)(𝑡) 𝐫+"(𝑡)I is 

defined by parallel translating 𝐞(!$)(𝑡) to Tk by 𝑠̂+"
(!$)and rotating the translated vector 

basis until 𝐞!	+"
(=>	!$)  points in the radial direction. Thus, the frame connection of 

H𝐞+"
(=>	!$)(𝑡) 𝐫+"(𝑡)I to body-(13) frame is written as: 

H𝐞+"
(=>	!$)(𝑡) 𝐫+"(𝑡)I = ,𝐞(!$)(𝑡) 𝐫%

(!$)(𝑡).	𝐸F+"
(=>	!$ !$⁄ ),   (2.6a) 

where 

𝐸F+"
(=>	!$ !$⁄ ) = 9𝑅$	+"(𝜃

F
8
(!$)) 𝑠̂+"

(!$)

0!×$ 1
<,    (2.6b) 

and 𝑅$	+"(𝜃F8
(!$))  represents the elementary rotation about 𝐞$

(!$)(𝑡)  by 𝜃F8
(!$)  to point 

𝐞!	+"
(=>	!$) in the radial direction: 

𝑅$	+"(𝜃F8
(!$)) ≡ _

cos𝜃F8
(!$) −sin𝜃F8

(!$) 0

sin𝜃F8
(!$) cos𝜃F8

(!$) 0
0 0 1

`.   (2.6c) 

2.3.1.5 Summary of Path (i) Frame Connection 

Along path (i) SJ-(k) socket frame at Tk on body-(13) is also expressed with 

respect to body-(0) frame by combining Eqs. (2.6a) and (2.4a): 

H𝐞+"
(=>	!$)(𝑡) 𝐫+"(𝑡)I?@AB	(C)

= ,𝐞(')(𝑡) 𝐫%
(')(𝑡). H𝐸+"

(=>	!$ ')⁄ (𝑡)I
?@AB	(C)

,    (2.7a) 

where the components of the frame connection matrix are defined as: 

H𝐸+"
(=>	!$ ')⁄ (𝑡)I

?@AB	(C)
≡ 9𝑅+"

(=>	!$ ')⁄ (𝑡) 𝑠+"
(=>	!$ ')⁄ )(𝑡)

0!×$ 1
<
?@AB	(C)

,  (2.7b) 

and from Eqs. (2.6a) and (2.4a): 

H𝐸+"
(=>	!$ ')⁄ (𝑡)I

?@AB	(C)
= 𝐸(!$ '⁄ )(𝑡)	𝐸F+"

(=>	!$ !$⁄ ).    (2.7c) 

The computation of their components yields 

a𝑅+"
(=>	!$ ')⁄ (𝑡)b

?@AB	(C)
= 𝑅(!$ ')⁄ (𝑡)	𝑅$	+"(𝜃F8

(!$)) ,  (2.7d) 

a𝑠+"
(=>	!$ ')⁄ )(𝑡)b

?@AB	(C)
= 𝑅(!$ '⁄ )(𝑡)𝑠̂+"

(!$) + 𝑠%
(!$ '⁄ )(𝑡).   (2.7e) 
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This completes the definition of frame connections along path (i). However, at this point, 

for the computation of kinetic energy in chapter 3, the configuration of a manipulator 

mounted on the top plate, is defined.  

2.3.1.6 Body-(14) Frame: 8𝐞(𝟏𝟒)(𝒕) 𝐫𝑪
(𝟏𝟒)(𝒕): 

 As shown in Fig. 2.2 (a) and Fig. 2.3, a manipulator, body-(14), is mounted on 

the top plate. In this paper, the manipulator is approximated as a rigid body with its 

center of mass located on the 𝑠$
(!$) -axis at the elevation ℎF(!: !$⁄ ) . Body-(14) frame 

,𝐞(!:)(𝑡) 𝐫%
(!:)(𝑡). is therefore established by parallel translating ,𝐞(!$)(𝑡) 𝐫%

(!$)(𝑡). 

along the 𝑠$
(!$)-axis by ℎF(!:/!$) without any rotation: 

,𝐞(!:)(𝑡) 𝐫%
(!:)(𝑡). = ,𝐞(!$)(𝑡) 𝐫%

(!$)(𝑡).𝐸F(!: !$⁄ ),   (2.8a) 

where using 𝑒# ≡ ( 0  0  1 )T, 

𝐸F(!: !$⁄ ) = c 𝐼$ ℎF(!:/!$)𝑒$
0!×$ 1 d.    (2.8b) 

2.3.2 Moving Coordinate Frames Along Path (ii) 

Moving coordinate frames necessary to define the frame connections of path (ii) 

are briefly discussed. On leg-(k), first, two frames are employed at the center Bk of UJ-

(k) cross: UJ-(k) cross frame and UJ-(k) leg frame to describe the rotation of the lower 

leg, body-(2k-1). One axis of the cross is journaled by the base yoke fixed to body-(0) 

and the other axis is journaled by the yoke of body-(2k-1). Second, to describe the 

length change induced by the actuated translational joint, ATJ-(k), principal coordinate 

systems are attached to both body-(2k-1) and the upper leg, body-(2k), at their centers 

of mass of body-(2k-1) frame and body-(2k) frame. Third, advancing along the axis of 

the upper leg to the center 𝑇$ of the spherical ball, SJ-(k) ball frame at	𝑇$ on body-(2k) 

is defined. Finally, SJ-(k) ball frame at 𝑇$ on body-(2k) is connected to SJ-(k) socket 

frame at	𝑇$ on body-(13) to mathematically fit the spherical ball into the SJ socket on 

body-(13). This summarizes the frames to be defined along path (ii). 
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(a)                                                           (b) 

Figure 2.5: (a) A plane view of the base plate and (b) the elevation of center of UJ cross-links, 

Bk, k=1,…,6 

 

2.3.2.1 UJ-(k) Cross Frame at 𝑩𝒌 on Body-(0):  H𝐞𝑩𝒌
(𝐔𝐉	𝐜𝐫𝐨𝐬𝐬)(𝒕) 𝐫𝑩𝒌(𝒕)I 

Figure 2.5(a) illustrates a plan view of the base plate, body-(0). In the figure, 

the centers of cross of universal joints (UJs) are shown by points B1, B2, …, B6 on the 

circle of radius 𝑟̂5
('), which are numbered in the counterclockwise direction. They form 

a hexagon, obtained by truncating an equilateral triangle by the radius 𝑟̂5
(') which is 

slightly smaller than the circumscribing circle of the triangle. Figure 5(b) shows for leg-

(k) an elevation of the base yoke of UJ-(k) with the center of cross at Bk. The base yoke 

on body-(0) journals one axis of the cross pointing in the radial direction. (The other 

axis of the cross is journaled by the yoke of the lower leg: body-(2k-1).)  

The relative position vector 𝐬J"
(')(𝑡) of point Bk is expressed with respect to 

𝐞(')(𝑡): 

 𝐬J"
(')(𝑡) = 𝐞(')(𝑡)𝑠̂J"

('),			𝑘	 = 	1, 2, …	, 6	, (2.9a) 

where the coordinates 𝑠̂J"
(') are obtained from Figs. 2.5(a) and 2.5(b) with the elevation 

ℎFK7
(') as:  

 𝑠̂J"
(') =

⎝

⎛
𝑟̂5
(')cos𝜃F8

(')

𝑟̂5
(')sin𝜃F8

(')

	ℎFK7
(')

⎠

⎞, (2.9b) 

and denoting the truncated angle by 𝛥𝜃F('), which is less than 𝜋/3, 𝜃F8
(')’s are defined as: 
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𝜃F!
(') = !

#
𝛥𝜃F('),    𝜃F#

(') = #9
$
− !

#
𝛥𝜃F('),       

      𝜃F$
(') = #9

$
+ !

#
𝛥𝜃F('), 𝜃F:

(') = :9
$
− !

#
𝛥𝜃F('),             (2.9c) 

𝜃F;
(') = :9

$
+ !

#
𝛥𝜃F('), 𝜃F<

(') = 2𝜋 − !
#
𝛥𝜃F(').    

UJ-(k) cross rotates freely around the cross axis pivoted by the base yoke. To 

describe the rotation of the cross, UJ-(k) cross frame at Bk on body-(0): 

H𝐞J"
(L>	MNOPP)(𝑡) 𝐫J"(𝑡)I is defined. The unit coordinate vector 𝐞!	J"

	(L>	MNOPP) represents the 

axis of rotation of the cross, 𝐞#	J"
	(L>	MNOPP) is the other axis of cross journaled by the yoke 

of the lower leg, body (2k-1), and 𝐞$	J"
	(L>	MNOPP) shows the axis of the leg. As a result, the 

plane of the cross is spanned by 𝐞!	J"
	(L>	MNOPP) and 𝐞#	J"

	(L>	MNOPP). The cross frame is obtained 

by parallel translating 𝐞(')(𝑡)  to Bk by 𝑠̂J"
(')  and orienting the translated 𝐞!

(')(𝑡) =

𝐞!	J"
	(L>	MNOPP)  in the radial direction. Subsequently, the cross rotates about 𝐞!	J"

	(L>	MNOPP)  by 

angle 𝜙!
(8)(𝑡). Therefore, the connection of UJ-(k) cross frame at 𝐵8  on body-(0) to 

body-(0) frame is expressed as: 

H𝐞J"
(L>	MNOPP)(𝑡) 𝐫J"(𝑡)I = ,𝐞(')(𝑡) 𝐫%

(')(𝑡). 9
𝑅$	J" H𝜃F8

(')I𝑅!	J"K7(𝜙!
(8)(𝑡)) 𝑠̂J"

(')

0!×$ 1
<,   

(2.10a) 

where 𝑅$	J"(𝜃F8
(')) expresses the elementary rotation about 𝐞$

(')(𝑡) by the angle 𝜃F8
(') to 

orient 𝐞!	J"
	(L>	MNOPP) in the radial direction: 

𝑅$	J"(𝜃F8
(')) ≡ _

cos𝜃F8
(') −sin𝜃F8

(') 0

sin𝜃F8
(') cos𝜃F8

(') 0
0 0 1

`,   (2.10b) 

and 𝑅!J"K7 represents the subsequent elementary rotation about 𝐞!	J"
	(L>	MNOPP) by 𝜙!

(8)(𝑡): 

𝑅!J"K7 a𝜙!
(8)(𝑡)b ≡ _

1 0 0
0 cos𝜙!

(8)(𝑡) −sin𝜙!
(8)(𝑡)

0 sin𝜙!
(8)(𝑡) cos𝜙!

(8)(𝑡)
`.  (2.10c) 

The first column of Eq. (2.10a): 𝐞!!
(#$	&'()))(𝑡) = 𝐞(+)(𝑡)	𝑅,	!!(𝜃)-

(+))𝑅.	!!/0(𝜙.
(-)(𝑡)) 

compactly expresses two sequence of rotations applied to the translated 𝐞(')(𝑡) to Bk: 

the first rotation 𝑅$	J"(𝜃F8
(')) to orient 𝐞!	J"

	(L>	MNOPP) in the radial direction and the second 

rotation 𝑅!	J"K7(𝜙!
(8)(𝑡)) about 𝐞!	J"

	(L>	MNOPP) by angle 𝜙!
(8)(𝑡) to describe the cross rotation.  
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Next, to describe the rotation of the lower leg, body-(2k-1), at 𝐵$ the second 

frame is defined. 

 

 
    (a)                (b)                                      (c) 

Figure 2.6: The rotations of UJ cross and the lower leg body-(2k-1) at Bk: 

(a) 𝜙.
(-) = 𝜙1

(-) = 0; (b) 𝜙.
(-) ≠ 0, 𝜙1

(-) = 0; (c)	𝜙.
(-) ≠ 0, 𝜙1

(-) ≠ 0. 

 

2.3.2.2 UJ-(k) Leg Frame at 𝑩𝒌 on Body-(2k-1):  H𝐞𝑩𝒌
(𝐔𝐉	𝟐𝒌S𝟏)(𝒕) 𝐫𝑩𝒌(𝒕)I 

To describe the rotation of the lower leg at Bk, UJ-(k) leg frame at Bk on body-

(2k-1): H𝐞J"
(L>	#8S!)(𝑡) 𝐫J"(𝑡)I is defined. The coordinate vector basis 𝐞J"

(L>	#8S!)(𝑡) is 

defined so that 𝐞#	J"
(L>	#8S!)(𝑡) = 𝐞#	J"

	(L>	MNOPP)(𝑡) express the cross axis journaled by the yoke 

of body-(2k-1) and 𝐞$	J"
(L>	#8S!)(𝑡) shows the leg axis. The associated coordinate system 

with the origin at Bk is defined as h𝑠!J"
(L>	#8S!) 𝑠#J"

(L>	#8S!) 𝑠$	J"
(L>	#8S!)i. UJ-(k) leg frame 

on body-(2k-1) occupies the same origin 𝐫J"(𝑡) as that of UJ-(k) cross frame. However, 

𝐞J"
(L>	#8S!)(𝑡) is relatively rotated by angle 𝜙#

(8)(𝑡) with respect to 𝐞#J"
(L>	#8S!)(𝑡), which 

shows the axis of the cross-link journaled by the yoke of body-(2k-1).  

The lower leg, body-(2k-1), takes a vertical position where the cross plane 

remains parallel to the plane of the base plate, i.e., no rotation about 𝐞!	J"
	(L>	MNOPP), 𝜙!

(8) =

0, and no rotation about 𝐞#J"
(L>	#8S!)(𝑡), 𝜙#

(8) = 0. The posture of the leg becomes that 

shown in Fig. 2.6 (b) when only the cross rotates about 𝐞!	J"
	(L>	MNOPP) by 𝜙!

(8) ≠ 0 without 

any rotation about 𝐞#J"
(L>	#8S!)(𝑡) , 𝜙#

(8) = 0 . When both rotations take place about 

𝐞!	J"
	(L>	MNOPP) by 𝜙!

(8) ≠ 0 and about 𝐞#J"
(L>	#8S!)(𝑡) by 𝜙#

(8) ≠ 0, the posture of the lower leg 

becomes that shown in Fig. 2.6(c). Observing that in the reference configuration, shown 
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in Fig. 2.1, the legs are not vertical to the plane of the base plate, both 𝜙!
(8)(0) and 

𝜙#
(8)(0) take nonzero initial values (which are computed in the Appendix 2.A). 

The connection of UJ-(k) leg frame at Bk on body-(2k-1) to UJ-(k) cross frame 

on body-(0) is expressed as: 

H𝐞J"
(L>	#8S!)(𝑡) 𝐫J"(𝑡)I = H𝐞J"

(L>	TNOPP)(𝑡) 𝐫J"(𝑡)I 9
𝑅#J"L>(𝜙#

(8)(𝑡)) 0$×!
0!×$ 1

<,  (2.11a) 

where 𝑅#J"K7(𝜙#
(8)(𝑡))  represents the elementary rotation about 𝐞#J"

(L>	#US!)(𝑡)  by  

𝜙#
(8)(𝑡): 

𝑅#J"L> a𝜙#
(8)(𝑡)b ≡ _

cos𝜙#
(8)(𝑡) 0 sin𝜙#

(8)(𝑡)
0 1 0

−sin𝜙#
(8)(𝑡) 0 cos𝜙#

(8)(𝑡)
`.  (2.11b) 

To advance further along leg-(k) of path (ii), Fig. 2.7 illustrates the coordinate 

frames at joints and centers of mass which must be defined. 

 

 
Figure 2.7: Coordinate frames on the kth leg 

 

2.3.2.3 Body-(2k-1) Frame: ,𝐞(𝟐𝒌S𝟏)(𝒕) 𝐫𝑪
(𝟐𝒌S𝟏)(𝒕). 

For the lower-leg, body-(2k-1) frame is defined at C(2k-1) by parallel translating 

the h𝑠!J"
(L>	#8S!) 𝑠#J"

(L>	#8S!) 𝑠$	J"
(L>	#8S!)i coordinate system of UJ-(k) leg frame at Bk on 

body-(2k-1) to C(2k-1). Since body-(2k-1) holds a motor for actuating the translational 

joint, the center of mass C(2k-1) may slightly deviate from the axis of leg-(k). Including 

this deviation, the relative position vector of C(2k-1), 𝐬%/J"
(#8S!)(𝑡), measured by UJ-(k) leg 

frame at Bk is expressed as: 

𝐬%/J"
(#8S!)(𝑡) = 𝐞J"

(L>	#8S!)(𝑡)𝑠̂%/J"
(#8S!),     (2.12a) 
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𝑠̂%/J"
(#8S!) =

⎝

⎜
⎛
𝛥𝑠̂!%/J"

(#8S!)

𝛥𝑠̂#%/J"
(#8S!)

	𝑙mL>
(	#8S!)

⎠

⎟
⎞

,     (2.12b) 

where 𝛥𝑠̂!%/J"
(#8S!) and 𝛥𝑠̂#%/J"

(#8S!) express the deviation of C(2k-1) from the axis of leg-(k), and 

	𝑙mL>
(#8S!)denotes the 𝑠$J"

(L>	#8S!)-coordinate of C(2k-1) measured from Bk, as illustrated in Fig. 

2.7. 

 The connection of body-(2k-1) frame at C(2k-1) to the UJ-(k) leg frame at Bk on 

body-(2k-1) is expressed by the frame connection matrix 𝐸(#8S! L>	#8S!)⁄ (𝑡): 

,𝐞(#8S!)(𝑡) 𝐫%
(#8S!)(𝑡). = H𝐞J"

(L>	#8S!)(𝑡) 𝐫J"(𝑡)I 9
𝐼$ 𝑠̂%/J"

(#8S!)

0!×$ 1
<, (2.13) 

To prepare for the computation of kinetic energy, body-(2k-1) frame is 

expressed with respect to body-(0) frame by substituting Eqs. (2.10a) and (2.11a) into 

Eq. (2.13): 

,𝐞(#8S!)(𝑡) 𝐫%
(#8S!)(𝑡). = ,𝐞(')(𝑡) 𝐫%

(')(𝑡).	𝐸(#8S! ')⁄ (𝑡),   (2.14a) 

where 

𝐸(#8S! ')⁄ (𝑡) ≡ 9𝑅
(#8S! ')⁄ (𝑡) 𝑠%

(#8S! ')⁄ (𝑡)
0!×$ 1

<,      (2.14b) 

and performing the multiplications using Eqs. (2.10b) and (2.11b), one finds 

       𝑅(#8S! ')⁄ (𝑡) = 𝑅$	J"(𝜃F8
('))𝑅!	J"K7(𝜙!

(8)(𝑡))𝑅#J"K7 a𝜙#
(8)(𝑡)b,      (2.14c)  

𝑠%
(#8S! ')⁄ (𝑡) = 𝑅(#8S! ')⁄ (𝑡)	𝑠̂% J"⁄

(#8S!) + 𝑠̂J"
('),         (2.14d) 

and where 𝑠̂J"
(') was defined in Eq. (2.9b). 

2.3.2.4 Body-(2k) Frame: ,𝐞(𝟐𝒌)(𝒕) 𝐫𝑪
(𝟐𝒌)(𝒕). 

The top end of the lower leg, body-(2k-1), has a mechanism to actively slide and 

passively rotate the cylindrical upper leg, body-(2k), to facilitate a translational joint. 

The 𝑠$
(#8S!)-distance between the center of mass of body-(2k-1), C(2k-1), and that of 

body-(2k), C(2k), is expressed by d(k)(t), as illustrated in Fig. 2.7. The passive rotation 

with 𝐞$
(#8S!)(𝑡)  by the angle 𝜙$

(#8/#8S!)(𝑡)  is expressed by the elementary rotation 

matrix: 𝑅$	VW> a𝜙$
(#8/#8S!)(𝑡)b. Body-(2k) frame is now defined with respect to body-

(2k-1) frame as:  

,𝐞(#8)(𝑡) 𝐫%
(#8)(𝑡). = ,𝐞(#8S!)(𝑡) 𝐫%

(#8S!)(𝑡).	𝐸(#8 #8S!)⁄ (𝑡),     (2.15a) 
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where 

𝐸(#8 #8S!)⁄ (𝑡) = 9𝑅$	W>(𝜙$
(#8 #8S!)⁄ (𝑡)) 𝑠%

(#8 #8S!)⁄ (𝑡)
0!×$ 1

<,  (2.15b) 

and their component matrices defined as: 

𝑅$	W> a𝜙$
(#8/#8S!)(𝑡)b ≡ _

cos𝜙$
(#8/#8S!)(𝑡) −sin𝜙$

(#8/#8S!)(𝑡) 0

sin𝜙$
(#8/#8S!)(𝑡) cos𝜙$

(#8/#8S!)(𝑡) 0
0 0 1

`,   (2.15c) 

𝑠%
(#8 #8S!)⁄ )(𝑡) =

⎝

⎛
−𝛥𝑠̂!%/J"

(#8S!)

−𝛥𝑠̂#%/J	"
(#8S!)

	𝑑(8)(𝑡) ⎠

⎞.     (2.15d) 

In Eq. (2.15d), the terms: −𝛥𝑠̂!%/J"
(#8S!)and −𝛥𝑠̂#%/J"

(#8S!) place C(2k) back on the axis of leg-

(k).  

2.3.2.5 SJ-(k) Ball Frame at Tk on Body-(2k): H𝐞𝑻𝒌
(𝐒𝐉	𝟐𝒌)(𝒕) 𝐫𝑻𝒌(𝒕)I 

The top end of body-(2k) is the spherical ball of SJ-(k). The center of the ball is 

located at Tk, whose axial distance from C(2k) is 𝑙m+"
(#8), as shown in Fig. 2.7. Therefore, 

SJ-(k) ball fame at Tk on body-(2k) is obtained by parallel translating body-(2k) frame 

to Tk by 𝑒$𝑙m=>
(#8) without any rotation: 

H𝐞+"
(=>	#8)(𝑡) 𝐫+"(𝑡)I = ,𝐞(#8)(𝑡) 𝐫%

(#8)(𝑡). 9
𝐼$ 𝑒$𝑙m=>

(#8)

0!×$ 1
<.   (2.16) 

2.3.2.6 SJ-(k) Socket Frame at Tk on Body-(13) Along Path (ii) 

To conclude path (ii) the spherical ball must be fit into SJ-(k) socket at Tk on 

body-(13). This fitting is accomplished at Tk by rotating SJ-(k) ball frame to SJ-(k) 

socket frame at Tk on body-(13). The rotation is expressed by 𝑅+"=>
(=>	!$/#8)(𝑡)  

H𝐞+"
(=>	!$)(𝑡) 𝐫+"(𝑡)I?@AB(CC)

= H𝐞+"
(=>	#8)(𝑡) 𝐫+"(𝑡)I 9

𝑅+"=>
(=>	!$/=>	#8)(𝑡) 0$×!

0!×$ 1
<. (2.17) 

Combining Eqs. (2.16) and (2.17), SJ-(k) socket frame at Tk on body-(13) is 

expressed relatively with respect to body-(2k) frame as: 

H𝐞+"
(=>	!$)(𝑡) 𝐫+"(𝑡)I?@AB(CC)

= ,𝐞(#8)(𝑡) 𝐫%
(#8)(𝑡).𝐸+"

(=>	!$ #8)⁄ (𝑡),   (2.18a) 

where the frame connection matrix 𝐸+"
(=>	!$ #8)⁄ (𝑡) is computed as: 

𝐸+"
(=>	!$ #8)⁄ (𝑡) = 9𝑅+"=>

(=>	!$/=>	#8)(𝑡) 𝑒$𝑙m=>
(#8)

0!×$ 1
<.    (2.18b) 
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Finally, SJ-(k) socket frame is expressed with respect to body-(0) frame using 

the frame connection matrix H𝐸+"
(67	!$ ')⁄ (𝑡)I

?@AB	(CC)
 as: 

H𝐞+"
(=>	!$)(𝑡) 𝐫+"(𝑡)I?@AB	(CC)

= ,𝐞(')(𝑡) 𝐫%
(')(𝑡).	H𝐸+"

(=>	!$ ')⁄ (𝑡)I
?@AB	(CC)

,   (2.19a) 

where the components of the frame connection matrix are defined as Eq. (2.7b) for path 

(i): 

a𝐸+"
(=>	!$ ')⁄ (𝑡)b

?@AB	(CC)
≡ 9𝑅+"

(=>	!$ ')⁄ (𝑡) 𝑠+"
(=>	!$ '⁄ )(𝑡)

0!×$ 1
<
?@AB	(CC)

,   (2.19b) 

and the components are obtained from Eqs. (2.14a), (2.15a) and (2.18a) as: 

H𝐸+"
(=>	!$ ')⁄ (𝑡)I

?@AB	(CC)
= 𝐸(#8S! ')⁄ (𝑡)𝐸(#8 #8S!)⁄ (𝑡)𝐸+"

(=>	!$ #8)⁄ (𝑡).     (2.19c) 

The above multiplications with Eqs. (2.14c, d) yield: 

a𝑅+"
(=>	!$ ')⁄ (𝑡)b

?@AB	(CC)
= 𝑅$	J"(𝜃F8

('))𝑅!	J"K7(𝜙!
(8)(𝑡))𝑅#J"K7 a𝜙#

(8)(𝑡)b	  

× 𝑅$W> a𝜙$
(#8/#8S!)(𝑡)b𝑅+"=>

(=>	!$/=>	#8)(𝑡),  (2.19d) 

a𝑠+"
(=>	!$ '⁄ )(𝑡)b

?@AB	(CC)
= 𝑅$	J"(𝜃F8

('))𝑅!	J"K7(𝜙!
(8)(𝑡))𝑅#J"K7 a𝜙#

(8)(𝑡)b 𝑒$𝑙(8)(𝑡) + 𝑠̂J"
('),    

  (2.19e) 

where 𝑙(8)(𝑡) denotes the total length of leg-(k): 

𝑙(8)(𝑡) ≡ 𝑙mL>
(L>	#8S!) + 𝑑(8)(𝑡) + 𝑙m=>

(#8).   (2.19f)  

This completes the computation frame connections along path (ii). 

2.3.3 Loop Closure Constraints 

The loop closure constraints are now expressed with respect to the body-(0) 

frame by equating Eqs. (2.7a, b) to Eqs. (2.19a, b): 

9𝑅+"
(=>	!$ ')⁄ (𝑡) 𝑠+"

(=>	!$ '⁄ )(𝑡)
0!×$ 1

<
?@AB	(C)

= 9𝑅+"
(=>	!$ ')⁄ (𝑡) 𝑠+"

(=>	!$ '⁄ )(𝑡)
0!×$ 1

<
?@AB	(CC)

,     (2.20a) 

in components 

a𝑅+"
(=>	!$ ')⁄ (𝑡)b

?@AB	(C)
= a𝑅+"

(=>	!$ ')⁄ (𝑡)b
?@AB	(CC)

,    (2.20b) 

a𝑠+"
(=>	!$ '⁄ )(𝑡)b

?@AB	(C)
= a𝑠+"

(=>	!$ '⁄ )(𝑡)b
?@AB	(CC)

.    (2.20c) 

Their components are expressed using Eqs. (2.7d, e) and (2.19d, e) as: 

 𝑅(!$ ')⁄ (𝑡)	𝑅$	+" H𝜃F8
(!$)I = 𝑅$	J"(𝜃F8

('))𝑅!	J"K7(𝜙!
(8)(𝑡))𝑅#J"K7 a𝜙#

(8)(𝑡)b    

× 𝑅$W> a𝜙$
(#8/#8S!)(𝑡)b𝑅+"=>

(=>	!$/=>	#8)(𝑡),   (2.20d) 
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𝑅("# $⁄ )(𝑡)𝑠̂'!
("#) + 𝑠(

("# $⁄ )(𝑡) = 𝑅#	*!(𝜃*+
($))𝑅"	*!,-(𝜙"

(+)(𝑡))𝑅.*!,- ,𝜙.
(+)(𝑡)- 𝑒#𝑙(+)(𝑡) + 𝑠̂*!

($).     

(2.20e) 

The above constraints, expressed in configuration space, are classified as holonomic 

constraints [31]. As a result, the configuration is updated at each time by integrating 

the constraints on velocities starting from an initial configuration. The corresponding 

constraints on velocities will be computed in the next section. 

In Appendix A, to facilitate design tools for determining dimensions of the 

platform both inverse and forward kinematics problems are solved analytically 

utilizing the loop closure equations. In the inverse kinematics problem, for a specified 

top-plate configuration: 𝑅(!$ '⁄ ) and 𝑠%
(!$ '⁄ ) one finds each leg configuration, 	𝜙!

(8), 𝜙#
(8), 

𝑙(8) and 𝑅+"=>
(=>	!$/=>	#8). The analytical equations for the inverse kinematics problem are 

utilized to find: (i) necessary stroke of the actuated translational joints (ATJs) and (ii) 

workspace, which shows the accessible top-plate configuration relative to the base plate. 

 

2.4 Velocities of the Coordinate Frames 

In this section velocities of the moving coordinate frames are computed. The 

input velocities of the base plate of the platform are measured at each time. Therefore, 

it is useful to express the loop closure constraints in velocities. In addition, for the 

computation of kinetic energy in chapter 3, translational and angular velocities will be 

computed at each center of mass of constituent bodies. The kinematically admissible 

velocities are used to update the configuration at each time by integration since the loop 

closure constraints are holonomic as shown in Eqs. (2.20b, c). 

2.4.1 Velocities of the Coordinate Frames along Path(i) 

2.4.1.1   Body-(0) Frame Velocity: ,𝐞̇(𝟎)(𝒕) 𝐫̇𝑪
(𝟎)(𝒕). 

The velocity of the origin of body-(0) frame, 𝐫%
(')(𝑡), is obtained by taking the 

time derivative of Eq. (2.1a) expressing time differentiation with superposed dots:  

𝐫̇%
(')(𝑡) = 𝐞"𝑥̇%

(')(𝑡),      (2.21) 

in which 𝐞" is independent of time. 

The attitude of body-(0) frame changes with time. Its velocity is obtained by 

taking the time derivative of Eq. (2.2a) and expressing the result by its own basis, 𝐞(')(𝑡), 

using Eq. (2.2d):  

𝐞̇(')(𝑡) = 𝐞"𝑅̇(')(𝑡) = 𝐞(')(𝑡)𝜔(')(𝑡)s⃖ssssssssssss⃗ ,    (2.22a) 
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where 𝜔(')(𝑡)s⃖ssssssssssss⃗  is referred to as the skew symmetric angular velocity matrix [28, 29]:  

𝜔(')(𝑡)s⃖ssssssssssss⃗ ≡ H𝑅(')(𝑡)I
+
𝑅̇(')(𝑡) =

⎣
⎢
⎢
⎡ 0 −𝜔$

(')(𝑡) 𝜔#
(')(𝑡)

𝜔$
(')(𝑡) 0 −𝜔!

(')(𝑡)

−𝜔#
(')(𝑡) 𝜔!

(')(𝑡) 0 ⎦
⎥
⎥
⎤
 ,   (2.22b) 

which is a member the Lie algebra so(3) of SO(3).  

The skew-symmetry of 𝜔(')(𝑡)s⃖ssssssssssss⃗  is easily proven by taking the time derivative of 

H𝑅(')(𝑡)I
+
𝑅(')(𝑡)= I3. In Eq. (2.22a), expressing 𝐞̇(')(𝑡) with respect to its own basis, 

𝐞(')(𝑡), is consistent with the definition of Lie algebra so(3): the velocity 𝑅̇(')(𝑡) at 

𝑅(')(𝑡) is left translated by H𝑅(')(𝑡)I
S!
= H𝑅(')(𝑡)I

+
 to the identity I3 where the Lie 

algebra is defined, see for example [31]. 

 From the elements of 𝜔(')(𝑡)s⃖ssssssssssss⃗  the angular velocity vector 𝛚(')(𝑡) is defined as: 

𝛚(')(𝑡) = 𝐞(')(𝑡)𝜔(')(𝑡) = ,𝐞!
(')(𝑡) 𝐞#

(')(𝑡) 𝐞$
(')(𝑡).*

𝜔!
(')(𝑡)

𝜔#
(')(𝑡)

𝜔$
(')(𝑡)

+.  (2.23) 

For the computation of kinetic energy in chapter 3, it is convenient to express the 

velocity of the body-(0) frame as: 

,𝐞̇(')(𝑡) 𝐫̇%
(')(𝑡). = ,𝐞(')(𝑡)𝜔(')(𝑡)s⃖ssssssssssss⃗ 𝐞"𝑥̇%

(')(𝑡).   (2.24) 

since the rotational kinetic energy is expressed by 𝜔(')(𝑡) and mass moment of inertia 

with respect to 𝐞(')(𝑡), while the translational kinetic energy is expressed by 𝑥̇%
(')(𝑡) 

with 𝐞", [29, 30]. 

The translational velocity 𝑥̇%
(')(𝑡)  is used to update 𝑥%

(')(𝑡)  using available 

integration schemes for vectors. However, the updating of the rotation matrix 𝑅(')(𝑡), 

using given 𝜔(')(𝑡)s⃖ssssssssssss⃗  in Eq. (2.22b) at each time increment, requires an appropriate 

integration algorithm, such as Rodrigues’ rotation formula [17], which assures that the 

updated rotation matrix remains in SO(3) [29, 39]. 

2.4.1.2    Body-(13) Frame Velocity:	,𝐞̇(𝟏𝟑)(𝒕) 𝐫̇𝑪
(𝟏𝟑)(𝒕). 

The time derivative of Eq. (2.4a) expanded using Eq. (2.4b) yields the skew-

symmetric angular-velocity matrix and the translational velocity at the center of mass 

of body-(13): 

 ,𝐞̇(!$)(𝑡) 𝐫̇%
(!$)(𝑡). = ,𝐞(!$)(𝑡)𝜔(!$)(𝑡)s⃖ssssssssssssss⃗ 𝐞"𝑥̇%

(!$)(𝑡). (2.25) 
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To familiarize readers with the computations, the steps for taking the time derivative of 

the first column of Eq. (2.7a): 𝐞(!$)(𝑡) = 𝐞(')(𝑡)𝑅(!$ '⁄ )(𝑡) are shown: 

                    𝐞̇(!$)(𝑡) = 𝐞̇(')(𝑡)𝑅(!$/')(𝑡) + 𝐞(')(𝑡)	𝑅̇(!$/')(𝑡) 

= 𝒆(')(𝑡) H𝜔(')(𝑡)s⃖ssssssssssss⃗ 𝑅(!$ ')⁄ (A) + 𝑅̇(!$ ')⁄ (A)(𝑡)I                                  

= 𝒆(!$)(𝑡) H𝑅(!$ ')⁄ (𝑡)I
+
H𝜔(')(𝑡)s⃖ssssssssssss⃗ 𝑅(!$ ')⁄ (A) + 𝑅̇(!$ ')⁄ (A)(𝑡)I 

                = 𝒆(!$)(𝑡) wH𝑅(!$ ')⁄ (𝑡)I
+
𝜔(')(𝑡)

s⃖sssssssssssssssssssssssssssssssssssssssss⃗
+ 𝜔(!$ ')⁄ (𝑡)s⃖ssssssssssssssssss⃗ x.  (2.26a) 

In the last right-hand side of Eq. (2.26a) in a pair of braces, the following formula is 

used to obtain the first term: 

,𝑅(𝑡).+𝜔(𝑡)s⃖ssssss⃗ 𝑅(𝑡) = ,𝑅(𝑡).+𝜔(𝑡)s⃖sssssssssssssssssssssss⃗ ,         (2.26b) 

for 𝑅(𝑡) = 𝑅(!$ ')⁄ (𝑡) and 𝜔(𝑡) = 𝜔(')(𝑡), whose proof, presented in [29], is reproduced 

in the Appendix 2.B.  

In the pair of braces, the second term defines the relative skew-symmetric angular-

velocity matrix: 

𝜔(!$/')(𝑡)s⃖ssssssssssssssssss⃗ = ,𝑅(!$/')(𝑡).+𝑅̇(!$/')(𝑡).   (2.26c)  

In vector form the first column of Eq. (2.25a) and Eq. (2.26a) are written as: 

𝜔(!$)(𝑡) = H𝑅(!$/')(𝑡)I
+
𝜔(')(𝑡) + 𝜔(!$/')(𝑡).   (2.27) 

The time derivative of the second column of Eq. (2.4a): 𝐫%
(!$)(𝑡) = 𝐫%

(')(𝑡) +

𝐞(')(𝑡)𝑅(!$ '⁄ )(𝑡) is computed as: 

𝐫̇%
(!$)(𝑡) = 𝐫̇%

(')(𝑡) + 𝐞̇(')(𝑡)𝑠%
(!$/')(𝑡) + 𝐞(')(𝑡)𝑠̇%

(!$/')(𝑡) 

                   = 𝐞" h𝑥̇%
(')(𝑡) + 𝑅(')(𝑡) H𝜔(')(𝑡)s⃖ssssssssssss⃗ 	𝑠%

(!$/')(𝑡) + 𝑠̇%
(!$/')(𝑡)Ii 

  = 𝐞" y𝑥̇%
(')(𝑡) + 𝑅(')(𝑡) a−𝑠%

(!$/')(𝑡)s⃖sssssssssssssssss⃗ 𝜔(')(𝑡) + 𝑠̇%
(!$/')(𝑡)bz,      (2.28a) 

where on the right-hand side in a pair of braces, the first term is obtained by using the 

formula: 

𝜔(')(𝑡)s⃖ssssssssssss⃗ 	𝑠%
(!$ '⁄ )(𝑡) = −𝑠%

(!$/')(𝑡)s⃖sssssssssssssssss⃗ 𝜔(')(𝑡),   (2.28b) 

which corresponds to the vector cross product: 𝝎(')(𝑡) × 𝐬%
(!$ ')⁄ (𝑡) = −𝐬%

(!$ ')⁄ (𝑡) ×

𝝎(')(𝑡) (observing that both vectors are defined with respect to the body-(0) vector basis, 

𝐞(')(𝑡)).  
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Equation (2.28a) yields the translational velocity of C(13) with respect to 𝐞": 

𝑥̇%
(!$)(𝑡) = 𝑥̇%

(')(𝑡) + 𝑅(')(𝑡) a−𝑠%
(!$/')(𝑡)s⃖sssssssssssssssss⃗ 𝜔(')(𝑡) + 𝑠̇%

(!$/')(𝑡)b.  (2.29) 

In Eqs. (2.27) and (2.29), the velocities of the top-plate frame are expressed in 

terms of the excitation velocities, 𝜔(')(𝑡) and 𝑥̇%
(')(𝑡), of the base plate and the relative 

velocities, 𝜔(!$/')(𝑡) and 𝑠̇%
(!$/')(𝑡) of the top plate. Next SJ-(k) socket frame is the 

terminal frame of path (i). 

2.4.1.3   SJ-(k) Socket Frame Velocities at Tk on Body-(13): ,𝐞̇𝑻𝒌
(𝐒𝐉	𝟏𝟑)(𝒕) 𝐫̇𝑻𝒌(𝒕)-𝒑𝒂𝒕𝒉(𝒊)

 

To compute the velocity of SJ-(k) socket frame at Tk on body-(13):  

H𝐞̇+"
(=>	!$)(𝑡) 𝐫̇+"(𝑡)I?@AB(C)

= H𝐞+"
(=>	!$)(𝑡)	𝜔+"

(=>	!$)(𝑡)s⃖ssssssssssssssssss⃗ 𝐞"𝑥̇+"(𝑡)I?@AB(C)
,  (2.30) 

the time derivative of Eq. (2.6a) is computed to utilize the body-(13) frame velocities 

just computed in Eq. (2.27) and (2.29). The time derivative of the first column of Eq. 

(2.6a) is: 

𝐞̇+"
(=>	!$)(𝑡) = 𝐞+"

(=>	!$)(𝑡) H𝑅$	+"(𝜃F8
(!$))I

+
	𝜔(!$)(𝑡)s⃖ssssssssssssss⃗ 	𝑅$	+"(𝜃F8

(!$)) 

    					= 𝐞+"
(=>	!$)(𝑡) H𝑅$	+"(𝜃F8

(!$))I
+
𝜔(!$)(𝑡)

s⃖ssssssssssssssssssssssssssssssssssssssssssssssss⃗
 ,    (2.31a) 

using the formula in Eq. (2.26b). 

In vector form, the first column of Eq. (2.30) and Eq. (2.31a) give 

𝜔+"
(=>	!$)(𝑡) = H𝑅$	+"(𝜃F8

(!$))I
+
𝜔(!$)(𝑡).     (2.31b) 

Substituting Eq. (2.27) into Eq. (2.31b), one obtains 

H𝜔+"
(=>	!$)(𝑡)I

?@AB(C)
= H𝑅$	+"(𝜃F8

(!$))I
+
yH𝑅(!$ '⁄ )(𝑡)I

+
𝜔(')(𝑡) + 𝜔(!$ '⁄ )(𝑡)z.    (2.32) 

The time derivative of the second column of Eq. (2.6a) is computed as: 

𝐫̇+"(𝑡) = 𝐞"𝑥̇+"(𝑡) = 𝐞(!$)(𝑡)𝜔(!$)(𝑡)s⃖ssssssssssssss⃗ 	𝑠̂+"
(!$) + 𝐞"𝑥̇%

(!$)(𝑡) 

       = −𝐞(!$)(𝑡)𝑠̂+"
(!$)s⃖ssssss⃗ 	𝜔(!$)(𝑡) + 𝒆"𝑥̇%

(!$)(𝑡)  

                  = 𝐞" a−𝑅(!$)(𝑡)𝑠̂+"
(!$)s⃖ssssss⃗ 	𝜔(!$)(𝑡) + 𝑥̇%

(!$)(𝑡)b.               (2.33a) 

Using 𝑅(!$)(𝑡) = 𝑅(')(𝑡)𝑅(!$ ')⁄ , Eq. (2.33a) yields in components: 

𝑥̇+"(𝑡) = 𝑥̇%
(!$)(𝑡) − 𝑅(')(𝑡)𝑅(!$ ')⁄ (𝑡)𝑠̂+"

(!$)s⃖ssssss⃗ 	𝜔(!$)(𝑡).   (2.33b) 

The substitution of Eqs. (2.27) and (2.29) into Eq. (2.33b) gives the velocity at 𝑇$ of 

SJ-(k) along path (i) 
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H𝑥̇+"(𝑡)I?@AB(C)
= 𝑥̇%

(')(𝑡) − 𝑅(')(𝑡) H𝑠%
(!$/')(𝑡) + 𝑅(!$/')(𝑡)𝑠̂+"

(!$)Is⃖sssssssssssssssssssssssssssssssssssssssssssssssssssssssssss⃗ 𝜔(')(𝑡) 

+𝑅(')(𝑡) |−𝑅(!$ '⁄ )(𝑡)𝑠̂+"
(!$)s⃖ssssss⃗ 𝜔(!$ '⁄ )(𝑡) + 𝑠̇%

(!$ '⁄ )(𝑡)}.  (2.34) 

The velocity of SJ-(k) socket frame at 𝑇$ on body-(13) is now expressed by Eqs. 

(2.30), (2.32) and (2.34). 

2.4.1.4    Body-(14) Frame Velocity:	,𝐞̇(𝟏𝟒)(𝒕) 𝐫̇𝑪
(𝟏𝟒)(𝒕). 

The velocities of the body-(14) frame is computed by taking the time derivative 

of Eq. (2.8a): 

 ,𝐞̇(!:)(𝑡) 𝐫̇%
(!:)(𝑡). = ,𝐞(!:)(𝑡)𝜔(!:)(𝑡)s⃖ssssssssssssss⃗ 𝐞"𝑥̇%

(!:)(𝑡). (2.35a) 

The angular velocities and the translational velocities are easily obtained as: 

𝜔(!:)(𝑡) = 𝜔(!$)(𝑡),       (2.35b) 

𝑥̇%
(!:)(𝑡) = 𝑥̇%

(!$)(𝑡) − 𝑅(!$)(𝑡)𝑒$ℎF(!:/!$)s⃖ssssssssssssssssss⃗ 𝜔(!$)(𝑡).  (2.35c) 

Equations (2.35b) and (2.35c) are typical recursive equations along the graph tree and 

further expressed using Eqs. (2.27) and (2.29) as: 

𝜔(!:)(𝑡) = H𝑅(!$/')(𝑡)I
+
𝜔(')(𝑡) + 𝜔(!$/')(𝑡),   (2.36a) 

𝑥̇%
(!:)(𝑡) = 𝑥̇%

(')(𝑡) − 𝑅(')(𝑡) H𝑠%
(!$/')(𝑡) + 𝑅(!$/')(𝑡)𝑒$ℎF(!:/!$)I

s⃖sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss⃗ 	𝜔(')(𝑡) 

+𝑅(')(𝑡) H−𝑅(!$/')(𝑡)𝑒$ℎF(!:/!$)s⃖ssssssssssssssssss⃗ 𝜔(!$/')(𝑡) + 𝑠̇%
(!$/')(𝑡)I.   (2.36b) 

2.4.2 Velocities of the Coordinate Frames along Path(ii) 

Along path (ii) shown in Fig. 2.2(b) the velocities of body-(2k-1) frame of the 

lower leg and body-(2k) frame of the upper leg at their origins as well as those of SJ-

(k) socket frame at 𝑇$ on body-(13) are computed. 

2.4.2.1    Body-(2k-1) Frame Velocity: ,𝐞̇(𝟐𝒌S𝟏)(𝒕) 𝐫̇𝑪
(𝟐𝒌S𝟏)(𝒕). 

The frame velocities of the lower leg, body-(2k-1): 

,𝐞̇(#8S!)(𝑡) 𝐫̇%
(#8S!)(𝑡). = ,𝐞(#8S!)(𝑡)𝜔(#8S!)(𝑡)s⃖sssssssssssssssssss⃗ 𝐞"𝑥̇%

(#8S!)(𝑡).,    (2.37) 

are computed by taking the time derivatives of each column of Eq. (2.14a) using Eqs. 

(2.14b, c). The first column of Eq. (2.14a) is 

𝐞(#8S!)(𝑡) = 𝐞(')(𝑡)𝑅(#8S! ')⁄ (𝑡),     (2.38a) 

and the second column:  

𝐫%
(#8S!)(𝑡) = 𝐫%

(')(𝑡) + 𝐞(')(𝑡) H𝑅(#8S! ')⁄ (𝑡)𝑠̂% J"⁄
(#8S!) + 𝑠̂J"

(')I.  (2.38b) 
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where 𝑅(#8S! ')⁄ (𝑡) was defined in Eq. (2.14c). 

The time derivative of Eq. (2.38a) yields using Eq. (2.22a) and the formula in 

Eq (2.26b): 

𝜔(#8S!)(𝑡)s⃖sssssssssssssssssss⃗ = H𝑅(#8S! ')⁄ (𝑡)I
+
𝜔(')(𝑡)

s⃖ssssssssssssssssssssssssssssssssssssssssssssss⃗
+ 	𝜔(#8S! ')⁄ (𝑡)s⃖sssssssssssssssssssssss⃗ ,   (2.39a) 

where the relative skew-symmetric angular velocity matrix is defined as: 

𝜔(#8S! ')⁄ (𝑡)s⃖sssssssssssssssssssssss⃗ = H𝑅(#8S! ')⁄ (𝑡)I
+
𝑅̇(#8S! ')⁄ (𝑡),    (2.39b) 

and its actual computation using Eq. (2.14c) gives 

𝜔(#8S! ')⁄ (𝑡)s⃖sssssssssssssssssssssss⃗ = H𝑅#	J"	K7(𝜙#
(8)(𝑡)I

+
𝑒!𝜙̇!

(8)(𝑡)
s⃖sssssssssssssssssssssssssssssssssssssssssssssssssssssssssss⃗

+ 𝑒#𝜙̇#
(8)(𝑡)s⃖sssssssssssssssss⃗ ,  (2.39c) 

incorporating 

H𝑅!	J"K7(𝜙̇!
(8)(𝑡)I

+
𝑅̇!	J"K7(𝜙̇!

(8)(𝑡)) = 𝑒!𝜙̇!
(8)(𝑡)s⃖sssssssssssssssss⃗ ,    (2.39d) 

H𝑅#	J"K7(𝜙̇#
(8)(𝑡)I

+
𝑅̇#	J"K7 a𝜙̇#

(8)(𝑡)b = 𝑒#𝜙̇#
(8)(𝑡)s⃖sssssssssssssssss⃗ ,   (2.39e) 

in which 𝑒! ≡ (1 0 0)+ and 𝑒# ≡ (0 1 0)+. 

In vector form, Eqs. (2.39a) and (2.39c) become, respectively, 

𝜔(#8S!)(𝑡) = H𝑅(#8S! ')⁄ (𝑡)I
+
𝜔(')(𝑡) + 𝜔(#8S! '⁄ )(𝑡),   (2.40a) 

𝜔(#8S! '⁄ )(𝑡) = |𝑅#	J"K7 a𝜙#
(8)(𝑡)b}

+

𝑒!𝜙̇!
(8)(𝑡) + 𝑒#𝜙̇#

(8)(𝑡). (2.40b) 

The substitution of Eq. (2.40b) into Eq. (2.40a) gives in vector form:  

𝜔(#8S!)(𝑡) = H𝑅(#8S! ')⁄ (𝑡)I
+
𝜔(')(𝑡) + |𝑅#	J"K7 a𝜙#

(8)(𝑡)b}
+

𝑒!𝜙̇!
(8)(𝑡) + 𝑒#𝜙̇#

(8)(𝑡). 

 (2.40c) 

Using Eq. (2.39b), the time derivative of Eq. (2.38b) yields 

     𝐫̇%
(#8S!)(𝑡) = 𝐫̇%

(')(𝑡) + 𝐞(')(𝑡)𝜔(')(𝑡)s⃖ssssssssssss⃗ H𝑅(#8S! ')⁄ (𝑡)𝑠̂% J"⁄
(#8S!) + 𝑠̂J"

(')I  

+𝐞(')(𝑡)𝑅(#8S! ')⁄ (𝑡)𝜔(#8S! ')⁄ (𝑡)s⃖sssssssssssssssssssssss⃗ 𝑠̂% J"⁄
(L>	#8S!).   (2.41a) 

The velocity of C(2k-1) with 𝐞" is obtained using Eqs. (2.2a), (2.22a) and (2.28b) as:  

𝑥̇%
(#8S!)(𝑡) = 𝑥̇%

(')(𝑡) − 𝑅(')(𝑡)		𝑅(#8S! ')⁄ (𝑡)𝑠̂% J"⁄
(#8S!) + 𝑠̂J"

(')s⃖sssssssssssssssssssssssssssssssssssssssssssssssssssss⃗ 	𝜔(')(𝑡) 

−𝑅(')(𝑡)𝑅(#8S! ')⁄ (𝑡)𝑠̂% J"⁄
(#8S!)s⃖sssssssssss⃗ 𝜔(#8S! ')⁄ (𝑡) (2.41b) 

where 

𝑅(#8S!)(𝑡) = 𝑅(')(𝑡)𝑅(#8S! ')⁄ (𝑡).    (2.41c) 
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Equations (2.40c) and (2.41b) with Eq. (2.40b) express the velocity components of 

body-(2k-1) frame in Eq. (2.37). 

2.4.2.2    Body-(2k) Frame Velocity:	,𝐞̇(𝟐𝒌)(𝒕) 𝐫̇𝑪
(𝟐𝒌)(𝒕). 

The velocities of the body-(2k) frame at C(2k) are computed from Eq. (2.15a) as: 

,𝐞̇(#8)(𝑡) 𝐫̇%
(#8)(𝑡). = ,𝐞(#8)(𝑡)𝜔(#8)(𝑡)s⃖ssssssssssssss⃗ 𝐞"𝑥̇%

(#8)(𝑡)..  (2.42a) 

The time derivative of the first column of Eq. (2.15a) gives in vector form: 

𝜔(#8)(𝑡) = |𝑅$W> a𝜙$
(#8/#8S!)(𝑡)b}

+

𝜔(#8S!)(𝑡) +	𝑒$𝜙̇$
(#8/#8S!)(𝑡),    (2.42b) 

while that of the second column yields, observing that in Eq. (2.15d) only 𝑑($)(𝑡) is 

time dependent:  

𝑥̇%
(#8)(𝑡) = 𝑥̇%

(#8S!)(𝑡) + 𝑅(#8S!)(𝑡) a−𝑠%
(#8/#8S!)(𝑡)s⃖ssssssssssssssssssssssss⃗ 𝜔(#8S!)(𝑡) + 𝑒$𝑑̇(8)(𝑡)b,  (2.42c) 

2.4.2.3   SJ-(k) Socket Frame Velocities at Tk on Body-(13): ,𝐞̇𝑻𝒌
(𝐒𝐉	𝟏𝟑)(𝒕) 𝐫̇𝑻𝒌(𝒕)-𝒑𝒂𝒕𝒉(𝒊𝒊)

 

To compute the velocity of SJ-(k) socket frame at Tk on body-(13):  

H𝐞̇+"
(=>	!$)(𝑡) 𝐫̇+"(𝑡)I?@AB(CC)

= H𝐞+"
(=>	!$)(𝑡)	𝜔+"

(=>	!$)(𝑡)s⃖ssssssssssssssssss⃗ 𝐞"𝑥̇+"
(=>	!$)(𝑡)I

?@AB(CC)
,   (2.43a) 

the time derivatives of the columns of Eq. (2.18a) are computed.  

The time derivative of the first column gives in vector form: 

H𝜔+"
(=>	!$)(𝑡)I

?@AB(CC)
= H𝑅+"=>

(=>	!$/=>	#8)(𝑡)I
+
𝜔(#8)(𝑡) + 𝜔+"=>

(=>	!$/=>	#8)(𝑡),  (2.43b) 

where  

𝜔+"=>
(=>	!$ =>	#8⁄ )(𝑡) = a𝑅+"=>

(=>	!$ =>	#8⁄ )(𝑡)b
+
𝑅̇+"=>
(=>	!$ =>	#8⁄ )(𝑡).   (2.43c) 

The time derivative of the second column gives 

,𝑥̇+"(𝑡).?@AB	(CC) = 𝑥̇%
(#8)(𝑡) − 𝑅(#8S!)(𝑡)𝑅$	W> a𝜙$

(#8 #8S!)⁄ (𝑡)b 𝑒$𝑙m=>
(#8)s⃖sssssssssss⃗ 	𝜔(#8)(𝑡).     (2.43d) 

To write closure equations it is necessary to express the velocities of path (ii) in 

terms of 𝜔(')(𝑡), 𝜙̇!
(8)(𝑡), 𝜙̇#

(8)(𝑡), and 𝜔+"=>
(=>	!$/=>	#8)(𝑡). Thus Eq. (2.43b) is rewritten 

using Eqs. (2.42b) and (2.40c) as: 

,𝜔'!
(9:	"#)(𝑡)-

;<=>(??)
= ,𝑅'!9:

(9:	"#/9:	.+)(𝑡)-
'
,𝑅#	A:(𝜙#

(.+ .+B")⁄ (𝑡))-
'
 

× 6,𝑅(.+B" $)⁄ (𝑡)-
'
𝜔($)(𝑡) + 7𝑅.	*!C: ,𝜙.

(+)(𝑡)-8
'
𝑒"𝜙̇"

(+)(𝑡) + 𝑒.𝜙̇.
(+)(𝑡)9 

+7𝑅'!9:
(9:	"# 9:	.+⁄ )(𝑡)8

'
𝑒#𝜙̇#

(.+ .+B")⁄ (𝑡) + 𝜔'!9:
(9:	"#/9:	.+)(𝑡).   (2.44a) 
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Similarly, Eq. (2.43d) is rewritten using Eqs. (2.42b, c), (2.41c), and (2.40c) as: 

:𝑥̇'!(𝑡)<;<=>	(??) = 𝑥̇(
($)(𝑡) − 𝑅($)(𝑡)𝑅(.+B" $)⁄ (𝑡)𝑒#𝑙(+)(𝑡) + 𝑠̂*!

($)?⃖???????????????????????????????????????????????????????⃗ 	𝜔($)(𝑡) 

−𝑅(.+B")(𝑡)𝑒#𝑙(+)(𝑡)?⃖???????????????⃗ 	67𝑅.	*!C: ,𝜙.
(+)(𝑡)-8

'
𝑒"𝜙̇"

(+)(𝑡) + 𝑒.𝜙̇.
(+)(𝑡)9 

+𝑅(.+B")(𝑡)𝑒#𝑑̇(+)(𝑡).      (2.44b) 

2.4.3 Loop Closure Constraints on Velocities 

The loop closure constraints on velocities in Fig. 2.2(b) are: 

H𝜔+"
(=>	!$)(𝑡)I

?@AB(C)
= H𝜔+"

(=>	!$)(𝑡)I
?@AB(CC)

,    (2.45a) 

H𝑥̇+"(𝑡)I?@AB(C)
= H𝑥̇+"(𝑡)I?@AB(CC)

.     (2.45b) 

Equation (2.45a) is explicitly written using Eqs. (2.32) and (2.43b) as: 

,𝑅#	'!(𝜃*+
("#))-

'
C,𝑅("# $⁄ )(𝑡)-

'
𝜔($)(𝑡) + 𝜔("# $⁄ )(𝑡)D 

= ,𝑅'!9:
(9:	"#/9:	.+)(𝑡)-

'
,𝑅#	A:(𝜙#

(.+ .+B")⁄ (𝑡))-
'
 

× 6,𝑅(.+B" $)⁄ (𝑡)-
'
𝜔($)(𝑡) + 7𝑅.	*!C: ,𝜙.

(+)(𝑡)-8
'
𝑒"𝜙̇"

(+)(𝑡) + 𝑒.𝜙̇.
(+)(𝑡)9 

+7𝑅'!9:
(9:	"# 9:	.+⁄ )(𝑡)8

'
𝑒#𝜙̇#

(.+ .+B")⁄ (𝑡) + 𝜔'!9:
(9:	"#/9:	.+)(𝑡).  (2.46a) 

Similarly, Eq. (2.45b) is written explicitly using Eqs. (2.34) and (2.43d). After a slight 

simplification, it becomes 

−∆𝑠(D
(+)(𝑡)?⃖??????????????⃗ 	𝜔($)(𝑡) − 𝑅("# $⁄ )(𝑡)𝑠̂'!

("#)?⃖??????⃗ 𝜔("# $⁄ )(𝑡) + 𝑠̇(
("# $⁄ )(𝑡) 

= 𝑅(.+B" $⁄ )(𝑡) F−𝑒#𝑙(+)(𝑡)?⃖???????????????⃗ 	67𝑅.	*!C: ,𝜙.
(+)(𝑡)-8

'
𝑒"𝜙̇"

(+)(𝑡) + 𝑒.𝜙̇.
(+)(𝑡)9 + 𝑒#𝑑̇(+)(𝑡)G.

  (2.46b) 

where 

∆𝑠%Y
(8)(𝑡) ≡ H𝑠%

(!$ ')⁄ (𝑡) + 𝑅(!$ '⁄ )(𝑡)𝑠̂+"
(!$)I − a𝑠̂J"

(') + 𝑅(#8S! ')⁄ (𝑡)𝑒$𝑙(8)(𝑡)b. (2.46c) 

To simplify the subsequent presentation, the approximation 𝜙$
(#8 #8S!)⁄ (0) = 0 

is incorporated. 𝜙$
(#8 #8S!)⁄ (𝑡), defined in Eqs. (2.15b, c), expresses the axial rotation of 

the upper leg, body-(2k), relative to the lower leg, body-(2k-1) with the initial value of: 

𝜙$
(#8 #8S!)⁄ (𝑡) = 0. In the next chapter, it will be shown that 𝜙$

(#8 #8S!)⁄ (𝑡) remains zero 

since its axial moment of inertia is negligible, and there is no external torque but some 

viscous damping. With this hindsight 𝜙̇$
(#8 #8S!)⁄ (𝑡) is neglected in Eq. (2.46a). The 

resulting equation gives the angular velocity at the spherical joint, SJ-(k), as:  
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    𝜔'!9:
(.+ .+B"⁄ )(𝑡) = C,𝑅("# $⁄ )(𝑡)	𝑅#	'!(𝜃*+

("#))-
'
− ,𝑅(.+B" $)⁄ (𝑡)	𝑅'!9:

(9:	"#/9:	.+)(𝑡)-
'
D𝜔($)(𝑡) +

,𝑅#	'!(𝜃*+
("#))-

'
𝜔("# $⁄ )(𝑡) − ,𝑅'!9:

(9:	"#/9:	.+)(𝑡)-
'
67𝑅.	*!C: ,𝜙.

(+)(𝑡)-8
'
𝑒"𝜙̇"

(+)(𝑡) + 𝑒.𝜙̇.
(+)(𝑡)9.  

(2.47) 

2.4.4 Equations for Inverse Instantaneous Kinematics 

For kinematics-based control, Eq. (2.46a) deserves careful interpretations. At 

each time step for measured input disturbance: 𝜔(')(𝑡) and 𝑥̇(')(𝑡) of the base plate, to 

counter-measure the motion of the base plate, the desired values of the top-plate 

velocities: 𝜔(!$ '⁄ )(𝑡)  and 𝑠̇%
(!$ '⁄ )(𝑡)  are computed. This task is accomplished by 

controlling the actuated translational joint velocities: 	𝑑̇(8)(𝑡)  for inverse kinematics 

control (IKC) for 𝑘 = 1, 2,⋯ , 6. The actuation of the leg also induces the universal joint 

motion: 𝜙̇!
(8)(𝑡), and 𝜙̇#

(8)(𝑡).  

For the inverse instantaneous kinematics problem [40], Eq. (2.46b) is solved 

analytically for those velocities, stored in a 3 × 1 column matrix, 𝑞̇Y
(8)(𝑡): 

𝑞̇Y
(8)(𝑡) ≡ *

𝜙̇!
(8)(𝑡)

𝜙̇#
(8)(𝑡)

𝑑̇(8)(𝑡)
+ = *

−𝑤#Z[\(𝑡)/(𝑙(8)(𝑡) cos𝜙#
(8)(𝑡))

𝑤!Z[\(𝑡)/𝑙(8)(𝑡)
𝑤$Z[\(𝑡)

+,  (2.48a) 

where the left-hand side of Eq. (2.46b) is expressed by 𝑤Z[\(𝑡) as: 

𝑤Z[\(𝑡) ≡ H𝑅(#8S! '⁄ )(𝑡)I
+
a−𝑅(!$ '⁄ )(𝑡)𝑠̂+"

(!$)s⃖ssssss⃗ 𝜔(!$ '⁄ )(𝑡) + 𝑠̇%
(!$ '⁄ )(𝑡) − ∆𝑠%Y

(8)(𝑡)s⃖ssssssssssssss⃗ 	𝜔(')(𝑡)b,  

(2.48b) 

and  

𝑤Z[\(𝑡) ≡ �
𝑤!Z[\(𝑡)
𝑤#Z[\(𝑡)
𝑤$Z[\(𝑡)

�.     (2.48c) 

In Eq. (2.48a), one notes that 𝑙($)(𝑡) ≠ 0 and 𝜙.
($)(𝑡) ≠ ±𝜋/2 due to the leg 

constraints, discussed in the Appendix 2.A. 
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2.5 Implementation of Inverse Kinematics Control 

Figure 2.8 illustrates a flowchart of IKC utilizing the inverse kinematics to 

feedforward the desired actuator displacements and PID for feedback control. 

 

 
Figure 2.8: Flowchart of inverse kinematics control of a base-moving Stewart platform  

with PID feedback 

 

In Fig. 2.8, the desired relative top-plate translational vector 𝑠%∗^∗
(!$ '⁄ )(𝑡) and the 

rotation matrix 𝑅∗^∗
(!$/')(𝑡) , and the corresponding velocities (𝑞̇+_∗^∗(𝑡)) ≡

,𝑠̇%∗^∗
(!$ '⁄ )(𝑡) 𝜔∗^∗

(!$ '⁄ )(𝑡).
+
 with respect to the base-plate frame are computed from the 

desired top-plate translational vector 𝑥%∗^∗
(!$) (𝑡) and the rotation matrix 𝑅∗^∗

(!$)(𝑡), and the 

corresponding velocities (𝑋̇∗^∗
(!$)(𝑡)) ≡ ,𝑥̇%∗^∗

(!$) (𝑡) 𝜔∗^∗
(!$)(𝑡).

+
 for measured input base-

plate velocities (𝑋̇(')(𝑡)) ≡ ,𝑥̇%
(')(𝑡) 𝜔(')(𝑡).

+
 and the corresponding translational 

vector 𝑥%
(')(𝑡) and the rotation matrix 𝑅(')(𝑡). From the inverse kinematics computation, 

desired velocities 𝑑̇∗^∗
(8) (𝑡) and displacements 𝑑∗^∗

(8) (𝑡) of the actuated translational joints 

are derived. Then, by employing a PID controller for each actuator, a control input: 

𝑢`+7
(8) (𝑡) is obtained from the errors, defined as the difference between the measured and 

the desired linear actuator velocities and extensions as: 

𝑢`+7
(8) (𝑡) = 𝐾?

(8)𝑒(8)(𝑡) +	𝐾C
(8) ∫𝑒(8)(𝑡)𝑑𝑡 + 𝐾^

(8)𝑒̇(8)(𝑡),    (2.49a) 

where 

𝑒(8)(𝑡) ≡ 𝑑(8)(𝑡) − 𝑑∗^∗
(8) (𝑡),  𝑒̇(8)(𝑡) ≡ 𝑑̇(8)(𝑡) − 𝑑̇∗^∗

(8) (𝑡)  (2.49b,c) 

and where 𝐾?
(8), 𝐾C

(8), and 𝐾^
(8) are proportional, integral, and derivative gains. 
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2.6 Concluding Remarks 

In this chapter for a base-moving Stewart platform, utilizing body- and joint-

attached, orthonormal coordinate frames, the configuration space is mathematically 

defined employing 4 × 4 frame connection matrices of the special Euclidian group, 

SE(3), which combines both SO(3) and ℝ$. Configurational loop closure constraints are 

presented for a representative closed loop and solved analytically for both inverse and 

forward kinematics (see Appendix 2.A). Next, the velocities of each moving coordinate 

frames are computed. In the computations, to be consistent with the Lie algebra so(3) 

of SO(3), skew-symmetric angular velocity matrices are defined first from the flow of 

rotation matrices with time, from which angular velocity vectors in ℝ$ are defined. 

Using body-attached moving frames whose connections are rigorously expressed by 

frame connection matrices, readers can systematically and unambiguously compute 

frame velocities (since vector bases of moving frames are explicitly shown). 

Finally, in the Appendix 2.A, workspace analysis is presented for the 

preliminary design of a Stewart platform. In the next chapter, utilizing the velocities of 

body-attached coordinate frames, analytical equations of motion are derived, and their 

control applications are presented. 
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2.7 Appendix 

2.7.1 Appendix 2.A: Kinematics for Design and Workspace Analyses 

A base-moving Stewart platform installed on a floor in a moving ship or vehicle 

is designed to maintain the desired position and attitude even if the base plate translates 

and rotates due to the motion of a moving vehicle. Therefore, the specification of the 

platform is described by its range of the relative position, 𝑠%
(!$ ')⁄ (𝑡) ∈ ℝ$  (=three-

dimensional vector space), and the relative rotation, 𝑅(!$ ')⁄ (𝑡) ∈ 𝑆𝑂(3), with respect to 

the base plate. They are components of the relative frame connection matrix 𝐸(!$ '⁄ )(𝑡) 

in Eqs. (2.4a, b). The workspace of the platform is defined by the reachable ranges of 

𝑠%
(!$ ')⁄ (𝑡) and 𝑅(!$ ')⁄ (𝑡). 

2.7.1.1   Inverse Kinematics for Leg Design 

The preliminary design begins with choosing the dimensions of the base plate 

and the top plate. For the base plate in Fig. 2.5, the radius of the mid-circle, 𝑟̂5
('), the 

truncation angle, ∆𝜃F(') , and for the top plate in Fig. 2.4, 𝑟̂5
(!$)  and ∆𝜃F(!$)  must be 

determined. Here, the truncation angles are assumed to be equal: ∆𝜃F = ∆𝜃F(') = ∆𝜃F(!$), 

where ∆𝜃F < 𝜋/3. In addition, in the reference configuration shown in Fig. 2.1, the initial 

elevation ℎG(() of the top plate from the base must be selected. From those values, the 

initial configuration of the platform, including the leg lengths, are computed utilizing 

the loop closure constraints in Eqs. (2.20d, e).  

 The next design step is, for a specified service environment, to select a set of 

essential positions and attitudes of the top plate relative to the base plate under service 

environments, which are crucial for the top plate to maintain the desired configuration 

to mitigate the motion of the base plate. Each of the essential relative frame-connection 

matrices between body-(13) frame and body-(0) frame is identified by “*” as: 

𝐸∗(!$ ')⁄ = 9𝑅
∗(!$ ')⁄ 𝑠%

∗(!$ '⁄ )

0!×$ 1
<.     (2.A1) 

For a specified 𝐸∗(!$ ')⁄ , finding the corresponding leg length, 𝑙(8), and the UJ 

rotation angles, 𝜙!
(8) and 𝜙#

(8) as well as the rotation at the SJ, 𝑅+"67
(67!$ #8⁄ ) for leg-(k), 𝑘 =

1, 2,⋯ , 6, define a problem of inverse kinematics. This can be analytically solved using 

the loop closure constraints, Eqs. (2.20d, e).  

First, to determine 𝑙($), and 𝜙/
($) and 𝜙.

($), Eq. (2.20e) is expressed with the 

unknowns on the left-hand side and the known matrices on the right as: 
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𝑅!	J"K7 H𝜙!
(8)I𝑅#	J"K7 H𝜙#

(8)I 𝑒$𝑙(8) = H𝑅$	J"(𝜃F8
('))I

+
H𝑅∗(!$ ')⁄ 𝑠̂+"

(!$) + 𝑠%
∗(!$ ')⁄ − 𝑠̂J"

(')I.    

(2.A2) 

After expanding the left-hand side using Eqs. (2.10c) and (2.11b), Eq. (2.A2) for leg-

(k) becomes 

*
𝑙(8) sin𝜙#

(8)

−𝑙(8) sin𝜙!
(8) cos𝜙#

(8)

𝑙(8) cos𝜙!
(8) cos𝜙#

(8)
+ = *

𝑤!
∗(8)

𝑤#
∗(8)

𝑤$
∗(8)

+,    (2.A3a) 

where the 3 × 1  column matrix 𝑤∗(8)  represents the known right-hand side of Eq. 

(2.A2): 

*
𝑤!
∗(8)

𝑤#
∗(8)

𝑤$
∗(8)

+ ≡ H𝑅$	J"(𝜃F8
('))I

+
H𝑅∗(!$ ')⁄ 𝑠̂+"

(!$) + 𝑠%
∗(!$ ')⁄ − 𝑠̂J"

(')I. (2.A3b) 

Equation (2.A3a) is solved analytically to give the inverse kinematics equations as: 

*
𝑙(8)

𝜙!
(8)

𝜙#
(8)
+ =

⎝

⎜⎜
⎜
⎛

�H𝑤!
∗(8)I

#
+ H𝑤#

∗(8)I
#
+ H𝑤$

∗(8)I
#

− tanS! H𝑤#
∗(8) 𝑤$

∗(8)� I

sinS! |𝑤!
∗(8) �H𝑤!

∗(8)I
#
+ H𝑤#

∗(8)I
#
+ H𝑤$

∗(8)I
#

� }
⎠

⎟⎟
⎟
⎞

.  (2.A4) 

For each essential relative frame-connection matrix, 𝐸∗(!$ ')⁄ , of the top plate, for leg-

(k), 𝑘 = 1, 2,⋯ , 6, one finds the maximum leg length 𝑙5@a, the minimum length 𝑙5Cb 

and maximum absolute values of 𝜙!
(8)  and 𝜙#

(8) , written as |𝜙!|5@a  and |𝜙#|5@a , 

respectively. From those values computed for selected, essential frame connection-

matrices, one finds the design values: 𝑙5@a∗ , 𝑙5Cb∗ , |𝜙!∗|5@a and |𝜙#∗|5@a. The necessary 

stroke of the actuated translational joint (ATJ) is defined as 𝑙5@a∗ − 𝑙5Cb∗ . 

Second, the relative rotation at each spherical joint is computed from Eq. (2.20d) 

incorporating 𝜙$
(#8 #8S!)⁄ = 0 as: 

𝑅+"67
(67!$ #8⁄ ) = a𝑅$	J" H𝜃F8

(')I𝑅!	J"K7 H𝜙!
(8)I𝑅#	c"K7 H𝜙#

(8)Ib
+
𝑅∗(!$ ')⁄ 𝑅$	+"(𝜃F8

(!$)). (2.A5) 

 Equations (2.A4) and (2.A5) with Eq. (2.A3b) are the analytical equations for 

inverse kinematics. 

2.7.1.2   Initial Leg Configurations 

 The initial values of 𝑙(8)(0), 𝜙!
(8)(0), 𝜙#

(8)(0) and 𝑅+"=>
(67!$ #8⁄ )(0) are required for 

all legs to define the initial configuration of the platform with an initial relative 
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elevation, ℎF('), between the top and the base plates. Equations (2.A3) and (2.A4) are 

written for t=0 using 𝑅(!$ ')⁄ (0) = 𝐼$ and 𝑠%
(!$ '⁄ )(0) = 𝑒$ℎF('). The resulting initial values 

are 

H
𝑙(+)(0)
𝜙"
(+)(0)

𝜙.
(+)(0)

J =

⎝

⎜⎜
⎜
⎛

N,𝑤"
(+)(0)-

.
+ ,𝑤.

(+)(0)-
.
+ ,𝑤#

(+)(0)-
.

−tanB" ,𝑤.
(+)(0) 𝑤#

(+)(0)S -

sinB" V𝑤"
(+)(0) N,𝑤"

(+)(0)-
.
+ ,𝑤.

(+)(0)-
.
+ ,𝑤#

(+)(0)-
.

S W
⎠

⎟⎟
⎟
⎞

,  (2.A6a) 

where 

*
𝑤!
(8)(0)

𝑤#
(8)(0)

𝑤$
(8)(0)

+ ≡ H𝑅$	J"(𝜃F8
('))I

+
H𝑠̂+"

(!$) + 𝑒$ℎF(') − 𝑠̂J"
(')I,   (2.A6b) 

whose components are computed explicitly using Eqs. (2.5b), (2.9b) and (2.10b) as: 

*
𝑤!
(8)(0)

𝑤#
(8)(0)

𝑤$
(8)(0)

+ =

⎝

⎜
⎛
𝑟̂5
(!$) cos H9

$
− ∆𝜃I − 𝑟̂5

(')

(−1)8d!𝑟̂5
(!$) sin H9

$
− ∆𝜃I

ℎF(') − ℎF67
(!$) − ℎFK7

(')
⎠

⎟
⎞

.   (2.A6c) 

The substitution of Eq. (2.A6c) into Eq. (2.A6a) yields the following initial values: 

   𝑙(0) ≡ 𝑙(!)(0) = 𝑙(#)(0) = ⋯ = 𝑙(<)(0) 

= yH𝑟̂5
(!$)I

#
+ H𝑟̂5

(')I
#
− 2𝑟̂5

(!$)𝑟̂5
(') cos H9

$
− ∆𝜃I + HℎF(') − ℎF67

(!$) − ℎFK7
(')I

#
z
! #⁄

,     (2.A7a) 

𝜙!
(!)(0) = 𝜙!

($)(0) = 𝜙!
(;)(0) = −𝜙!

(#)(0) = −𝜙!
(:)(0) = −𝜙!

(<)(0)   

= − tanS! h𝑟̂5
(!$) sin H9

$
− ∆𝜃I HℎF(') − ℎF67

(!$) − ℎFK7
(')I� i,  (2.A7b) 

𝜙#
(!)(0) = 𝜙#

(#)(0) = 𝜙#
($)(0) = 𝜙#

(:)(0) = 𝜙#
(;)(0) = 𝜙#

(<)(0) 

= −sinS! hH𝑟̂5
(') − 𝑟̂5

(!$) cos H9
$
− ∆𝜃II 𝑙(0)� i.   (2.A7c) 

Equations (2.A7a-c) indicate that initial leg lengths, 𝑙(8)(0), and the leg rotation angles 

of the cross axis pivoted by the leg yokes, 𝜙#
(8)(0), are the same for all legs, while the 

rotation angles of the cross axis journaled to the base yoke, 𝜙!
(8)(0), are alternating. 

These initial values are consistent with the reference configuration, shown in Fig. 2.1. 

 The initial relative rotation at each spherical joint is obtained from Eq. (2.A5) 

as: 

𝑅+"67
(67!$ #8⁄ )(0) = |𝑅$	J" H𝜃F8

(')I 𝑅!	J"K7 a𝜙!
(8)(0)b 𝑅#	c"K7 a𝜙#

(8)(0)b}
+

𝑅$	+"(𝜃F8
(!$)).  (2.A8) 

 Next, the equations for forward kinematics are presented. 
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2.7.1.3   Forward Kinematics 

 In the forward kinematics, for a given “compatible set” of six leg configurations, 

one finds a top-plate configuration relative to a base-plate configuration, i.e., 𝑅(!$ '⁄ ) 

and 𝑠%
(!$ '⁄ ). A compatible set of leg configurations indicates that they are consistent 

with the loop closure constraints. As a result, only leg-(1) configuration suffices to 

determine the top plate configuration. Let 𝑙(!), 𝜙!
(!), 𝜙#

(!)  and 𝑅+#=>
(67!$ #⁄ ) be prescribed. 

Then Equations (2.20d, e) for k=1, with the approximation of 𝜙$
(#8 #8S!⁄ ) = 0,	can be 

used to find 𝑅(!$ '⁄ ) and 𝑠%
(!$ '⁄ ) as: 

𝑅(!$ ')⁄ = 𝑅$	J#(𝜃F!
('))𝑅!	J#L>(𝜙!

(!))𝑅#J#L> H𝜙#
(!)I 𝑅+#=>

(=>!$ =>#⁄ ) a𝑅$	+# H𝜃F!
(!$)Ib

+
,   (2.A9a) 

𝑠%
(!$ '⁄ ) = 𝑅$	J# H𝜃F!

(')I 𝑅!	J#L> H𝜙!
(!)I𝑅#J#L> H𝜙#

(!)I 𝑒$𝑙(!) + 𝑠̂J#
(') − 𝑅(!$ '⁄ )𝑠̂+#

(!$).  (2.A9b) 

 The remaining task is to determine the compatible configurations for leg-(2), ⋯, 

leg-(6). Equation (2.20e) with Eq. (2.A9b) gives 

𝑅!	J"L> H𝜙!
(8)I 𝑅#J"L> H𝜙#

(8)I 𝑒$𝑙(8) = H𝑅$	J"(𝜃F8
('))I

+
h𝑠̂J#
(') − 𝑠̂J"

(') + 𝑅(!$ ')⁄ H𝑠̂+"
(!$) − 𝑠̂+#

(!$)Ii 

+𝑅$ H𝜃F!
(') − 𝜃F8

(')I𝑅!	J#L> H𝜙!
(!)I 𝑅#J#L> H𝜙#

(!)I 𝑒$𝑙(!).  (2.A10) 

Equation (2.A10) takes the same form as Eq. (2.A3a) by expressing the known right-

hand side of Eq. (2.A10) as 𝑤∗. Then 𝑙(8), 𝜙!
(8) and 𝜙#

(8) are obtained as shown in Eq. 

(2.A4). The remaining 𝑅+#=>
(67!$ #8⁄ ) can be easily computed from Eq. (2.20d). 

2.7.1.4   Workspace of the Stewart Platform 

 The workspace of the platform is a set of accessible configurations of the top 

plate relative to that of the base plate, which are expressed by the accessible flame-

connection matrices, 𝐸(!$ ')⁄ ∈ 𝑆𝐸(3) in Eqs. (2.4a, b). 𝐸(!$ ')⁄  may be interpreted as 

follows: 𝑅(!$ ')⁄ ∈ 𝑆𝑂(3)  is attached to each accessible 𝑠%
(!$ ')⁄ ∈ ℝ$  to show its 

accessible rotation. Therefore, the workspace 𝑊∗ is expressed by the frame connection 

matrix 𝐸(!$ ')⁄  whose components satisfy Eq. (2.20e) as well as the leg constraints: 

 𝑊∗ = w𝐸(!$ ')⁄ = 9𝑅
(!$ ')⁄ 𝑠%

(!$ '⁄ )

0!×$ 1
< 	with	𝑠%

(!$ ')⁄ ∈ ℝ$ and	𝑅(!$ ')⁄ ∈ 𝑆𝑂(3)� 

Eq. (20e), 𝑙5Cb∗ ≤ 𝑙(8) ≤ 𝑙5@a∗ 	, �𝜙!
(8)� ≤ |𝜙!∗|5@a	, �𝜙#

(8)� ≤ |𝜙#∗|5@a	for	𝑘 = 1,2,⋯ ,6i.    

(2.A11) 

Although 𝑅(!$ ')⁄  has nine components, the columns express the components of 

three orthonormal coordinate vectors, as Eq. (2.4a) shows. This orthonormality of the 
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columns yields six constraints. As a result, 𝑅(!$ ')⁄  is expressed “locally” by three 

angular coordinates, such as Euler angles and Tait-Bryan angles, see for example [30]. 

Euler angles represent the rotation as a sequence of elementary rotations with the body-

attached 𝑠#-axis by 𝜃e, the 𝑠!-axis by 𝜙e, and the 𝑠$-axis by 𝜓e as: 

𝑅(/# ()⁄ = 𝑅#(𝜃1)𝑅/(𝜙1)𝑅#(𝜓1).     (2.A12) 

Euler angles fail to represent the rotation matrix at its critical point: sin𝜙e = 0 , 

i.e.,	𝜙e = 0, where the inverse of Eq. (A12) does not exist, i.e., homeomorphism is lost. 

Since the critical point of Euler angles corresponds to the reference configuration where 

the top plate and the base plate are parallel to each other, Euler angels are not qualified 

to express 𝑅(!$ ')⁄ . (It is noted here that the critical attitude is changed by adopting a 

different cyclic order of the Euler angle representation, such as the rotations about the 

axes 2-3-2 and 1-2-1.) 

Tait-Bryan angles (𝜓!+J 𝜓#+J 𝜓$+J)+ express each rotation as a sequence of 

elementary rotations: 

𝑅(!$ '⁄ ) = 𝑅!(𝜓!+J)𝑅#(𝜓#+J)𝑅$(𝜓$+J),    (2.A13) 

which has critical points at cos𝜓#+J = 0, i.e., 𝜓#+J = ±𝜋 2⁄ . This critical point represents 

the configuration where the top plate becomes vertical to the base plate, which does not 

happen due the constraints on leg length in Eqs. (2.A4) and (2.A11). Therefore, Tait-

Bryan angles are adopted to represents 𝑅(/# (⁄ ) for the platform. 

 The inverse relation to Eq. (2.A13) away from the critical points is 

sin𝜓#+J =𝑅!$
(!$ ')⁄ ,			cos𝜓#+J = �1 − H𝑅!$

(!$ ')⁄ I
#
	or − �1 − H𝑅!$

(!$ ')⁄ I
#
 

sin𝜓!+J = −𝑅#$
(!$ '⁄ ) cos𝜓#+J� ,			cos𝜓!+J = 𝑅$$

(!$ '⁄ ) cos𝜓#+J�  

sin𝜓$+J = −𝑅!#
(!$ '⁄ ) cos𝜓#+J� ,			cos𝜓$+J = 𝑅!!

(!$ '⁄ ) cos𝜓#+J� .  (2.A14) 

 Using Tait-Bryan angles for the coordinates of 𝑅(!$ '⁄ )  and 

-𝑠.2
(., +)⁄ 𝑠12

(., +)⁄ 𝑠,2
(., +⁄ )/

4  for the coordinates of 𝑠%
(!$ '⁄ ) , the workspace 𝑊∗  of the 

platform is expressed by the six coordinates: 

,𝜓!+J 𝜓#+J 𝜓$+J 𝑠!%
(!$ ')⁄ 𝑠#%

(!$ ')⁄ 𝑠$%
(!$ '⁄ ).

+
∈ ℝ< 

with the constraints in Eq. (2.A11). (Although Tait-Bryan angles (𝜓!+J 𝜓#+J 𝜓$+J)+ 

are expressed in a column matrix, it is important to observe that they are not a vector.) 

Recognizing the limitations of using three-dimensional plots to express the six-

dimensional workspace, plots are only created for limited rotations with 𝒆!
(') , i.e., 
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𝜓#+J = 𝜓$+J = 0 for the Stewart platform whose design values are listed in Table 2.1. 

The initial leg configurations are defined as follows: 𝜙!
(!)(0) = 𝜙!

($)(0) = 𝜙!
(;)(0) =

−13.1°, 𝜙!
(#)(0) = 𝜙!

(:)(0) = 𝜙!
(<)(0) = 13.1°, 𝜙#

(8)(0) = 14.1° and 𝑑(8)(0) = 0.05m for 

𝑘 = 1, 2,⋯ ,6.  

 
Table 2.1: Geometrical properties of a scale model Stewart platform 

𝑟̂$
(&) 𝑟̂$

(()) ∆𝜃% ℎ%(&) 𝑙(*+
(,-.() 𝑙(/+

(,-) 

0.1425m 0.1m 13° 0.34m 0.0925m 0.0675m 

𝑑$01 𝑑$23 𝑙$01 𝑙$23 |𝜙(|$23 |𝜙,|$23 

0m 0.1m 0.22m 0.32m 40° 40° 

 

Figures 2.9 illustrate the plots of accessible 𝑠%
(!$ '⁄ ) for 𝜓!+J = 0°, 𝜓!+J = 10°, and 

𝜓!+J = 20°, respectively, for 𝜓#+J = 𝜓$+J = 0°. These figures help users confirm that the 

selected essential configurations of the top table, adopted for the initial design, are 

indeed accessible. 

 

  

 
Figure 2.9: The workspace sc(13/0) for (a) ψ1TB(t) = ψ2TB(t) = ψ3TB(t) = 0°, (b) ψ1TB(t) = 10°, ψ2TB(t) = ψ3TB(t) 

= 0°, and (c) ψ1TB(t) = 20°, ψ2TB(t) = ψ3TB(t) = 0° 

 

In computations, it is necessary to keep a desired top-plate configuration within 

the workspace. It is observed and analytically confirmed that the boundary of 

workspace has cusps where a different actuator begins to be actuated. To keep the top-

plate configuration within the workspace, two computational methods are available: (i) 

radial return and (ii) normal return. In this paper, the radial return method is adopted 

(a) 

𝑠!"
($! %⁄ ) 

𝑠$"
($! %⁄ ) 𝑠("

($! %⁄ ) 

(b) 

𝑠!"
($! %⁄ ) 

𝑠$"
($! %⁄ ) 𝑠("

($! %⁄ ) 

(c) 

𝑠!"
($! %⁄ ) 

𝑠$"
($! %⁄ ) 𝑠("

($! %⁄ ) 
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since the normal return method experiences difficulties in computing normal directions 

near the cusps on the boundary. In the radial method, if a trial desired top-plate 

configuration goes outside the workspace, the corrected compromised state is 

proportionally pulled back to the origin to return to the inside of the workspace while 

staying as close as possible near the boundary. 
 

2.7.2 Appendix 2.B: Proof of Eq. (2.26b) 

Equation (2.26b) in three dimensions is derived by utilizing the following three 

equations, which are expressed by adopting the summation convention for repeated 

indices from 1 to 3. 

 The first equation is the definition of the skew-symmetric angular velocity 

matrix: 

(𝜔)5	b = −𝜖5	b	8 	𝜔8,     (2.B1) 

where 𝜖5	b	8 denotes the permutation symbol. Its value is one if the sequence (m, n, k) 

is an even permutation of (1, 2, 3), such as (2, 3, 1), (3, 1, 2); the value is −1 if the 

sequence is an odd permutation of (1, 2, 3), such as (2, 1, 3), (1, 3, 2), (3, 2, 1); and the 

value is zero for other cases, such as (1, 2, 2), (2, 3, 2), (1, 1, 1). 

  The second equation is the definition of rotation matrices, 𝑅	𝑅+ = 𝐼$, written 

in the indicial form as: 

𝑅8g𝑅?g = 𝛿8?,     (2.B2) 

where the Kronecker delta: 𝛿8? = 1 if 𝑘 = 𝑝 and 𝛿8? = 0 if 𝑘 ≠ 𝑝. 

The third equation is the definition of matrix determinant for a right-handed 

rotation matrix, whose determinant is one: det 𝑅 = 1: 

𝜖5bg𝑅5C𝑅bh𝑅g8 = 𝜖Ch8 det 𝑅 = 𝜖Ch8.    (2.B3) 

The (𝑖, 𝑗)  -element of the left-hand side of Eq. (2.26b) becomes, using Eqs. 

(2.B1-2.B3) in this order: 
(𝑅+𝜔	𝑅)Ch = 𝑅5C(𝜔⃡)5b𝑅bh = −𝑅5C𝜖5b8𝜔8𝑅bh 

= −𝜖5b8𝑅5C𝑅bh𝜔8 = −𝜖5b8𝑅5C𝑅bh𝛿8?𝜔? 

= −,𝜖5b8𝑅5C𝑅bh𝑅8g.𝑅?g𝜔? = −𝜖Chg𝑅?g𝜔? 

= −𝜖Chg(𝑅+𝜔)g = H𝑅+𝜔s⃖ssssss⃗ I
Ch

.        (2.B4) 

As a result, Eq. (2.26b) is proven for element (𝑖, 𝑗): 

(𝑅+𝜔	𝑅)Ch = H𝑅+𝜔s⃖ssssss⃗ I
Ch

 .    (2.B5) 
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For the readers who are familiar with the Lie group theory, the left-hand side of 

Eq. (2.26b) define the adjoint representation of 𝑅+ ∈ 	𝑆𝑂(3), written as 𝐴𝑑(𝑅+), which 

linearly transforms 𝜔 ∈ 𝑠𝑜(3)  into another skew symmetric matrix in so(3) [31]. 

Identifying the components of skew symmetric matrices as vector components in ℝ#	as 

shown in Eqs. (2.22b) and (2.23), Eq. (2.B5) states that for 𝜔 ∈ ℝ$, 𝐴𝑑(𝑅+) becomes 

𝑅+ in ℝ$:  

𝐴𝑑(𝑅+):							𝜔 ⟶	𝑅+𝜔	𝑅							in	𝑠𝑜(3), 

 𝜔	 ⟶	𝑅+𝜔									in	ℝ$. 

Readers are encouraged to learn a neat derivation of Eq. (2.26b) by Holm [35], 

where his (	)¬-operation is our (	)s⃖ss⃗ -operation. 
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CHAPTER 3: KINETICS OF A BASE-MOVING STEWART PLATFORM  

3.1 Introduction 

In this chapter, the principle of virtual work is variationally derived from 

Hamilton’s principle [29, 30] to facilitate a hybrid method bridging the gap between 

Lagrange’s method and the Newton-Euler method. The resulting principle yields the 

same weighted-residual form as the principle of virtual power, employed by Wittenburg 

[17]. Utilizing the principle of virtual work, analytical equations of motion are derived 

for real-time control including actuator joint forces for inverse dynamic control as well 

as dynamic system simulations. Finally, experimental results utilizing a scale model are 

presented to compare the performance of an inverse dynamics controller (IDC) to that 

of an inverse kinematics controller (IKC). The comparison demonstrates that the 

performance of IDC utilizing the equations of motion of the platform system is superior 

to that of IKC. 

 

3.2 The Principle of Virtual Work for Multi-Body Systems 

To obtain equations of motion for a Stewart platform, the principle of virtual 

work is variationally derived from Hamilton’s principle. In the past, the principle was 

postulated as a weighted residual equation incorporating Newton-Euler equations and 

referred to as the principle of virtual power [31]. In the variational derivation, the 

constrained variation of virtual angular velocity plays a key role.  

The principle of virtual work bridges the gap between the Newton-Euler method 

[9,10,12] and Lagrange’s method (if configuration space is defined by displacements 

without rotation matrices) [8,13,14]. If joint constraints are fully incorporated in the 

principle as essential generalized velocities (which will be defined in Eq. (3.4c)), the 

principle yields Lagrange’s equations of motion, while if some constraints are not 

incorporated in the essential velocities, but are appended to the principle using 

Lagrange multipliers, it gives the Newton and Euler-type equations including reaction 

forces and couples associated with the unsatisfied velocity constraints in the essential 

velocities 

In this section, after reviewing Frankel’s compact notation for the kinematics of 

moving frames [31], the variations in vector space ℝ# and the special orthogonal group 

SO(3) are examined for Hamilton’s principle. While deriving the principle of virtual 
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work, an efficient way is discussed of incorporating kinematic constraints for joints and 

loop-closures into the essential velocities thereby into the equations of motion. 

3.2.1 Kinematics Using Moving Coordinate Frames 

In the previous chapter, kinematics for a multi-body system with n bodies was 

presented. It began by introducing an inertial coordinate frame (𝐞" 𝟎), defined by a 

cartesian coordinate system {𝑥! 𝑥# 𝑥$} with its origin at 0 and its coordinate vector 

basis 𝐞5 ≡ (𝐞.5 𝐞15 𝐞,5 ). For each constituent body, body-(α), 𝛼 = 1, 2,⋯ , 𝑛, a moving 

frame -𝐞(6)(𝑡) 𝐫2
(6)(𝑡)/ was defined by attaching an orthonormal coordinate system 

2𝑠.
(6) 𝑠1

(6) 𝑠,
(6)3 with an origin at its center of mass, 𝐶(i), and defining the coordinate 

vector basis 𝐞(6)(𝑡) ≡ -𝐞.
(6)(𝑡) 𝐞1

(6)(𝑡) 𝐞,
(6)(𝑡)/. The configuration of body-(α) is defined 

by the frame connection matrix 𝐸(i)(𝑡) with respect to the inertial frame, as shown in 

Eq. (2.3a):  

,𝐞(i)(𝑡) 𝐫%
(i). = (𝐞" 𝟎)𝐸(i)(𝑡).     (3.1a) 

In expanded form Eq. (3.1a) gives 

,𝐞(i)(𝑡) 𝐫%
(i)(𝑡). = ,𝐞"𝑅(i)(𝑡) 𝐞"𝑥%

(i)(𝑡)..    (3.1b) 

Equation (3.1b) states that the configuration of body-(α) is defined by: (i) the 

attitude of the body-attached vector basis 𝐞(i)(𝑡)  expressed by a rotation matrix: 

𝑅(i)(𝑡) ∈ 𝑆𝑂(3) from the inertial vector basis 𝐞", and (ii) the origin of its center of mass, 

𝑥%
(i)(𝑡) ∈ ℝ$.  

The velocity of body-(𝛼) frame is expressed as Eq. (2.24): 

,𝐞̇(i)(𝑡) 𝐫̇%
(i)(𝑡). = ,𝐞(i)(𝑡)𝜔(i)(𝑡)s⃖ssssssssssss⃗ 𝐞"𝑥̇%

(i)(𝑡).,   (3.2a) 

where 𝜔(i)(𝑡)s⃖ssssssssssss⃗ ∈ 𝑠𝑜(3) is a skew-symmetric angular velocity matrix, which defines the 

angular velocity vector 𝜔(i)(𝑡) ∈ ℝ$, expressed with respect to 𝐞(i)(𝑡), and 𝑥̇%
(i)(𝑡) ∈

ℝ$ is the velocity of the center of mass, 𝐶(i) with respect to 𝐞". 

From Eq. (3.2a) the generalized velocities of body-(𝛼) are stored in a 6 × 1 

matrix: 

,𝑋̇(i)(𝑡). ≡ |𝑥̇%
(i)(𝑡)

𝜔(i)(𝑡)
}.    (3.2b) 

System generalized velocities for an n-body system are stored in a 6𝑛 × 1 

column matrix, ,𝑋̇(𝑡). , which assembles the generalized velocities of constituent 

bodies: 
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,𝑋̇(𝑡). ≡ �
𝑋̇(!)(𝑡)

⋮
𝑋̇(b)(𝑡)

� =

⎝

⎜
⎜
⎛
𝑥̇%
(!)(𝑡)

𝜔(!)(𝑡)
⋮

𝑥̇%
(b)(𝑡)

𝜔(b)(𝑡)⎠

⎟
⎟
⎞

,    (3.3) 

If constituent bodies are jointed, the system generalized velocities ,𝑋̇(𝑡). are 

expressed by generalized velocities of joint displacements. Let the column matrix of 

generalized velocities be expressed by a column matrix (𝑞̇(𝑡))  with 𝑛³  components. 

Then, ,𝑋̇(𝑡). is linearly expressed by (𝑞̇(𝑡)) using a 6𝑛 × 𝑛³ coefficient matrix [𝐵(𝑡)] as: 

,𝑋̇(𝑡). = [𝐵(𝑡)](𝑞̇(𝑡)).     (3.4a) 

In robotics [𝐵(𝑡)]-matrices are referred to as Jacobian matrices [38, 40] 

In addition, there are 𝑛%  holonomic or non-holonomic constraints among the 

components of (𝑞̇(𝑡)), such as the loop closure constraints, Eq. (I-46b). The degrees-

of-freedom of (𝑞̇(𝑡)) reduces from 𝑛³ to 𝑛∗ = 𝑛³ − 𝑛%. A set of linearly independent 𝑛∗ 

components of (𝑞̇(𝑡)) defines essential generalized velocity (𝑞̇∗(𝑡)), stored in an 𝑛∗ × 1 

column matrix. Thus (𝑞̇(𝑡))  is linearly expressed by (𝑞̇∗(𝑡))  using an 𝑛³ × 𝑛∗  matrix 

[𝑇(𝑡)] as: 

(𝑞̇(𝑡)) = [𝑇(𝑡)](𝑞̇∗(𝑡)).     (3.4b) 

The system generalized velocity ,𝑋̇(𝑡).  is now expressed linearly by the 

essential velocity (𝑞̇∗(𝑡)), expressed by a  6𝑛 × 𝑛∗ matrix [𝐵∗(𝑡)] as: 

,𝑋̇(𝑡). = [𝐵∗(𝑡)](𝑞̇∗(𝑡)),     (3.4c) 

where [𝐵∗(𝑡)] is obtained by substituting Eq. (3.4b) into Eq. (3.4a): 

[𝐵∗(𝑡)] ≡ [𝐵(𝑡)][𝑇(𝑡)].     (3.4d) 

The velocity computations performed in Chapter 2 will be utilized to define Eqs. (3.4a) 

and (3.4b) explicitly for a Stewart platform. 

Equations (3.4a-d) play a critical role for the subsequent derivation of equations 

of motion from the principle of virtual work. In this section, for simplicity, systems 

excited only by external forces are considered first since the systems excited by both 

external forces and prescribed excitation velocities are more complicated. (In the next 

section, for a Stewart platform under prescribed mount motion, it will be shown that 

Eqs. (3.4a) and (3.4b) include additional terms due to the prescribed velocities.)   
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3.2.2 Hamilton’s Principle 

Hamilton’s principles are expressed by using either (i) configurational 

coordinates and their velocities (in the tangent bundle) or (ii) coordinates and associated 

momenta in the phase space (or cotangent bundle), see Frankel [31]. In this paper, the 

former Hamilton’s principle using coordinates and velocities is employed, in which 

Lagrangian 𝐿(𝑡) is defined as the difference between system kinetic energy 𝐾(𝑡) and 

system potential energy 𝑈(𝑡): 

𝐿(𝑡) ≡ 𝐾(𝑡) − 𝑈(𝑡).     (3.5) 

Hamilton’s principle is written for a time duration 𝑡' ≤ 𝑡 ≤ 𝑡! as: 

𝛿 ∫ 𝐿(𝑡)𝑑𝑡A#
A4

+ ∫ 𝛿𝑊bj(𝑡)𝑑𝑡
A#
A4

= 0,    (3.6a) 

where 𝛿-operator denotes the variation and 𝛿𝑊bj expresses the virtual work done by 

non-conservative forces. The substitution of Eq. (3.5) into Eq. (3.6a) yields 

∫ (𝛿𝐾(𝑡) − 𝛿𝑈(𝑡) + 𝛿𝑊bj(𝑡))𝑑𝑡
A#
A4

= 0.   (3.6b) 

3.2.2.1   Kinetic Energy 𝑲(𝒕) and Potential Energy 𝑼(𝒕) 

The system kinetic energy is expressed as the sum of the kinetic energies of n 

constituent bodies: 

𝐾(𝑡) = ∑ 𝐾(i)(𝑡)b
ik! .     (3.7a) 

The kinetic energy of body-(α), 𝐾(i)(𝑡), is expressed by the generalized velocity of 

body-(α), ,𝑋̇(i)(𝑡). in Eq. (2b), and its mass matrix º𝑀¼(i)½ as: 

𝐾(i)(𝑡) = !
#
,𝑋̇(i)(𝑡).

+
º𝑀¼ (i)½,𝑋̇(i)(𝑡).,   (3.7b) 

where the body-(α) mass matrix	is a constant, 6 × 6 symmetric positive-definite matrix, 

whose components are defined by the mass 𝑚¿ (i) of body-(𝛼) and its mass-moment of 

inertia with respect to the body-attached 𝑠C
(i) -coordinate system, 𝐽m%

(i) , which is a 

symmetric positive-definite 3 × 3 matrix: 

º𝑀¼(i)½<×< ≡ 9
𝑚¿ (i)𝐼$ 0$×$
0$×$ 𝐽m%

(i) <,     (3.7c) 

in which 𝐼$ and 0$×$, respectively, denote the 3 × 3 identity matrix and the 3 × 3 zero 

matrix. 

Let the linear momentum vector and the angular momentum vector of body-(𝛼) 

be expressed as 𝑳&
(2)(𝑡) = 𝐞%𝐿&

(2)(𝑡) and 𝑯&
(2)(𝑡) = 𝐞(2)(𝑡)𝐻&

(2)(𝑡). Their components 

are written using Eqs. (3.7c) and (3.2b) as: 
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Á
𝐿%
(i)(𝑡)
𝐻%
(i)(𝑡)

Ã = º𝑀¼(i)½,𝑋̇(i)(𝑡). = 9
𝑚¿ (i)𝐼$ 0$×$
0$×$ 𝐽m%

(i) < |
𝑥̇%
(i)(𝑡)

𝜔(i)(𝑡)
}.  (3.7d) 

Equation (3.7a) is expressed compactly using the system generalized velocities 

in Eq. (3) as: 

𝐾(𝑡) = !
#
	H𝑋̇(𝑡)I

+
º𝑀¼½ H𝑋̇(𝑡)I,    (3.8a) 

where º𝑀¼½ is the system mass matrix having the constituent mass matrices, º𝑀¼ (i)½, 𝛼 =

1,⋯ , 𝑛, on the diagonal: 

º𝑀¼½<b×<b ≡

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑀
¼(!) 0$×$
0$×$ 𝑀¼(#)

0$×$ ⋯
0$×$ ⋯

0$×$ 0$×$
0$×$ 0$×$

0$×$ 0$×$
⋮ ⋮

𝑀¼($) 	⋮
⋮ ⋱

⋮ ⋮
0$×$ 0$×$

0$×$ 0$×$
0$×$ 0$×$

0$×$ 0$×$
0$×$ 0$×$

𝑀¼(bS!) 0$×$
0$×$ 𝑀¼(b)⎦

⎥
⎥
⎥
⎥
⎥
⎤

.  (3.8b) 

The variation of the kinetic energy, 𝛿𝐾(𝑡), is from Eq. (3.7a) written as: 

𝛿𝐾(𝑡) = ∑ 𝛿𝐾(i)(𝑡)b
ik! ,    (3.9a) 

where 𝛿𝐾(i)(𝑡) is expressed from Eqs. (3.7b, d) introducing the virtual generalized 

velocity ,𝛿𝑋̇(i)(𝑡). as: 

𝛿𝐾(i)(𝑡) = ,𝛿𝑋̇(i)(𝑡).
+
º𝑀¼(i)½,𝑋̇(i)(𝑡). = ,𝛿𝑋̇(i)(𝑡).

+
Á
𝐿%
(i)(𝑡)
𝐻%
(i)(𝑡)

Ã,  (3.9b) 

where the virtual generalized velocity of body-(𝛼) is from Eq. (3.2b): 

,𝛿𝑋̇(i)(𝑡). ≡ |𝛿𝑥̇%
(i)(𝑡)

𝛿𝜔(i)(𝑡)
}.      (3.9c) 

Equation (3.9a) for the system can be written compactly using Eq. (3.8a) as: 

𝛿𝐾(𝑡) = !
#
	H𝛿𝑋̇(𝑡)I

+
º𝑀¼½ H𝑋̇(𝑡)I,    (3.10a) 

where the virtual system generalized-velocity is 

,𝛿𝑋̇(𝑡). ≡ �
𝛿𝑋̇(!)(𝑡)

⋮
𝛿𝑋̇(b)(𝑡)

� =

⎝

⎜
⎜
⎛
𝛿𝑥̇%

(!)(𝑡)
𝛿𝜔(!)(𝑡)

⋮
𝛿𝑥̇%

(b)(𝑡)
𝛿𝜔(b)(𝑡)⎠

⎟
⎟
⎞

.   (3.10b) 

To use Eq. (3.10a) in Hamilton’s principle, Eq. (3.6b), 𝛿𝑥̇%
(i)(𝑡) and 𝛿𝜔(i)(𝑡) in 

Eq. (3.10b) require close examinations of the calculus of variations in both a vector 

space and SO(3), see Holm [35] and [29, 30] 
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3.2.2.2   Variations of 𝒙𝑪
(𝜶)(𝒕) ∈ ℝ𝟑 and 𝑹(𝜶)(𝒕) ∈ 𝑺𝑶(𝟑) 

To define the variation of the position vector 𝐫%
(i)(𝑡) = 𝐞"𝑥%

(i)(𝑡) of the center of 

mass, 𝐶(i) , of body-(𝛼), the inertial coordinates 𝑥%
(i)(𝑡) is generalized in the three 

dimensional vector space ℝ$  as the function of 𝑡  and 𝜀 : 𝑥%
(i)(𝑡; 	𝜀) with 𝑥%

(i)(𝑡; 0) =

𝑥%
(i)(𝑡), see Frankel [31]. The 𝜀-derivative of 𝐞"𝑥%

(i)(𝑡; 	𝜀) at 𝜀 = 0 defines the variation 

of 𝐞"𝑥%
(i)(𝑡) as: 

𝛿𝐫%
(i)(𝑡) = 𝐞"𝛿𝑥%

(i)(𝑡) ≡ 𝐞" l
lm
𝑥%
(i)(𝑡; 	𝜀)�

mk'
.   (3.11a) 

Observing that mixed derivatives with 𝑡 and 𝜀 commute for the integrability: 

𝐞" l
5a6

(7)

lm	lA
= 𝐞" l

5a6
(7)

lA	lm
,      (3.11b) 

one finds that the 𝑡- and 𝛿- operators acting on 𝑥&
(2)  commute, which is written in 

components: 

𝛿𝑥̇%
(i)(𝑡) ≡ 𝛿 a^a6

(7)(A)
^A b = ^

^A
H𝛿𝑥%

(i)(𝑡)I,    (3.12a) 

and observing that 𝛿𝐞" = 𝟎, in vector form: 

𝛿𝐫̇%
(i)(𝑡) ≡ 𝛿 a^𝒓6

(7)(A)
^A b = ^

^A
H𝛿𝐫%

(i)(𝑡)I.    (3.12b) 

The variations in vector space are often expressed as 𝑥%
(i)(𝑡; 	𝜀) = 𝑥%

(i)(𝑡) +

𝜀𝜂(i)(𝑡)  utilizing an infinitely differentiable 𝐶o -function 𝜂(i)(𝑡)  as its variation 

𝛿𝑥%
(i)(𝑡) since the addition of vectors gives another vector, see for example [41, 42]. 

However, in SO(3) the addition of rotation matrices does not give a rotation matrix 

since SO(3) is not a vector space but a group, where the product of rotation matrices 

gives another rotation matrix. Therefore, the variations of rotation matrices have to be 

defined carefully within SO(3). 

Next, after defining the variation of 𝑅(i)(𝑡) ∈ 𝑆𝑂(3), the variation of angular 

velocity 𝛿𝜔(i)(𝑡) is examined to find that 𝛿𝜔(i)(𝑡) is not arbitrary but constrained [29, 

30, 35]. 

3.2.2.3   Constrained Variation of Virtual Angular Velocity: 𝜹𝝎(𝜶)(𝒕) 

 The variation of the moving vector basis 𝐞(i)(𝑡) = 𝐞"𝑅(i)(𝑡)  with 𝑅(i)(𝑡) ∈

𝑆𝑂(3) is defined by generalizing it as the function of 𝑡 and 𝜀: 𝐞(i)(𝑡; 	𝜀) = 𝐞"𝑅(i)(𝑡; 	𝜀) 

with the condition: 𝑅(i)(𝑡; 0) = 𝑅(i)(𝑡). (A specific example of 𝑅(i)(𝑡; 	𝜀) is to “locally” 
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express 𝑅(i)(𝑡) as shown in Eq. (2.A9) using Euler angles (𝜃e(𝑡) 𝜙e(𝑡) 𝜓e(𝑡))+ . 

Then one varies the Euler angles with 𝜀 as (𝜃e(𝑡; 	𝜀) 𝜙e(𝑡; 	𝜀) 𝜓e(𝑡; 	𝜀))+.) 

The 𝜀-derivative at 𝜀 = 0 yields 𝛿𝐞(i)(𝑡) = 𝐞"𝛿𝑅(i)(𝑡) observing that 𝛿𝐞" = 𝟎: 

𝛿𝐞(i)(𝑡) = 𝐞"𝛿𝑅(i)(𝑡) ≡ 𝐞" l
lm
𝑅(i)(𝑡; 	𝜀)�mk'.   (3.13a) 

Equation (3.13a) expressed by its own basis using 𝐞" =

𝐞(i)(𝑡),𝑅(i)(𝑡).
+
,	 defines the skew-symmetric virtual angular-displacement matrix 

𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ ∈ 𝑠𝑜(3) as: 

𝛿𝐞(i)(𝑡) = 𝐞(i)(𝑡)𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ ,     (3.13b) 

where 

𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ ≡ H𝑅(i)(𝑡)I
+
𝛿𝑅(i)(𝑡).   (3.13c) 

The mixed partial derivatives with 𝑡  and 𝜀  commute for the integrability of 

𝑅(i)(𝑡; 	𝜀) in the neighborhood of 𝜀 = 0 in the variational t, 𝜀 -plane [30]: 

		𝐞" 	 l
lm

lp(7)

lA
�
mk'

= 𝐞" l
lA

lp(7)

lm
�
mk'

,   (3.14a) 

which gives in components: 

𝛿𝑅̇(i)(𝑡) ≡ 𝛿 a^p
(7)(A)
^A b = ^

^A
,𝛿𝑅(i)(𝑡).,   (3.14b) 

and in vector form,  

𝛿𝐞̇(i)(𝑡) ≡ 𝛿 a^𝒆
(7)(A)
^A b = ^

^A
,𝛿𝐞(i)(𝑡)..   (3.14c) 

The integrability condition Eq. (3.14c) of 𝐞(i)(𝑡; 	𝜀) = 𝐞"𝑅(i)(𝑡; 	𝜀) reveals that even 

though the virtual angular displacement 𝛿𝜋(i) is arbitrary, the virtual angular velocity 

𝛿𝜔(i)(𝑡) is not arbitrary, but is subjected to the following constraint, written in vector 

form: 

𝛿𝜔(i)(𝑡) = ^
^A
,𝛿𝜋(i)(𝑡). + 𝜔(i)(𝑡)s⃖ssssssssssss⃗ 𝛿𝜋(i)(𝑡).    (3.15) 

Proof: Equation (3.15) is derived from Eq. (3.14c) using Eq. (3.13b) and Eq. (2.22a), 

written for body-(𝛼): 

𝐞̇(i)(𝑡) = 𝐞(i)(𝑡)𝜔(i)(𝑡)s⃖ssssssssssss⃗ .     (3.16) 

To compute the left-hand side of Eq. (3.14c), the variation of Eq. (3.16) is computed: 

𝛿 H𝐞̇(i)(𝑡)I = 𝛿 H𝐞(i)(𝑡)𝜔(i)(𝑡)s⃖ssssssssssss⃗ I = 𝛿𝐞(i)(𝑡)𝜔(i)(𝑡)s⃖ssssssssssss⃗ + 𝐞(i)(𝑡)𝛿𝜔(i)(𝑡)s⃖sssssssssssssss⃗  

= 𝐞(i)(𝑡) H𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ 	𝜔(i)(𝑡)s⃖ssssssssssss⃗ + 𝛿𝜔(i)(𝑡)s⃖sssssssssssssss⃗ I.    (3.17a) 
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To compute the right-hand side of Eq. (3.14c), the time derivative of Eq. (3.13b) is 

computed: 

 ^
^A
H𝐞(i)(𝑡)𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ I = 𝐞̇(i)(𝑡)𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ + 𝐞(i)(𝑡) ^

^A
𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗  

= 𝐞(i)(𝑡) H𝜔(i)(𝑡)s⃖ssssssssssss⃗ 	𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ + ^
^A
𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ I .  (3.17b) 

Equating Eqs. (3.17a, b) and using the Lie bracket [29-31], one finds in 𝑠𝑜(3): 

𝛿𝜔(i)(𝑡)s⃖sssssssssssssss⃗ = ^
^A
𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ + È𝜔(i)(𝑡)s⃖ssssssssssss⃗ , 𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ É    (3.18a) 

where 

È𝜔(i)(𝑡)s⃖ssssssssssss⃗ , 𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ É ≡ 𝜔(i)(𝑡)s⃖ssssssssssss⃗ 	𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ − 𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ 	𝜔(i)(𝑡)s⃖ssssssssssss⃗  . (3.18b) 

Next, one observes that the Lie bracket term shows the skew-symmetric form of the 

cross product between the two column vectors: 𝛿𝜔(i) × 𝛿𝜋(i) = 𝛿𝜔(i)s⃖sssssssss⃗ 𝛿𝜋(i): 

 È𝜔(i)(𝑡)s⃖ssssssssssss⃗ , 𝛿𝜋(i)(𝑡)s⃖sssssssssssssss⃗ É = 𝜔(i)(𝑡)s⃖ssssssssssss⃗ 𝛿𝜋(i)(𝑡)
s⃖sssssssssssssssssssssssssssssss⃗ .   (3.18c) 

Combining Eqs. (3.18a) and (3.18c) and transforming the skew-symmetric equation to 

the equation in vector form, Eq. (3.15) is obtained from Eq. (3.14c). 

Incorporating Eq. (3.15) into virtual generalized velocity of body-(𝛼), Eq. (3.9c) 

is expressed, by introducing arbitrary virtual generalized displacement of body-(𝛼), 

,𝛿𝑋Ê(i)(𝑡)., as: 

,𝛿𝑋̇(i)(𝑡). = ^
^A
,𝛿𝑋Ê(i)(𝑡). + º𝐷(i)(𝑡)½,𝛿𝑋Ê(i)(𝑡).,   (3.19a) 

where 8𝛿𝑋c (2)(𝑡): is  

,𝛿𝑋Ê(i)(𝑡). ≡ |𝛿𝑥%
(i)(𝑡)

𝛿𝜋(i)(𝑡)
},     (3.19b) 

and  

º𝐷(i)(𝑡)½ ≡ 9
0$×$ 0$×$
0$×$ 𝜔(i)(𝑡)s⃖ssssssssssss⃗ <.    (3.19c) 

Equation (3.19a) expresses in matrix form both integrability conditions: Eq. (3.12a) and 

Eq. (3.15). 

Equation (3.19a) is also expressed for the virtual system generalized-velocity 

,𝛿𝑋Ê(𝑡). as: 

,𝛿𝑋̇(𝑡). = ^
^A
,𝛿𝑋Ê(𝑡). + [𝐷(𝑡)],𝛿𝑋Ê(𝑡).,    (3.20a) 

where ,𝛿𝑋Ê(𝑡). assembles ,𝛿𝑋Ê(i)(𝑡)., 𝛼 = 1,⋯ , 𝑛 as: 
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,𝛿𝑋Ê(𝑡). ≡ �
𝛿𝑋Ê(!)(𝑡)

⋮
𝛿𝑋Ê(b)(𝑡)

� =

⎝

⎜
⎜
⎛
𝛿𝑥%

(!)(𝑡)
𝛿𝜋(!)(𝑡)

⋮
𝛿𝑥%

(b)(𝑡)
𝛿𝜋(b)(𝑡)⎠

⎟
⎟
⎞

,   (3.20b) 

and 

[𝐷(𝑡)] ≡

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0$×$ 0$×$ 0$×$
0$×$ 𝜔(!)s⃖ssssss⃗ 0$×$
0$×$ 0$×$ 0$×$

0$×$ ⋯ 0$×$
0$×$ ⋯ 0$×$
0$×$ ⋯ 0$×$

0$×$
0$×$
0$×$

0$×$ 0$×$ 0$×$
⋮ ⋮ ⋮

𝜔(#)s⃖ssssss⃗ ⋯ 0$×$
⋮ ⋱ ⋮

0$×$
⋮

0$×$ 0$×$ 0$×$
0$×$ 0$×$ 0$×$

0$×$ ⋯ 0$×$
0$×$ ⋯ 0$×$

0$×$
𝜔(b)s⃖ssssss⃗ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

.  (3.20c) 

Replacing the time derivative in Eq. (3.4a) by 𝜀 -derivative, ,𝛿𝑋Ê(𝑡).  is also 

expressed linearly by virtual generalized displacement (𝛿𝑞³(𝑡)) using the same [𝐵(𝑡)]-

matrix as: 

,𝛿𝑋Ê(𝑡). = [𝐵(𝑡)](𝛿𝑞³(𝑡)).     (3.21a) 

If there are additional constraints among the components of (𝑞̇(𝑡)) as shown by Eq. 

(3.4b), (𝛿𝑞³(𝑡))  is linearly expressed by virtual essential generalize- displacement 

(𝛿𝑞³∗(𝑡)) using the same [𝑇(𝑡)]-matrix as Eq. (3.4c) 

(𝛿𝑞³(𝑡)) = [𝑇(𝑡)](𝛿𝑞³∗(𝑡)).     (3.21b) 

The substitution of Eq. (3.21b) into Eq. (3.21a) yields the similar equation to Eq. (3.4c) 

using the same  [𝐵∗(𝑡)]-matrix defined in Eq. (3.4d): 

,𝛿𝑋Ê(𝑡). = [𝐵∗(𝑡)](𝛿𝑞³∗(𝑡)).    (3.21c) 

3.2.3 The Principle of Virtual Work for Multi-Body Systems 

Let the virtual work 𝛿𝑊(𝑡) due to the potential energy and the non-conservative 

forces be expressed using the virtual essential generalized-displacement (𝛿𝑞h∗(𝑡)) . 

Then, the conjugate force defines the essential generalized force (𝐹∗(𝑡)) as: 

𝛿𝑊(𝑡) ≡ −𝛿𝑈(𝑡) + 𝛿𝑊bj(𝑡) = (𝛿𝑞³∗(𝑡))+(𝐹∗(𝑡)).    (3.22a) 

As a special case, if n bodies are free from joint constraints the virtual work is expressed 

as: 

𝛿𝑊(𝑡) = ∑ ,𝛿𝑋Ê(i)(𝑡).
+
Á
𝐹%
(i)	"(𝑡)
𝑀%
(i)(𝑡)

Ãb
ik! ,   (3.22b) 

where 𝐅%
(i)(𝑡) = 𝐞"𝐹%

(i)	"(𝑡)  is the resultant force acting on body-(𝛼 ) and 𝐌%
(i)(𝑡) =

𝐞(i)(𝑡)𝑀%
(i)(𝑡) is the external torque expressed with respect to 𝐶(i). 
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Hamilton’s principle, Eq. (3.6b), with Eqs. (3.9a, b) and (3.22a) gives 

∫ h∑ ,𝛿𝑋̇(i)(𝑡).
+
º𝑀¼(i)½,𝑋̇(i)(𝑡).b

ik! + (𝛿𝑞³∗(𝑡))+(𝐹∗(𝑡))iA#
A4

	𝑑𝑡 = 0,  (3.23a) 

where the variations vanish at 𝑡 = 𝑡( and 𝑡/: 

𝛿𝑥%
(i)(𝑡') = 𝛿𝑥%

(i)(𝑡!) = 	𝛿𝜋(i)(𝑡') = 𝛿𝜋(i)(𝑡!) = 0$×!.  (3.23b) 

By substituting Eq. (19a) into Eq. (23a) and performing integration by parts 

using Eq. (3.23b), Eq. (3.23a) yields 

∫ 5∑ -𝛿𝑋9(6)(𝑡)/42:𝑀<(6)=-𝑋̈(6)(𝑡)/ + :𝐷(6)(𝑡)=:𝑀<(6)=-𝑋̇(6)(𝑡)/37
68. − (𝛿𝑞D∗(𝑡))4(𝐹∗(𝑡))F:#

:$
	𝑑𝑡 = 0. 

The principle of virtual work is now obtained at each time from the integrand above as: 

∑ :𝛿𝑋̂(E)(𝑡)<
'
_`𝑀b(E)c:𝑋̈(E)(𝑡)< + `𝐷(E)(𝑡)c`𝑀b(E)c:𝑋̇(E)(𝑡)<fF

EG" − :𝛿𝑞h∗(𝑡)<':𝐹∗(𝑡)< = 0.  

(3.24a) 

The principle is also expressed using system matrices defined in Eqs. (3.3), (3.8b), and 

(3.20a-c) as: 

,𝛿𝑋Ê(𝑡).+Ïº𝑀¼½,𝑋̈(𝑡). + [𝐷(𝑡)]º𝑀¼½,𝑋̇(𝑡).Ñ − ,𝛿𝑞³∗(𝑡).+,𝐹∗(𝑡). = 0. (3.24b) 

Compact equations of motion are now obtained for arbitrary ,𝛿𝑞³∗(𝑡).  by 

substituting Eqs. (3.22a), (3.21c) and (3.4c) into the virtual work equation, Eq. (3.24b), 

where Eqs. (3.4c) and (3.21c) fully satisfy kinematic constraints for jointed multi-body 

systems. 

As the special case, if the virtual work is expressed by Eq. (3.22b) for free n 

bodies, Eq. (3.24a) yields the Newton and Euler equations for each body as it should: 

𝛿𝑥%
(i)(𝑡):																				𝑚¿ (i)𝐼$	𝑥̈%

(i)(𝑡) = 𝐹%
(i)	"(𝑡),   (3.25a) 

𝛿𝜋(i)(𝑡):											𝐽m%
(i)	𝜔̇(i)(𝑡) + 𝜔(i)(𝑡)s⃖ssssssssssss⃗ 	𝐽m%

(i)𝜔(i)(𝑡) = 𝑀%
(i)(𝑡). (3.25b) 

Taking advantage of this recovery of Newton’s and Euler’s equations, the Newton-

Euler-type equations with reaction forces and couples can be obtained by appending 

unsatisfied constraints in Eqs. (3.4a) and (3.21a) to the virtual work equation, Eq. (3.24a, 

b), using Lagrange multipliers [41, 42]. 
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3.3 Equations of Motion for a Stewart Platform 

Compact equations of motion for essential velocities (𝑞̇∗(𝑡)) and accelerations 

(𝑞̈∗(𝑡)) are derived here for a base-moving Stewart platform utilizing the principle of 

virtual work, Eq. (3.24a) with Eq. (3.22a). Since the system has 14 bodies and is excited 

by prescribed generalized velocities of the base plate, ,𝑋̇(')(𝑡)., the computations of 

Eqs. (3.22a) and (3.24a) become quite complicated. Therefore, it is helpful to perform 

computational tasks in step by step. These steps are: 

(i) To write the principle of virtual work, Eq. (3.24a), specifically for the 

Stewart platform problem, defining subsystem velocities and subsystem 

virtual displacements formed by ,𝑋̇(i). and ,𝛿𝑋Ê (i). of adjacent constituent 

bodies; 

(ii) To express the grouped ,𝑋̇(i). and ,𝛿𝑋Ê(i). of each subsystem using (𝑞̇(𝑡)) 

and (𝛿𝑞³(𝑡)) defining the coefficient [B]-submatrices, as shown in Eq. (3.4a) 

and Eq. (3.21a);  

(iii) To define the virtual work of potential energy, −𝛿𝑈(𝑡), in Eq. (3.22a) for 

the subsystems; 

(iv) To define the virtual work 𝛿𝑊bj(𝑡)  by non-conservative forces in Eq. 

(3.22a) including: (i) the virtual work by the leg actuators at ATJs and (ii) 

that by viscous frictions at UJ’s and SJ’s. The virtual work by the linear 

actuator force 𝑓Y
(8)(𝑡) of leg-(k) is expressed as 𝛿𝑑(8)(𝑡)𝑓Y

(8)(𝑡); 

(v) To write the loop closure constraints on velocities and virtual displacements 

using (𝑞̇(𝑡))  and (𝛿𝑞³(𝑡))  and identify essential virtual displacements 

(𝛿𝑞³∗(𝑡)) as well as the corresponding essential velocities (𝑞̇∗(𝑡)). Further to 

express non-essential virtual displacements in (𝛿𝑞³(𝑡))  by (𝛿𝑞³∗(𝑡)) . 

Similarly, to express the non-essential components of (𝑞̇(𝑡)) by (𝑞̇∗(𝑡)) by 

solving the constraint equations to define [𝑇(𝑡)]-matrix in Eqs. (3.4b) and 

(3.21b); 

(vi) To incorporate the expression of (𝑞̇(𝑡)) by (𝑞̇∗(𝑡)) and that of (𝛿𝑞³(𝑡)) by 

(𝛿𝑞³∗(𝑡)), obtained in task (v), into the [B]-submatrix expressions in task (iii) 

to form [𝐵∗]-submatrices defined in Eq. (3.4d); 

(vii) To compute the effective external force (𝐹∗(𝑡)) in Eq. (3.22a) rewriting 

−𝛿𝑈 in task (iii) and 𝛿𝑊"6 in task (iv) using the result of task (vi); 
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(viii) To substitute the [𝐵∗] -expressions of subsystem velocities and virtual 

displacements of task (vi) into the virtual work equation in task (i) for the 

Stewart platform. Next, using (𝐹∗(𝑡)) derived in task (vii) to reduce the 

virtual work equation to the form: (𝛿𝑞³∗(𝑡))+ 	{compact	equations	of	motion}. 

The above tasks (i)-(viii) are performed step-by-step in what follows. 

3.3.1 Terms Associated with Variation of Kinetic Energy 

In task (i), one first observes that the variation of body-(0) kinetic energy, 𝛿𝐾('), 

vanishes since the elements of ,𝑋̇(').  in Eq. (3.2a): 𝑥̇%
(')(𝑡)  and 𝜔(')(𝑡)  are both 

prescribed at each time (using the measured values). This implies that the corresponding 

virtual displacements ,𝛿𝑋Ê(')(𝑡). vanish. The remaining terms of total kinetic energy 

𝛿𝐾(𝑡)  in Eq. (3.9a) are grouped into: (i) 𝛿𝐾(!$)  of the top-plate and 𝛿𝐾(!:)  of the 

attached manipulator and (ii) six pairs of 𝛿𝐾(#8S!)of body-(2k-1) and 𝛿𝐾(#8S!) of body-

(2k) of leg-(k) for 𝑘 = 1, 2,⋯ , 6.  The first pair consisting of body-(13) and body-(14) is 

referred to as TP-subsystem.  

For TP-subsystem in Fig. 3.1, the following virtual displacement and velocity 

matrices are defined: 

,𝛿𝑋Ê+_(𝑡).!#×$ ≡

⎝

⎜
⎛
𝛿𝑥%

(!$)(𝑡)
𝛿𝜋(!$)(𝑡)
𝛿𝑥%

(!:)(𝑡)
𝛿𝜋(!:)(𝑡)⎠

⎟
⎞

,    (3.26a) 

,𝑋̇+_(𝑡).!#×$ ≡

⎝

⎜
⎛
𝑥̇%
(!$)(𝑡)

𝜔(!$)(𝑡)
𝑥̇%
(!:)(𝑡)

𝜔(!:)(𝑡)⎠

⎟
⎞

.     (3.26b) 

The associated mass and [D] sub-matrices are defined, respectively, as:  

º𝑀¼+_½!#×!# ≡

⎣
⎢
⎢
⎢
⎡𝑚¿

(!$)𝐼$ 0$×$
0$×$ 𝐽m%

(!$)
0$×$ 0$×$
0$×$ 0$×$

0$×$ 0$×$
0$×$ 0$×$

𝑚¿ (!:)𝐼$ 0$×$
0$×$ 𝐽m%

(!:)⎦
⎥
⎥
⎥
⎤

,   (3.26c) 

[𝐷+_(𝑡)]!#×!# ≡

⎣
⎢
⎢
⎢
⎡
0$×$ 0$×$
0$×$ 𝜔(!$)(𝑡)s⃖ssssssssssssss⃗

0$×$ 						0$×$
0$×$ 							0$×$

0$×$ 						0$×$
0$×$ 							0$×$

0$×$ 							0$×$
0$×$ 𝜔(!:)(𝑡)s⃖ssssssssssssss⃗ ⎦

⎥
⎥
⎥
⎤
.  (3.26d) 
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Figure 3.1: Subsystem velocities and virtual displacements 

 

Similarly, for leg-(k) in Fig.3.1 the following virtual displacement, velocity, 

mass, and [D]-sub-matrices are defined: 

H𝛿𝑋ÊY
(8)(𝑡)I

!#×$
≡

⎝

⎜
⎛
𝛿𝑥%

(#8S!)(𝑡)
𝛿𝜋(#8S!)(𝑡)
𝛿𝑥%

(#8)(𝑡)
𝛿𝜋(#8)(𝑡) ⎠

⎟
⎞

,     (3.27a) 

H𝑋̇Y
(8)(𝑡)I

!#×$
≡

⎝

⎜
⎛
𝑥̇%
(#8S!)(𝑡)

𝜔(#8S!)(𝑡)
𝑥̇%
(#8)(𝑡)

𝜔(#8)(𝑡) ⎠

⎟
⎞

,     (3.27b) 

È𝑀¼Y
(8)É

!#×!#
≡

⎣
⎢
⎢
⎢
⎡𝑚¿

(#8S!)𝐼$ 0$×$
0$×$							 𝐽m%

(#8S!)
0$×$ 			0$×$
0$×$ 			0$×$

0$×$ 									0$×$
0$×$ 											0$×$

𝑚¿ (#8)𝐼$ 0$×$
0$×$ 𝐽m%

(#8)⎦
⎥
⎥
⎥
⎤

,    (3.27c) 

È𝐷Y
(8)(𝑡)É

!#×!#
≡

⎣
⎢
⎢
⎢
⎡
0$×$ 								0$×$
0$×$ 𝜔(#8S!)(𝑡)s⃖sssssssssssssssssss⃗

0$×$ 							0$×$
0$×$ 								0$×$

0$×$ 										0$×$
0$×$ 										0$×$

0$×$ 								0$×$
0$×$ 𝜔(#8)(𝑡)s⃖ssssssssssssss⃗ ⎦

⎥
⎥
⎥
⎤
.  (3.27d) 

Using Eqs. (3.26a-d) and (3.27a-d), the principle of virtual work, Eq. (3.24a), is 

written for the Stewart platform as: 

,𝛿𝑋Ê+_(𝑡).
+Ïº𝑀¼+_½,𝑋̈+_(𝑡). + [𝐷+_(𝑡)]º𝑀¼+_½,𝑋̇+_(𝑡).Ñ 

+∑ ,𝛿𝑋̂D
(+)(𝑡)-

'
jk𝑀bD

(+)l ,𝑋̈D
(+)(𝑡)- + k𝐷D

(+)(𝑡)l k𝑀bD
(+)l ,𝑋̇D

(+)(𝑡)-m − :𝛿𝑞h∗(𝑡)<
':𝐹∗(𝑡)< = 0I

+G" . 

 (3.28) 
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3.3.2 Generalized Velocities and Virtual Displacements  

In task (ii) the subsystem velocities, Eqs. (3.26b) and (3.27b), are expressed in 

the form of Eq. (3.4a) using appropriate generalized velocities. It is noted that the 

subsystem velocities are expressed not only by the generalized velocity (𝑞̇(𝑡)) but also 

by ,𝑋̇(')(𝑡).. 

Starting from TP-subsystem, Eqs. (2.29) and (2.27) reveal that the generalized 

velocities of TP-subsystem are the velocity 𝑠̇%
(!$ '⁄ )(𝑡) and angular velocity 𝜔(!$ '⁄ )(𝑡) of 

body-(13) relative to body-(0), as illustrated in Fig. 3.2. Therefore, the subsystem 

expression in the form of Eq. (3.4a) becomes 

H𝑋̇+_(𝑡)I = º𝐵+_ +_⁄ (𝑡)½,𝑞̇+_(𝑡). + º𝐵+_ J_⁄ (𝑡)½,𝑋̇(')(𝑡).,  (3.29a) 

where the generalized velocities of TP-subsystem are: 

,𝑞̇+_(𝑡). ≡ | 𝑠̇%
(!$ '⁄ )(𝑡)
𝜔(!$ '⁄ )(𝑡)

}      (3.29b) 

and [B] sub-matrices are 

º𝐵+_ +_⁄ (𝑡)½!#×< =

⎣
⎢
⎢
⎢
⎡𝑅

(')(𝑡) 0$×$
0$×$ 𝐼$
𝑅(')(𝑡)
0$×$

−𝑅(!$)(𝑡)	𝑒$ℎF(!: !$⁄ )s⃖sssssssssssssssssss⃗
𝐼$ ⎦

⎥
⎥
⎥
⎤
,    (3.29c) 

º𝐵+_ J_⁄ (𝑡)½!#×< =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝐼$ −𝑅(')(𝑡)	𝑠%

(!$ '⁄ )(𝑡)s⃖ssssssssssssssssss⃗

0$×$ ,𝑅(!$ '⁄ )(𝑡).
+

𝐼$
0$×$

−𝑅(')(𝑡)	𝑠%
(!$ '⁄ )(𝑡) + 𝑅(!$ '⁄ )(𝑡)𝑒$ℎF(!: !$⁄ )s⃖sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss⃗

,𝑅(!$ '⁄ )(𝑡).
+

⎦
⎥
⎥
⎥
⎥
⎥
⎤

.  (3.29d) 

Since H𝛿𝑋Ê(')(𝑡)I = 0, the corresponding relation for the virtual displacements in the 

form of Eq. (3.21a) becomes 

,𝛿𝑋Ê+_(𝑡). = º𝐵+_ +_⁄ (𝑡)½(𝛿𝑞³+_(𝑡)),    (3.30a) 

where 

,𝛿𝑞³+_(𝑡). ≡ |𝛿𝑠%
(!$ '⁄ )(𝑡)

𝛿𝜋(!$ '⁄ )(𝑡)
},     (3.30b) 

in which 𝛿𝜋(/# (⁄ )(𝑡) is the vector form of  

𝛿𝜋(!$/')(𝑡)s⃖ssssssssssssssssssss⃗ = È,𝑅(!$ '⁄ )(𝑡, 𝜀).
+ l
lm
𝑅(!$/')(𝑡, 𝜀)�

mk'
.   (3.30c) 

 



    
 

64 
 

 
Figure 3.2: Velocities and virtual displacements of TB-subsystem and leg-(k) 

 

For leg-(k) in Fig. 3.2, the subsystem velocities at the centers of body-(2k-1) and 

body-(2k) are written from Eqs. (2.41c), (2.40c), (2.42f), (2.42c), and (2.42b) in terms 

angular velocities 𝜙̇!
(8)(𝑡) and 𝜙̇#

(8)(𝑡) at the universal joint, UJ-(k), and the axial speed 

𝑑̇(8)(𝑡) of the linear actuator, ATJ-(k): 

H𝑋̇Y
(8)(𝑡)I = È𝐵Y Y⁄

(8) (𝑡)É H𝑞̇Y
(8)(𝑡)I + È𝐵Y J_⁄

(8) (𝑡)É ,𝑋̇(')(𝑡).,  (3.31a) 

where H𝑞̇Y
(8)(𝑡)I denotes the generalized velocities of leg-(k) defined as: 

H𝑞̇Y
(8)(𝑡)I ≡ *

𝜙̇!
(8)(𝑡)

𝜙̇#
(8)(𝑡)
𝑑(8)(𝑡)

+.      (3.31b) 

In Eq. (3.31a) [B] sub-matrices are 

k𝐵D D⁄
(+) (𝑡)l

".×#
=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅(.+B")(𝑡)	𝑠̂( *!⁄

(.+B")?⃖????????????⃗ ,𝑅.	*!C:(𝜙.
(+)(𝑡)-

'
𝑒"

,𝑅.	*!C:(𝜙.
(+)(𝑡)-

'
𝑒"

−𝑅(.+B")(𝑡)𝑒# ,𝑙rC:
(.+B") + 𝑑(+)(𝑡)-?⃖??????????????????????????????????????????⃗ 	,𝑅.	*!C:(𝜙.

(+)(𝑡)-
'
𝑒"

,𝑅.	*!C:(𝜙.
(+)(𝑡)-

'
𝑒"

 

−𝑅(.+B")(𝑡)𝑠̂( *!⁄
(.+B")𝑒. 																0#×"

𝑒. 																	0#×"

−𝑅(.+B")(𝑡)𝑒# ,𝑙rC:
(.+B") + 𝑑(+)(𝑡)-?⃖??????????????????????????????????????????⃗ 𝑒. 		𝑅(.+B")(𝑡)𝑒#
𝑒. 0#×"									 ⎦

⎥
⎥
⎥
⎥
⎤

,  (3.31c) 
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 k𝐵D *K⁄
(+) (𝑡)l

".×I
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝐼# −𝑅($)(𝑡)𝑅(.+B" $⁄ )(𝑡)𝑠̂( *!⁄

(.+B") + 𝑠̂*!
($)?⃖????????????????????????????????????????????????????⃗

0#×# :𝑅(.+B" $⁄ )(𝑡)<'

𝐼# −𝑅($)(𝑡)𝑅(.+B" $⁄ )(𝑡)𝑒# ,𝑙rC:
(.+B") + 𝑑(+)(𝑡)- + 𝑠̂*!

($)?⃖???????????????????????????????????????????????????????????????????????????????????⃗

0#×# :𝑅(.+B" $⁄ )(𝑡)<' ⎦
⎥
⎥
⎥
⎥
⎥
⎤

. (3.31d) 

in which from Eqs. (2.14c) and (2.41c) 

𝑅(#8S! '⁄ )(𝑡) = 𝑅$	J"(𝜃F8
('))𝑅!	J"L>(𝜙!

(8)(𝑡))𝑅#	J"89(𝜙#
(8)(𝑡)),  (3.31e) 

𝑅(#8S!)(𝑡) = 𝑅(')(𝑡)𝑅(#8S! '⁄ )(𝑡).     (3.31f) 

The corresponding relation for the virtual displacements of leg-(k) are 

H𝛿𝑋ÊY
(8)(𝑡)I = È𝐵Y Y⁄

(8) (𝑡)É H𝛿𝑞³Y
(8)(𝑡)I,     (3.32a) 

where for the virtual displacements of leg-(k) are defined as: 

H𝛿𝑞³Y
(8)(𝑡)I ≡ *

𝛿𝜙!
(8)(𝑡)

𝛿𝜙#
(8)(𝑡)

𝛿𝑑(8)(𝑡)

+.     (3.32b) 

In what follows, the relative axial rotation 𝜙$
(#8 #8S!⁄ )(𝑡) between body-(2k) and 

body-(2k-1) defined in Eqs. (2.15a, b) is assumed negligible, 𝜙$
(#8 #8S!⁄ )(𝑡)=0. This 

approximation is based upon the hindsight of the paper [42], where the equation of 

motion for 𝜙$
(#8 #8S!⁄ )(𝑡) was explicitly derived and found that 𝜙$

(#8 #8S!⁄ )(𝑡) remains 

zero (since the axial moment of inertia 𝐽m$%
(#8S!) is extremely small compared to others). 

To justify the approximation: 𝜙$
(#8 #8S!⁄ )(𝑡)=0, the equation of motion for 𝜙$

(#8 #8S!⁄ )(𝑡) 

is derived in the Appendix 3.A using a free-body-diagram. The adoption of the 

approximation at this stage makes the subsequent computations less complicated. 

3.3.3 Virtual Work of Gravitational Potential Energy  

For task (iii), the virtual work −𝛿𝑈(𝑡) of the gravitational potential energy is 

considered.  The contribution comes from TP-subsystem and legs: 

−𝛿𝑈(𝑡) = H𝛿𝑋Ê+_(𝑡)I
+

⎝

⎜
⎛
−𝑚¿ (!$)𝑔𝑒$

0$×!
−𝑚¿ (!:)𝑔𝑒$

0$×! ⎠

⎟
⎞
+∑ H𝛿𝑋ÊY

(8)(𝑡)I
+

<
8k!

⎝

⎛
−𝑚¿ (#8S!)𝑔𝑒$

0$×!
−𝑚¿ (#8)𝑔𝑒$

0$×! ⎠

⎞, (3.33) 

where g denotes the gravitational acceleration and 𝑒$ ≡ (0 0 1)+. 
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3.3.4 Virtual Work by Linear Actuator Forces and Damping Couples  

In task (iv) the virtual work 𝛿𝑊bj(𝑡) in Eq. (3.22a) is defined. It consists of: (i) 

the virtual work by the linear actuators at ATJs and (ii) that by viscous frictional couples 

at UJ’s and SJ’s. First, the virtual work of linear actuator force 𝑓Y
(8)(𝑡) is written as 

𝛿𝑑(8)(𝑡)𝑓Y
(8)(𝑡)  for 𝑘 = 1,⋯ , 6 . Second, the virtual work of the viscous frictional 

couples are at UJ-(k): −𝛿𝜙!
(8)(𝑡)𝜇L>𝜙̇!

(8)(𝑡) − 𝛿𝜙#
(8)(𝑡)𝜇L>𝜙̇#

(8)(𝑡)  and at SJ-(k): 

−𝛿𝜋+"=>
(=>	!$ =>	#8⁄ )(𝑡)	𝜇=>𝜔+"=>

(=>	!$ =>	#8⁄ )(𝑡) , where 𝜇L>  and 𝜇=>  are the viscous damping 

coefficients at universal joints and spherical joints, respectively. Consequently, the non-

conservative virtual work is expressed in matrix form as: 

𝛿𝑊bj(𝑡) = Ø H𝛿𝑞³Y
(8)(𝑡)I

+
𝑒$𝑓Y

(8)(𝑡)
<

8k!

 

+∑ ÙH𝛿𝑞³Y
(8)(𝑡)I

+
�
−𝜇L>𝜙̇!

(8)(𝑡)

−𝜇L>𝜙̇#
(8)(𝑡)
0

� − H𝛿𝜋+"=>
(=>	!$ =>	#8⁄ )(𝑡)I

+
𝜇=>𝜔+"=>

(=>	!$ =>	#8⁄ )(𝑡)Ú<
8k! ,    

(3.34a) 

where 𝛿𝜋+"=>
(=>	!$ =>	#8⁄ )(𝑡)  is the vector form of the skew-symmetric virtual relative 

angular-velocity matrix at SJ-(k): 

𝛿𝜋+"=>
(=>	!$/=>	#8)(𝑡)s⃖sssssssssssssssssssssssssssssss⃗ = È𝑅+"=>

(=>	!$ =>	#8⁄ )(𝑡, 𝜀) l
lm
𝑅+"=>
(=>	!$ =>	#8⁄ )(𝑡, 𝜀)�

mk'
.  (3.34b) 

3.3.5 Loop Closure Constraints on Velocities and Virtual Displacements  

In task (v) the first loop-closure constraint on velocities in Eqs. (2.46b) is 

rewritten using the subsystem generalized velocities as: 

È𝐼$ −𝑅(!$ '⁄ )(𝑡)𝑠̂+"
(!$)s⃖ssssss⃗ É (𝑞̇+_(𝑡)) + 𝑅(#8S! '⁄ )(𝑡) È𝐴Y

(8)(𝑡)É a𝑞̇Y
(8)(𝑡)b 

+ È0$×$ −	∆𝑠%Y
(8)(𝑡)s⃖ssssssssssssss⃗ É ,𝑋̇(')(𝑡). = 0$×!,  (3.35a) 

where 

È𝐴Y
(8)(𝑡)É

$×$
≡ È𝑒$𝑙(8)(𝑡)s⃖sssssssssssssss⃗ H𝑅#J"K7(𝜙#

(8)(𝑡)I
+
𝑒! 𝑒#𝑙(8)(𝑡)s⃖sssssssssssssss⃗ 𝑒# −𝑒$É 

= _
0 −𝑙(8)(𝑡) 0

𝑙(8) cos𝜙#
(8)(𝑡) 0 0

0 0 −1
` ,            (3.35b) 

in which ∆𝑠%Y
(8)(𝑡) was defined in Eq. (2.46c) as: 

∆𝑠%Y
(8)(𝑡) ≡ H𝑠%

(!$ ')⁄ (𝑡) + 𝑅(!$ '⁄ )(𝑡)𝑠̂+"
(!$)I − a𝑠̂J"

(') + 𝑅(#8S! ')⁄ (𝑡)𝑒$𝑙(8)(𝑡)b.  (3.35c) 
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The second closure equation (2.47) is written as: 

𝜔'!L-
(L-"# L-.+⁄ )(𝑡) = k0#×# ,𝑅#'!(𝜃*+

("#))-
'
l (𝑞̇'K(𝑡)) 

−,𝑅'!L-
(L-"# L-.+⁄ )(𝑡)-

'
k,𝑅.*!,-(𝜙.

(+)(𝑡)-
'
𝑒" 𝑒. 0#×"l ,𝑞̇D

(+)(𝑡)-   

+k0#×# ,𝑅("# $⁄ )(𝑡)𝑅#' (𝜃*+
("#))-

'
− ,𝑅(.+B" $⁄ )(𝑡)𝑅'!L-

(L-"# L-.+⁄ )(𝑡)-
'
l :𝑋̇($)(𝑡)<.     

(3.36) 

Corresponding to Eqs. (3.35a) and (3.36), the closure constraints on virtual 

displacements are 

È𝐼$ −𝑅(!$ '⁄ )(𝑡)𝑠̂+"
(!$)s⃖ssssss⃗ É (𝛿𝑞³+_(𝑡)) + 𝑅(#8S! '⁄ )(𝑡) È𝐴Y

(8)(𝑡)É a𝛿𝑞³Y
(8)(𝑡)b = 0$×!, (3.37) 

        𝛿𝜋+"=>
(=>	!$ =>	#8⁄ )(𝑡) = È0$×$ H𝑅$+"(𝜃F8

(!$))I
+
É (𝛿𝑞³+_(𝑡)) 

−H𝑅+"=>
(=>	!$ =>	#8⁄ )(𝑡)I

+
ÈH𝑅#J"L>(𝜙#

(8)(𝑡)I
+
𝑒! 𝑒# 0$×!É H𝛿𝑞³Y

(8)(𝑡)I. (3.38) 

Equations (3.36) and (3.38) show that 𝜔+"67
(67!$ 67#8⁄ )(𝑡) is not essential velocity since it 

depends on (𝑞̇+_(𝑡)) , (𝑞̇+_(𝑡))  and ,𝑋̇(')(𝑡). . The examination of Eqs. (3.37) and 

(3.35a) reveals that virtual essential displacements and essential velocities are 

,𝛿𝑞³+_(𝑡). and (𝑞̇+_(𝑡)), respectively. They are written from now on as (𝛿𝑞³+_∗ (𝑡)) and 

(𝑞̇+_∗ (𝑡)), respectively.   

Using Eq. (3.37), a𝛿𝑞³Y
(8)(𝑡)b is expressed by (𝛿𝑞³+_∗ (𝑡)) as: 

H𝛿𝑞³Y
(8)(𝑡)I = È𝑇Y +_⁄

(8) (𝑡)É (𝛿𝑞³+_∗ (𝑡)),     (3.39a) 

where 

È𝑇Y +_⁄
(8) (𝑡)É

$×<
≡ − È𝐴Y

(8)(𝑡)É
S!
,𝑅(#8S! '⁄ )(𝑡).

+
È𝐼$ −𝑅(!$ '⁄ )(𝑡)𝑠̂+"

(!$)s⃖ssssss⃗ É,  (3.39b) 

and from Eq. (3.35b) 

È𝐴Y
(8)(𝑡)É

S!
= _

0 1 𝑙(8)(𝑡) cos𝜙#
(8)(𝑡)⁄ 0

−1 𝑙(8)(𝑡)⁄ 0 0
0 0 −1

`.   (3.39c) 

The substitution of Eq. (3.39a) into Eq. (3.38) yields 

𝛿𝜋+"=>
(=>	!$ =>	#8⁄ )(𝑡) = È𝑇+"=> +_⁄

(8) (𝑡)É (𝛿𝑞³+_∗ (𝑡)),    (3.40a) 

where 

     È𝑇+"=> +_⁄
(8) (𝑡)É

$×<
≡ È0$×$ H𝑅$+"(𝜃F8

(!$))I
+
É 

−H𝑅+"=>
(=>	!$ =>	#8⁄ )(𝑡)I

+
ÈH𝑅#J"L>(𝜙#

(8)(𝑡)I
+
𝑒! 𝑒# 0$×!É È𝑇Y +_⁄

(8) (𝑡)É.   (3.40b) 
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Similarly, the non-essential velocity of leg-(k) is expressed using Eq. (3.35a) as 

H𝑞̇Y
(8)(𝑡)I = È𝑇Y +_⁄

(8) (𝑡)É (𝑞̇+_∗ (𝑡)) + È𝑇Y J_⁄
(8) (𝑡)É ,𝑋̇(')(𝑡).,  (3.41a) 

where 

È𝑇Y J_⁄
(8) (𝑡)É

$×<
= È0$×$ È𝐴Y

(8)(𝑡)É
S!
,𝑅(#8S! '⁄ )(𝑡).

+
∆𝑠%Y

(8)(𝑡)s⃖ssssssssssssss⃗ É.          (3.41b) 

Equation (3.36) gives 

𝜔+"=>
(=>	!$ =>	#8⁄ )(𝑡) = È𝑇+"=> +_⁄

(8) (𝑡)É (𝑞̇+_∗ (𝑡)) + È𝑇+"=> J_⁄
(8) (𝑡)É ,𝑋̇(')(𝑡).,       (3.42a) 

where 

È𝑇+"=> J_⁄
(8) (𝑡)É

$×<
= È0$×$ H𝑅(!$ '⁄ )(𝑡)𝑅$+"(𝜃F8

(!$))I
+
− H𝑅(#8S! '⁄ )(𝑡)𝑅+"=>

(=>	!$ =>	#8⁄ )(𝑡)I
+
É. 

(3.42b) 

3.3.6 [B*]-Expressions Using Essential Velocities and Displacements  

In task (vi) Eqs. (3.29a) and (3.30a) are expressed in terms of (𝑞̇+_∗ (𝑡)) as in Eq. 

(3.4c) and (𝛿𝑞³+_∗ 𝑡)) as in Eq. (3.21c), respectively: 

H𝑋̇+_(𝑡)I = º𝐵+_ +_⁄
∗ (𝑡)½(𝑞̇+_∗ (𝑡)) + º𝐵+_ J_⁄

∗ (𝑡)½,𝑋̇(')(𝑡).,   (3.43a) 

,𝛿𝑋Ê+_(𝑡). = º𝐵+_ +_⁄
∗ (𝑡)½(𝛿𝑞³+_∗ 𝑡)),    (3.43b) 

where 

 º𝐵+_ +_⁄
∗ (𝑡)½ = º𝐵+_ +_⁄ (𝑡)½,           º𝐵+_ J_⁄

∗ (𝑡)½ = º𝐵+_ J_⁄ (𝑡)½.  (3.43c,d) 

For leg-(k) Equation (3.31a) is expressed using Eq. (3.41a) as: 

H𝑋̇Y
(8)(𝑡)I = È𝐵Y +_⁄

(8)∗ (𝑡)É (𝑞̇+_∗ (𝑡)) + È𝐵Y J_⁄
(8)∗ (𝑡)É ,𝑋̇(')(𝑡).,    (3.44a) 

whereas Eq. (3.32a) is written using Eq. (3.9a) as: 

H𝛿𝑋ÊY
(8)(𝑡)I = È𝐵Y +_⁄

(8)∗ (𝑡)É (𝛿𝑞³+_∗ (𝑡)),    (3.44b) 

where [𝐵∗]-submatrices are defined as follows: 

È𝐵Y +_⁄
(8)∗ (𝑡)É

$×<
≡ È𝐵Y Y⁄

(8) (𝑡)É È𝑇Y +_⁄
(8) (𝑘)É,     (3.44c) 

È𝐵Y J_⁄
(8)∗ (𝑡)É

$×<
≡ hÈ𝐵Y Y⁄

(8) (𝑡)É È𝑇Y J_⁄
(8) (𝑡)É + È𝐵Y J_⁄

(8) (𝑡)Éi.  (3.44d) 

3.3.7 Virtual Work δW(t) and Effective Force (F*(t)) 

In task (vii) both −𝛿𝑈(𝑡) defined in task (ii) and 𝛿𝑊bj(𝑡) defined in task (iv) are 

expressed using the essential velocities (𝑞̇+_∗ (𝑡)) and the virtual essential displacements 

(𝛿𝑞³+_∗ (𝑡)). The virtual work of gravitational potential energy in Eq. (3.33) defines the 

effective gravitational force 8𝐹7∗(𝑡):: 

        −𝛿𝑈 = (𝛿𝑞³+_∗ (𝑡))+,𝐹r∗(𝑡)..    (3.45a) 
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The effective gravitational force is explicitly computed using Eqs. (3.43b) and (3.44b): 

,𝐹r∗(𝑡).<×! = º𝐵+_ +_⁄
∗ (𝑡)½+

⎝

⎜
⎛
−𝑚¿(!$)𝑔𝑒$

0$×!
−𝑚¿(!:)𝑔𝑒$

0$×! ⎠

⎟
⎞
+∑ È𝐵Y +_⁄

(8)∗ (𝑡)É
+<

8k!

⎝

⎛
−𝑚¿ (#8S!)𝑔𝑒$

0$×!
−𝑚¿ (#8)𝑔𝑒$

0$×! ⎠

⎞.    

(3.45b) 

The virtual work 𝛿𝑊bj(𝑡) of non-conservative force in Eq. (3.34a) defines the 

effective force consisting of the effective actuator force ,𝐹 +7
∗ (𝑡)., the effective damping 

couple ,𝐹s∗(𝑡). at the joints. The virtual work at actuated translational joints (ATJs) is 

∑ 𝛿𝑑(8)(𝑡)𝑓Y
(8)(𝑡)<

8k! = (𝛿𝑞³+_∗ (𝑡))+,𝐹 +7
∗ (𝑡)..    (3.46a) 

In inverse dynamics the amplitude 𝑓Y
(8)(𝑡)  is sought from the equations of 

motion for prescribed (𝑞̇+_∗ (𝑡))  and (𝑞̈+_∗ (𝑡))  as well as ,𝑋̇(')(𝑡).  and ,𝑋̈(')(𝑡). . 

Therefore, for the application, it is convenient to express the effective actuator forces 

directly in terms of the six actuator forces 𝑓Y
(8)(𝑡) for 𝑘 = 1,⋯ ,6 as: 

,𝐹 +7
∗ (𝑡). = º𝑇 +7

∗ (𝑡)½,𝑓 +7
∗ (𝑡).,     (3.46b) 

where ,𝑓 +7
∗ (𝑡). represents a 6 × 1 column matrix of the actuator forces: 

:𝑓M'-∗ (𝑡)<
I×"

≡

⎝

⎜
⎛
𝑓D
(")(𝑡)
𝑓D
(.)(𝑡)
⋮

𝑓D
(I)(𝑡)⎠

⎟
⎞.    (3.46c) 

The computations, which follow, show that the 6 × 6 coefficient matrix k𝑇89:∗ (𝑡)l is 

expressed as: 

 :𝑇;40∗ (𝑡)= 

= I
𝑏(.)(𝑡) ⋯ 						𝑏(-)(𝑡) 																					⋯										 																	𝑏(<)(𝑡)

𝑠̂4#
(.,)N⃖NNNNNN⃗ P𝑅(., +⁄ )(𝑡)Q

4
𝑏(.)(𝑡) ⋯ 𝑠̂4!

(.,)N⃖NNNNNN⃗ P𝑅(., +⁄ )(𝑡)Q
4
𝑏(-)(𝑡) ⋯ 𝑠̂4%

(.,)N⃖NNNNNN⃗ P𝑅(., +⁄ )(𝑡)Q
4
𝑏(<)(𝑡)

R, 

(3.46d) 

where 

,𝑏(8)(𝑡). ≡ 𝑅(#8S! '⁄ )(𝑡)𝑒$ = *
cos 𝜃F8

(') sin𝜙#
(8)(𝑡) + sin 𝜃F8

(') sin𝜙!
(8)(𝑡) cos𝜙#

(8)(𝑡)

sin 𝜃F8
(') sin𝜙#

(8)(𝑡) − cos 𝜃F8
(') sin𝜙!

(8)(𝑡) cos𝜙#
(8)(𝑡)

cos𝜙!
(8)(𝑡) cos𝜙#

(8)(𝑡)

+. 

(3.46e) 
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Proof: To derive Eqs. (3.46a, b) one modifies 𝛿𝑑($)(𝑡)𝑓;
($)(𝑡) using Eq. (3.39a-c) as 

a𝛿𝑞³Y
(8)(𝑡)b

+
𝑒$𝑓Y

(8)(𝑡) = (𝛿𝑞³+_∗ (𝑡))+ È𝐼$ −𝑅(!$ '⁄ )(𝑡)𝑠̂+"
(!$)s⃖ssssss⃗ É

+
,𝑏(8)(𝑡).	𝑓Y

(8)(𝑡),     (3.47a) 

where the following result obtained from Eq. (3.39c) is used: 

È𝐴Y
(8)(𝑡)É

S+
𝑒$ = −𝑒$.    (3.47b) 

Then the kth column of º𝑇 +7
∗ (𝑡)½ becomes k𝐼# −𝑅("# $⁄ )(𝑡)𝑠̂'!

("#)?⃖??????⃗ l
'
:𝑏(+)(𝑡)< as shown in 

Eq. (3.46d).  

The virtual work of the viscous damping forces at the universal joints and the 

spherical joints in Eq. (3.34a) defines the effective damping force ,𝐹s∗(𝑡). as: 

(𝛿𝑞³+_∗ (𝑡))+,𝐹s∗(𝑡). = ØH𝛿𝑞³Y
(8)(𝑡)I

+
<

8k!

�
−𝜇L>𝜙̇!

(8)(𝑡)

−𝜇L>𝜙̇#
(8)(𝑡)
0

� 

−∑ H𝛿𝜋+"=>
(=>	!$ =>	#8⁄ )(𝑡)I

+
<
8k! H−𝜇=>𝜔+"=>

(=>	!$ =>	#8⁄ )(𝑡)I. (3.48a) 

Using Eqs. (3.39a) and (3.40a), the effective damping force becomes 

,𝐹s∗(𝑡). = ∑ È𝑇Y +_⁄
(8) (𝑡)É

+<
8k! �

−𝜇L>𝜙̇!
(8)(𝑡)

−𝜇L>𝜙̇#
(8)(𝑡)
0

� + ∑ È𝑇+"=> +_⁄
(8) (𝑡)É

+<
8k! H−𝜇=>𝜔+"=>

(=>	!$ =>	#8⁄ )(𝑡)I. 

(3.48b) 

The effective generalized force (𝐹∗(𝑡)) of the virtual work 𝛿𝑊(𝑡) in Eq. (3.22a) 

is the sum of the components obtained in Eqs. (3.45b), (3.46b), and (3.48b): 

(𝐹∗(𝑡)) = ,𝐹r∗(𝑡). + º𝑇 +7
∗ (𝑡)½,𝑓 +7

∗ (𝑡). + ,𝐹s∗(𝑡)..   (3.49) 

3.3.8 Compact Equations of Motion  

Finally, in task (viii), by substituting Eqs. (3.43a, b), (3.44a, b), and (3.49) into 

the principle of virtual work, Eq. (3.28), the desired equations of motion are obtained 

for arbitrary variation of (𝑞h9<∗ (𝑡))9: 

º𝑀+_ +_⁄
∗ (𝑡)½(𝑞̈+_∗ (𝑡)) + º𝑁+_ +_⁄

∗ (𝑡)½(𝑞̇+_∗ (𝑡)) + º𝑀+_ J_⁄
∗ (𝑡)½,𝑋̈(')(𝑡). 

+º𝑁+_ J_⁄
∗ (𝑡)½,𝑋̇(')(𝑡). = ,𝐹r∗(𝑡). + º𝑇 +7

∗ (𝑡)½,𝑓 +7
∗ (𝑡). + ,𝐹s∗(𝑡).,     (3.50a) 

where [𝑀∗]-mass submatrices and [𝑁∗]-submatrices are  

º𝑀+_ +_⁄
∗ (𝑡)½ ≡ º𝐵+_ +_⁄

∗ (𝑡)½+º𝑀¼+_½º𝐵+_ +_⁄
∗ (𝑡)½ + ∑ È𝐵Y +_⁄

(8)∗ (𝑡)É
+<

8k! È𝑀¼Y
(8)É È𝐵Y +_⁄

(8)∗ (𝑡)É, 

 (3.50b) 
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 º𝑁+_ +_⁄
∗ (𝑡)½ ≡ º𝐵+_ +_⁄

∗ (𝑡)½+Ïº𝑀¼+_½º𝐵̇+_ +_⁄
∗ (𝑡)½ + [𝐷+_(𝑡)]º𝑀¼+_½º𝐵+_ +_⁄

∗ (𝑡)½Ñ  

+∑ È𝐵Y +_⁄
(8)∗ (𝑡)É

+<
8k! hÈ𝑀¼Y

(8)É È𝐵̇Y +_⁄
(8)∗ (𝑡)É + È𝐷Y

(8)(𝑡)É È𝑀¼Y
(8)É È𝐵Y +_⁄

(8)∗ (𝑡)Éi,     (3.50c) 

º𝑀+_ J_⁄
∗ (𝑡)½ ≡ º𝐵+_ +_⁄

∗ (𝑡)½+º𝑀¼+_½º𝐵+_ J_⁄
∗ (𝑡)½ + ∑ È𝐵Y +_⁄

(8)∗ (𝑡)É
+<

8k! È𝑀¼Y
(8)É È𝐵Y J_⁄

(8)∗ (𝑡)É,   

(3.50d) 

    º𝑁+_ J_⁄
∗ (𝑡)½ ≡ º𝐵+_ +_⁄

∗ (𝑡)½+Ïº𝑀¼+_½º𝐵̇+_ J_⁄
∗ (𝑡)½ + [𝐷+_(𝑡)]º𝑀¼+_½º𝐵+_ J_⁄

∗ (𝑡)½Ñ  

+∑ È𝐵Y +_⁄
(8)∗ (𝑡)É

+<
8k! hÈ𝑀¼Y

(8)É È𝐵̇Y J_⁄
(8)∗ (𝑡)É + È𝐷Y

(8)(𝑡)É È𝑀¼Y
(8)É È𝐵Y J_⁄

(8)∗ (𝑡)Éi.        (3.50e) 

In Eqs. (3.50b-e), º𝐵̇∗(𝑡)½ denotes the time derivative of [𝐵∗(𝑡)] and are presented in the 

Appendix 3.B. In Eq. (3.50a), the term º𝑁+_ +_⁄
∗ (𝑡)½(𝑞̇+_∗ (𝑡)) includes centripetal- and 

Coriolis-accelerations. 

If the inertia terms of legs are negligible, the simplified equations are easily 

obtained by setting È𝑀¼Y
(8)É = 0!#×!# in Eqs. (3.50b-e). Equation (3.50a) also yields the 

equations of motion for a Stewart platform with a fixed base plate by setting ,𝑋̇(')(𝑡). =

,𝑋̈(')(𝑡). = 0<×!.  

Readers who are interested in the Newton-Euler-type equations of motion for 

the top plate and the legs are referred to the authors’ paper [43]. In the paper, the loop 

closure constraints are appended to Eq. (3.24a) using Lagrange multipliers, and the 

equations are further simplified to obtain compact equations of motion. (In the paper, 

instead of leg axial forces, leg displacements are treated as a control input.) 

3.3.9 Static Equilibrium Equations 

 Dynamic equations of motion, Eq. (3.50a), reduce to static equilibrium 

equations by setting all the velocities and accelerations to zero: 

,𝐹r∗(𝑡). + º𝑇 +7
∗ (𝑡)½,𝑓 +7

∗ (𝑡). = 0<×!.    (3.51) 

Equation (3.51) is useful for static strength design of legs, in which leg axial forces are 

sought for the prescribed position 𝑠%
(!$ '⁄ ) and rotation 𝑅(!$ '⁄ ) of the top plate relative to 

the base plate and its rotation, 𝑅('). (The remaining displacements: 𝜙!
(8), 𝜙#

(8) and 𝑙(8), 

which appear in º𝑇 +7
∗ (𝑡)½ of Eq. (3.46d), are computed using the loop closure equations, 

Eq. (2.20e).)  The static axial forces of legs for strength design are easily obtained by 

solving Eq. (3.51) for ,𝑓 +7
∗ (𝑡).. 
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3.4 Inverse Dynamics Control 

The analytical equations of motion are utilized to control a base-moving Stewart 

platform employing the inverse dynamics control (IDC) or computed torque control 

[38, 40]. 

3.4.1 Control Objective 

The control objective is to keep the position and attitude of the top plate, body-

(13), in a desired configuration, expressed by body-(13*d*) frame:  

,𝐞(!$∗^∗)(𝑡) 𝐫%
(!$∗^∗)(𝑡). = ,𝐞"𝑅(!$∗^∗)(𝑡) 𝐞"𝑥%

(!$∗^∗)(𝑡).,   (3.52a) 

against the input motion of the base plate, body-(0): 

 ,𝐞(')(𝑡) 𝐫%
(')(𝑡). = ,𝐞"𝑅(')(𝑡) 𝐞"𝑥%

(')(𝑡)..     (3.52b) 

The base plate motion, expressed by body-(0) frame, ,𝐞̇(')(𝑡) 𝐫̇%
(')(𝑡). =

,𝐞(')(𝑡)𝜔(')(𝑡)s⃖ssssssssssss⃗ 𝐞"𝑥̇%
(')(𝑡). , is measured at each time step and its velocities and 

accelerations are stored in the column matrices as: 

,𝑋̇(')(𝑡). ≡ |𝑥̇%
(')(𝑡)

𝜔(')(𝑡)
},					H𝑋̈(')(𝑡)I = |𝑥̈%

(')(𝑡)
𝜔̇(')(𝑡)

}.    (3.53a, b) 

To utilize the measured body-(0) configuration and its velocities and 

accelerations, the current body-(13) frame and the desired body-(13*d*) frame are both 

expressed relative to body-(0) frame: 

,𝐞(!$)(𝑡) 𝐫%
(!$)(𝑡). = ,𝐞(')𝑅(!$ '⁄ )(𝑡) 𝐞(')𝑠%

(!$ '⁄ )(𝑡).,   (3.54a) 

,𝐞(!$∗^∗)(𝑡) 𝐫%
(!$∗^∗)(𝑡). = ,𝐞(')𝑅(!$∗^∗ '⁄ )(𝑡) 𝐞(')𝑠%

(!$∗^∗ '⁄ )(𝑡)..  (3.54b) 

The current top-plate configuration relative to body-(0) frame is computed using 

the measured relative frame-velocities in Eq. (3.28b) and the accelerations, which are 

stores in the column matrices: 

(𝑞̇+_∗ (𝑡)) = | 𝑠̇%
(!$ '⁄ )(𝑡)
𝜔(!$ '⁄ )(𝑡)

},						(𝑞̈+_∗ (𝑡)) = | 𝑠̈%
(!$ '⁄ )(𝑡)
𝜔̇(!$ '⁄ )(𝑡)

}.   (3.55a, b) 

At each time, the desired relative velocities and accelerations are computed from Eq. 

(3.54b) and stored in the column matrices as: 

(𝑞̇+_∗^∗∗ (𝑡)) = Á
𝑠̇%∗^∗
(!$∗^∗ '⁄ )(𝑡)

𝜔∗^∗
(!$∗^∗ '⁄ )(𝑡)

Ã,						(𝑞̈+_∗^∗∗ ) = Á
𝑠̈%∗^∗
(!$∗^∗ '⁄ )(𝑡)

𝜔̇∗^∗
(!$∗^∗ '⁄ )(𝑡)

Ã. (3.56a, b) 

Using the measured base-plate and top-plate velocities in Eqs. (3.53-55), the 

velocities ,𝑋̇+_(𝑡). and accelerations ,𝑋̈+_(𝑡). of the top-plate system, illustrated in Fig. 

3.1, are computed from Eq. (3.43d). 
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From Eqs. (3.55, 56) the error velocities are defined in column matrices as: 

(𝑒̇+_(𝑡)) ≡ ,𝑞̇+_∗ (𝑡). − ,𝑞̇+_∗^∗∗ (𝑡). = Á
𝑠̇%
(!$ '⁄ )(𝑡) − 𝑠̇%∗^∗

(!$∗^∗ ')⁄ (𝑡)

𝜔(!$ '⁄ )(𝑡) − 𝜔∗^∗
(!$∗^∗ '⁄ )(𝑡)

Ã.  (3.57) 

The error in relative position of the top-plate between body-(13) frame in Eq. (3.54a) 

and body-(13*d*) frame in Eq. (3.54b) is 𝑠%
(!$ '⁄ )(𝑡) − 𝑠%∗^∗

(!$∗^∗ '⁄ )(𝑡), while the error in 

rotation: 𝑅(!$ !$∗^∗)⁄ (𝑡): 

     𝐞(!$)(𝑡) = 𝐞(!$∗^∗)(𝑡)𝑅(!$ !$∗^∗)⁄ (𝑡),     (3.58a) 

necessary to rotate 𝐞(!$∗^∗)(𝑡) to 𝐞(!$)(𝑡), is computed from Eq. (3.54a, b) as: 

𝑅(!$ !$∗^∗)⁄ (𝑡) = H𝑅(!$∗^∗ '⁄ )(𝑡)I
+
𝑅(!$ '⁄ )(𝑡).    (3.58b) 

This error in the rotation is expressed by using three Tait-Bryan angles, which transform 

SO(3) to ℝ$, as defined by Eqs. (2.A13, 2.A14) in chapter 2: 

𝜓[ttut+J (𝑡) = Tait-Bryan angle transformation of 𝑅(!$ !$∗^∗)⁄ (𝑡). (3.59) 

As a result, a 6 × 1 column matrix, (𝑒+_(𝑡)), corresponding to (𝑒̇+_(𝑡)) in Eq. (3.57a) is 

defined as: 

(𝑒+_(𝑡)) = |𝑠%
(!$ '⁄ )(𝑡) − 𝑠%∗^∗

(!$∗^∗ '⁄ )(𝑡)
𝜓[ttut+J (𝑡)

}.    (3.60) 

3.4.2 Implementation of Inverse Dynamics Control 

In IDC [11, 38, 40], the equations of motion, Eq. (3.50a), is first solved for the 

actuator force ,𝑓 +7
∗ (𝑡).. Then the acceleration term ,𝑞̈+_∗ (𝑡). is expressed by ,𝑣(𝑡). in 

Eq. (3.61c), which consists of the desired top-plate acceleration ,𝑞̈+_∗^∗∗ (𝑡). and PD- or 

PID-type error feedback-terms.  

,𝑓 +7
∗ (𝑡). = º𝑀Þ(𝑡)½,𝑣(𝑡). + ,𝑁Þ(𝑡). + ,𝑃Ê(𝑡). + ,𝐹Ê(𝑡).,  (3.61a) 

where 

º𝑀Þ(𝑡)½ = º𝑇 +7
∗ (𝑡)½S!º𝑀+_ +_⁄

∗ (𝑡)½,     (3.61b) 

,𝑣(𝑡). = ,𝑞̈+_∗^∗∗ (𝑡). − [𝐾^],𝑒̇+_(𝑡). − º𝐾?½,𝑒+_(𝑡). − [𝐾C] ∫(𝑒+_(𝑡))𝑑𝑡, (3.61c) 

,𝑁Þ(𝑡). = º𝑇 +7
∗ (𝑡)½S!º𝑁+_ +_⁄

∗ (𝑡)½(𝑞̇+_∗ (𝑡)),    (3.61d) 

,𝑃Ê(𝑡). = º𝑇 +7
∗ (𝑡)½S!Ïº𝑀+_ J_⁄

∗ (𝑡)½,𝑋̈(')(𝑡). + º𝑁+_ J_⁄
∗ (𝑡)½,𝑋̇(')(𝑡).Ñ, (3.61e) 

,𝐹Ê(𝑡). = º𝑇 +7
∗ (𝑡)½S! h− H𝐹r∗(𝑡)I − ,𝐹s∗(𝑡).i.    (3.61f) 

In Eq. (3.61c) [𝐾^], º𝐾?½ , and [𝐾C] show derivative, proportional, and integral gain 

matrices respectively. The substitution of Eq. (3.61a) into Eq. (3.50a) leads to the 

following differential equation for the error states 
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(𝑒̈+_(𝑡)) + [𝐾^](𝑒̇+_(𝑡)) + º𝐾?½(𝑒+_(𝑡)) + [𝐾C] ∫(𝑒+_(𝑡))𝑑𝑡 = 0   (3.62) 

where (𝑒̈+_(𝑡)) = 	 (𝑞̈+_∗ (𝑡)) − (𝑞̈+_∗^∗∗ (𝑡)). 

The flow chart of the IDC control flow is illustrated in Fig. 3.3. 

 

 
Figure 3.3: A control flowchart of the Stewart platform compensator 

 

As illustrated in Fig. 3.3, the output of IDC, Eq. (3.61a) with components 

defined in Eq. (3.46c), includes the kth actuator force 𝑓Y
(8)(𝑡)  for 𝑘 = 1,⋯ , 6 . The 

actuator force 𝑓Y
(8)(𝑡) together with the desired ATJ acceleration 𝑑̈∗^∗

(8) (𝑡), and velocities 

𝑑̇∗^∗
(8) (𝑡) is used to compute the input signal for a linear electric-servo actuator model 

[10]. By considering that six actuators are identical, the equations of motion for the kth 

electromechanical translational actuator (ATJ) are given as 

𝑀@
∗𝑑̈∗^∗

(8) (𝑡) + 𝐶@∗𝑑̇∗^∗
(8) (𝑡) = 𝐾A∗𝑖(8)(𝑡) − 𝑓𝐿

(𝑘)(𝑡),    (3.63a) 

𝐿C
^C(")(A)
^A

+ 𝑅𝑖(8)(𝑡) = −𝐾[∗𝑑̇∗^∗
(8) (𝑡) + 𝑢`+7

(8) (𝑡),    (3.63b) 

where 

𝑀@
∗ = 𝑀v + a

#9w
\:
b
#
𝜂(𝐽5 + 𝐽\),        𝐶@∗ = 𝐶v + a

#9w
\:
b
#
𝜂(𝐵5 + 𝐵\),  (3.63c, d) 

𝐾A∗ =
#9wx
\:

𝐾A,     𝐾[∗ =
#9w
\:
𝐾[.   (3.63e, f) 

In Eq. (3.63a), the mechanical part of the actuator equations, the total mass 𝑀=
∗  is 

expressed by the mass of the slider 𝑀v, the mass moment of inertia of the motor 𝐽5 and 

lead screw 𝐽> . 𝐶@∗  is the system viscous damping coefficient including the viscous 

damping coefficients of the slider 𝐶? , motor 𝐵5 , and lead screw 𝐵\ . 𝐾@∗  denotes the 

torque coefficient. In Eq. (3.63b), the electric part of the equations, the resistance of the 

motor circuit is denoted by R and inductance of the armature is 𝐿C. The current 𝑖(8)(𝑡) 
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is induced by the applied voltage or Pulse-Width Modulation signal 𝑢89:
($) (𝑡). 𝐾A∗ is the 

back electromotive force constant. The remaining parameters lp, N, and 𝜂 shown in Eq. 

(3.63c-f) represent the lead length, gear ratio, and lead screw efficiency, respectively. 

Given the two differential equations, Eq. (3.63a) and (3.63b), the state space equation 

of the actuator model is expressed by 

^
^A
|𝑑̇∗^∗

(8) (𝑡)
𝑖(8)(𝑡)

} = _
− %;∗

y;∗
z=∗

y;∗

− z>∗

Y?
− p
Y?

` |𝑑̇∗^∗
(8) (𝑡)
𝑖(8)(𝑡)

} + |
0
!
Y?
}𝑢`+7

(8) (𝑡)+ |−
!
y;∗

0
} 𝑓𝐿

(𝑘)(𝑡)  (3.64) 

Since the parameters of the actuator model are unknown in this study, they were 

experimentally estimated utilizing MATLAB from the measured output values 𝑑(8)(𝑡), 

𝑑̇(8)(𝑡), 𝑖(8)(𝑡) for the inputs 𝑢`+7
(8) (𝑡) and 𝑓D

(+)(𝑡).  
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3.5 Experimental Results 

Experiments were performed on a scale model, shown in Fig. 3.4, to implement 

the IKC and IDC controller. 

 

Figure 3.4: A scale model of a Stewart platform installed on a motion generator 

 

3.5.1 Experimental Setup 

Figure 3.4 illustrates an experimental setup utilizing a scale model of a Stewart 

platform, installed on the table of a base-fixed motion generator. The motion of the 

table is generated by the prescribed sinusoidal motion of three linear actuators. The 

geometry of the Stewart platform has been described in Table 2.1 in the Appendix 2.A 

of chapter 2. The mass and moment of inertia of the constituent bodies of the platform 

are presented in Table 3.1. 

 

Table 3.1: Dynamic properties of a scale model Stewart platform 

 Base plate (0) Top plate (13) Lower leg (2k-1) 
𝑘 = 1, 2,⋯ , 6 

Upper leg (2k) 
	𝑘 = 1, 2,⋯ , 6 

Mass 𝑚T (6) 2.0 kg 0.8 kg 0.2 kg 0.1 kg 

Moment of Inertia 𝐽V.2
(6) 0.023 kg·m2 0.004 kg·m2 0.00043 kg·m2 0.00017 kg·m2 

Moment of Inertia 𝐽V12
(6) 0.023 kg·m2 0.004 kg·m2 0.00043 kg·m2 0.00017 kg·m2 

Moment of Inertia 𝐽V,2
(6) 0.047 kg·m2 0.008 kg·m2 0.000013 kg·m2 0.000003 kg·m2 
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For the Stewart platform, mounted on the motion generator, 6-axis sensors (3-

axis accelerometer and 3-axis gyro sensor) are installed on both the base plate and the 

top plate to measure their accelerations and angular velocities. By using measured 

values of angular velocity components at each time, the rotation matrix of the base plate 

or top plate is updated [29, 39]. Then the Tait-Bryan angles are obtained from the 

updated rotation matrix. For linear servo actuators of ATJs, their velocities and 

extensions are measured by a potentiometer built in the actuators. The displacements 

of the top plate are calculated by correcting the second-order integral of the measured 

accelerations with the displacements obtained by forward kinematics computation 

using the measured actuator lengths of the base-moving Stewart platform. The 

displacements of the base plate can be calculated in the same way from the actuator 

lengths of the generator. 

When this system is applied to the motion compensation of a ship, 

displacements and attitudes of the top plate and attitudes of the base plate can be 

measured by the same method as in this experiment. But this strategy cannot be applied 

to the measurement of displacements of the base plate since it is attached to a moving 

ship. It requires to calculate the displacements of the bottom plate by integrating the 

accurate gyro and accelerometer values. However, since the calculated displacement 

accumulates an error, the drift amount must be corrected to allow the Stewart platform 

to work within its range of motion.  

In the case of application to a bed in an ambulance, an acceleration sensor is 

installed inside the vehicle, and the position and attitude of the top plate are controlled 

according to the time change of the measured acceleration. The displacements and 

attitude of the top plate can be measured in the same way as in the experiment. 

In the experiments, the base plate was excited by the motion generator, which 

induces the base-plate motion by displacing three linear actuators with the amplitudes: 

0.02sin(2𝜋𝑓!𝑡) m, 0.02sin(2𝜋𝑓#𝑡) m, and 0.02sin(2𝜋𝑓$𝑡) m, whose frequencies are 𝑓!= 

0.15 Hz, 𝑓#= 0.1 Hz, and 𝑓$= 0.05 Hz.   

The control objective is to keep the top plate horizontal and stationary against 

the motion of the base plate. The desired top-plate configuration was selected to be the 

initial reference configuration of the top plate: ,𝐞(!$∗^∗)(𝑡) 𝐫%
(!$∗^∗)(𝑡). =
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,𝐞"𝐼$ 𝐞"𝑥%
(!$)(0)., where 𝑥%

(!$)(0) = 𝑒$ℎF(') in which ℎF(') denotes the initial elevation of 

the top plate relative to the initial stationary base plate.  

For the IKC controller, the gains are chosen by the trial-and-error method. For 

the IDC controller, the PID gains were tuned by a trial-and-error method so that the 

error states in Eq. (3.62) asymptotically approach zero. The time step of 0.01 seconds 

is utilized in the experiment. 

To conduct the experiments described above, MATLAB software and Arduino 

microcontrollers were utilized for computations and signal transmission/reception, 

respectively. 

3.5.2 Results and Discussion 

Figures 3.5(a-f) illustrate the input base-plate configuration (in black curves) 

and the controlled top-plate configuration for IDC (in red curves) and IKC (in blue 

curves). Figures 3.5(a-c) show the translational displacements in the 𝑥!-, 𝑥#-, and 𝑥$-

directions, respectively. Figures 3.5(d-f) show the rotation matrices of the base plate, 

𝑅(')(𝑡), and the top plate, 𝑅(!$)(𝑡), where each rotation matrix is expressed using Tait-

Bryan angles, introduced in Eqs. (2.A13) and (2.A14), as: 

𝑅(')(𝑡) = 𝑅!(𝜓!
+J(')(𝑡))𝑅#(𝜓#

+J(')(𝑡))𝑅$(𝜓$
+J(')(𝑡)),   (3.65a) 

𝑅(!$)(𝑡) = 𝑅!(𝜓!
+J(!$)(𝑡))𝑅#(𝜓#

+J(!$)(𝑡))𝑅$(𝜓$
+J(!$)(𝑡)).  (3.65b) 

In the experiments, the desired top-plate configuration is expressed by zero translational 

displacements and zero Tait-Bryan angles. This angular representation of a rotation 

matrix is explained in the Appendix 2.A to plot admissible workspace. For 𝑅(!$)(𝑡) the 

corresponding Tait-Bryan angles 𝜓C+J(𝑡), 𝑖 = 1, 2, 3 are computed by using Eq. (2.A14) 

applied to 𝑅(!$)(𝑡) instead of 𝑅(!$ '⁄ )(t).  
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Figure 3.5: Plots of the input base-plate configuration and the controlled top-plate configuration: (a) 

displacement in the  x1-direction, (b) displacement in the x2-direction, (c) displacement in the x3-

direction, (d) Tait-Bryan angle ψ1TB(t), (e) Tait-Bryan angle ψ2TB(t), and (f) Tait-Bryan angle ψ3TB(t) 

 

To quantify the performance of IDC and IKC, root mean square errors (RMSE) 

and mean absolute errors (MAE) for the top plate configuration are calculated in Table 

3.2. The rate of compensation indicates how much the top plate compensates the motion 

of the base plate. From the results of Figs. 3.5 and Table 3.2, it is observed that IDC 

achieves smaller errors, the higher rate of compensation, and better control performance 

compared to the purely kinematic IKC.  

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 3.2: Comparison of errors and compensation rates between IDC and IKC 

 Controller RMSE MAE Compensation Rate 
RMSE MAE 

Displacement 
in 𝑥.-direction 

IDC 0.0011 m 0.0008 m 67.18 % 67.28 % 
IKC 0.0018 m 0.0015 m 51.25 % 52.12 % 

Displacement 
in 𝑥1-direction 

IDC 0.0015 m 0.0012 m 64.51 % 65.60 % 
IKC 0.0020 m 0.0019 m 51.10 % 52.54 % 

Displacement 
in 𝑥,-direction 

IDC 0.0011 m 0.0008 m 89.51 % 89.14 % 
IKC 0.0017 m 0.0015 m 81.82 % 80.50 % 

Tait-Bryan Angle 
𝜓(
@A(())(𝑡) 

IDC 0.5473° 0.4584° 88.87 % 88.66 % 
IKC 1.0768° 0.9048° 80.90 % 80.52 % 

Tait-Bryan Angle 
𝜓,
@A(())(𝑡) 

IDC 0.8059° 0.6482° 88.04 % 87.57 % 
IKC 1.4251° 1.1486° 78.85 % 77.97 % 

Tait-Bryan Angle 
𝜓)
@A(())(𝑡) 

IDC 0.1953° 0.1485° 83.48 % 83.04 % 
IKC 0.4115° 0.3411° 65.18 % 61.06 % 
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3.6 Control Simulations 

In this section, control applications utilizing the derived equations by adopting 

two nonlinear robust controllers are described: (i) IDC with 𝐻! control and (ii) integral 

sliding mode control (ISMC). The applications of each control law to a base-moving 

Stewart platform are presented. Then, a numerical simulation is carried out to evaluate 

effectiveness of each control method. 

3.6.1 Nonlinear Robust Controller Design 

3.6.1.1   IDC with H-infinity Controller 

For the motion control of robot manipulators, inverse dynamics control or 

feedback linearization is a conventional nonlinear control method which strictly 

linearizes a nonlinear system by canceling nonlinear terms based on the results of 

inverse dynamic computation [44]. 

The implementation of the IDC requires accurate dynamic modeling of the 

Stewart platform using accurate parameter values. Inaccurate modeling or uncertainty 

of the parameters results in reduced accuracy of the controller performance. Therefore, 

to minimize the modeling errors and retain robustness, 𝐻! control scheme is applied to 

the IDC as illustrated in Fig. 3.5. 

 

 
Figure 3.6: Block diagram of the IDC with 𝐻∞ controller 

 

The IDC with 𝐻! law can be written as: 

(𝐹@(𝑡)) = º𝑀Þb(𝑡)½,𝑣(𝑡). + ,𝑁Þb(𝑡). + ,𝑃Êb(𝑡). + ,𝐹Êb(𝑡).+ 𝑢𝐻(𝑡) (3.66) 

where º𝑀Þb(𝑡)½, ,𝑁Þb(𝑡)., ,𝑃Êb(𝑡)., and ,𝐹Êb(𝑡). are nominal matrices. 𝑢C(𝑡) indicates an 

additional input derived from the 𝐻! conotrol law to compensate the modeling errors. 

The error equation is obtained by substituting Eq. (3.66) into Eq. (3.50a) 

(𝑒̈+_(𝑡)) + [𝐾^](𝑒̇+_(𝑡)) + º𝐾?½(𝑒+_(𝑡)) + [𝐾C] ∫(𝑒+_(𝑡))𝑑𝑡  

= º𝑀Þb(𝑡)½
S!𝑤(𝑡) − º𝑀Þb(𝑡)½

S!𝑢𝐻(𝑡)   (3.67a) 
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where 

𝑤(𝑡) = :`𝑀{(𝑡)c − `𝑀{ 𝑛(𝑡)c<:𝑞̈'K∗ (𝑡)<  

+,:𝑁{(𝑡)< + :𝑃̂(𝑡)< + :𝐹̂(𝑡)<- − ,:𝑁{F(𝑡)< + :𝑃̂F(𝑡)< + :𝐹̂F(𝑡)<-  (3.67b) 

Observing that the modeling error 𝑤(𝑡)  represents disturbance of the Eq. (3.67a) 

caused by uncertainties, the generalized state space model of the error dynamics can be 

expressed as:  

         𝑥̇A(𝑡) = 𝐴𝑥A(𝑡) + 𝐵D𝑤(𝑡) + 𝐵E𝑢C(𝑡)                   

𝑧(𝑡) = y𝑧A(𝑡)𝑧E(𝑡)
z = 𝐶F𝑥A(𝑡) + 𝐷FD𝑤(𝑡) + 𝐷FE𝑢C(𝑡)   (3.68a) 

         𝑦(𝑡) = 𝐶G𝑥A(𝑡) + 𝐷GD𝑤(𝑡) + 𝐷GE𝑢C(𝑡)             

where 𝑥A(𝑡) is the state variables defined as:  

𝑥A(𝑡) = }
∫ 𝑒𝑇𝑃(𝑡)𝑑𝑡
𝑒𝑇𝑃(𝑡)
𝑒̇𝑇𝑃(𝑡)

�    (3.68b) 

and 𝑧(𝑡) represents the penalty outputs to be minimized and 𝑦(𝑡) is the measurement 

outputs. The coefficient matrices are defined as follows: 

𝐴 = _
0 𝐼< 0
0 0 𝐼<
−𝐾C −𝐾? −𝐾^

`,      𝐵~ = _
0<×<
0

º𝑀Þb(𝑡)½
S!
`𝑤^, 	𝐵� = _

0<×<
0

−º𝑀Þb(𝑡)½
S!
`   (3.68c, d, e) 

    𝐶F = �
𝑤A
0H×/J�,   𝐷FD = �0/J×H0H×H

�,   𝐷FE = �0/J×H𝑤E
�       (3.68f, g, h) 

𝐶G = 𝐼/J,  𝐷GD = 𝐷GE = 0/J×H   (3.68i, j) 

The inertia matrix in the coefficient matrices 𝐵D and 𝐵E is assumed to be constant for 

the subsequent calculations, 

[𝑀�𝑛(𝑡)] ≅ k𝑀�l     (3.69) 

and the error in this assumption can be add to Eq. (3.67b) as disturbance. In Eqs. (3.68d), 

(3.68f), and (3.68h), 𝑤K , 𝑤A  and 𝑤E  represent weight matrices associated with 

disturbance, error state variables, and control inputs. The 𝐻! control scheme for the 

state space model of Eq. (3.68a) is shown in Fig. 3.6. 
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Figure 3.7: 𝐻∞ control configuration 

 

In order to find a state feedback controller 

𝑢C(𝑡) = 𝐾𝑥A(𝑡)    (3.70) 

such that 𝐴＋𝐵E𝐾 becomes the Hurwitz matrix, and the 𝐻! norm of the closed-loop 

transfer function H(s) from 𝑤(𝑡) to 𝑧(𝑡) becomes ‖𝐻‖! < 𝛾 , the following Linear 

Matrix Inequalities in terms of variables X and L are solved to calculate the smallest 

possible value of 𝛾 > 0 

𝑋 > 0,     �
𝐴𝑋 + 𝑋𝐴9 + 𝐵E𝐿 + 𝐿9𝐵E9 𝐵D 𝑋𝐶F9 + 𝐿9𝐷FE9

𝐵D9 −𝛾𝐼H 𝐷FD9
𝐶F𝑋 + 𝐷FE𝐿 𝐷FD −𝛾𝐼.L

� < 0  (3.71) 

The feedback gain K for the additional input is obtained by 

𝐾 = 𝐿𝑋M/     (3.72) 

3.6.1.2   Integral Sliding Mode Controller 

Sliding mode control is well known as a robust control method for linear and 

nonlinear systems with parametric and nonparametric uncertainties and disturbances. 

A process of SMC consists of two phases: (i) a reaching phase in which initial states 

are forced to reach a predesigned sliding surface in finite time, and (ii) a sliding phase 

in which the states move to the origin along the sliding surface. However, robustness 

of the system is not guaranteed during the reaching phase and the system response 

becomes sensitive. 

 Integral sliding mode control (ISMC) is a modified control method to overcome 

the drawback of the conventional SMC by removing the reaching phase. Since the 

initial system state is on the sliding surface, the robustness of the system can be ensured 

during an entire system response. Therefore, the ISMC is employed for the purpose of 

realizing enhanced robustness and quick response.   
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 From Eq. (3.50a) and Eq. (3.61a), the matrices including the uncertainties are 

expressed by nominal and perturbed parts as: 

[𝑀�(𝑡)] = [𝑀�𝑛(𝑡)] + [𝛥𝑀�(𝑡)]    (3.73a) 

,𝑁Þ(𝑡). = ,𝑁Þb(𝑡).+ ,𝛥𝑁Þ(𝑡).    (3.73b) 

,𝑃Ê(𝑡). = ,𝑃Êb(𝑡).+ ,𝛥𝑃Ê(𝑡).    (3.73c) 

,𝐹Ê(𝑡). = ,𝐹Êb(𝑡).+ ,𝛥𝐹Ê(𝑡).    (3.73d) 

It is assumed that the above parametric perturbations have the following bounds:  

‖[𝛥𝑀�(𝑡)]‖ ≤ 𝑀�     (3.74a) 

‖(𝛥𝑁�(𝑡))‖ ≤ 𝑁�    (3.74b) 

‖(𝛥𝑃�(𝑡))‖ ≤ 𝑃�    (3.74c) 

‖(𝛥𝐹c(𝑡))‖ ≤ 𝐹�    (3.74d) 

By defining the error state from Eq. (3.57) and Eq. (3.60), 

𝑞A(𝑡) = y𝑒𝑇𝑃(𝑡)𝑒̇𝑇𝑃(𝑡)
z     (3.75) 

the nonlinear error dynamics can be expressed as 

𝑞̇A(𝑡) = 𝑓(𝑡) + 𝑔(𝑡)𝑢?(𝑡) + 𝑑(𝑡)   (3.76a) 

where 

 𝑓(𝑡) = |
𝑒̇(𝑡)

(𝑞̈+_∗^∗∗ (𝑡)) − º𝑀Þb(𝑡)½
S!
,−,𝑁Þb(𝑡).−,𝑃Êb(𝑡). − ,𝐹Êb(𝑡).I

}    (3.76b) 

𝑔(𝑡) = |
0

−º𝑀Þb(𝑡)½
S!}           (3.76c) 

𝑑(𝑡) = |
0

−º𝑀Þb(𝑡)½
S!,−º𝛥𝑀Þ(𝑡)½(𝑞̈+_∗ (𝑡)) − ,𝛥𝑁Þ(𝑡). − ,𝛥𝑃Ê(𝑡).−,𝛥𝐹Ê(𝑡).I + ℎ(𝑡)} 

(3.76d) 

In the Eq. (3.76a),	𝑑(𝑡) represents purturbations including nonparametric uncertainties 

ℎ(𝑡) which come from external disturbances and unmodeled dynamics. Here, it is 

assumed that 𝑑(𝑡) is bounded such that 

‖𝑑(𝑡)‖ ≤ 𝑑̅     (3.77) 

The integral sliding-mode control-input 𝑢?(𝑡) consists of nominal control input 𝑢((𝑡) 

and nonlinear control input 𝑢">(𝑡) as: 

𝑢?(𝑡) = 𝑢((𝑡) + 𝑢">(𝑡)    (3.78a) 

where the nominal controller can be chosen as 

𝑢((𝑡) = −(𝑐9𝑔(𝑡))M/(𝑐9𝑓(𝑡) + 𝑐9𝑞A(𝑡))  (3.78b) 
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and the discontinuous control input is  

𝑢">(𝑡) = −8𝑐9𝑔(𝑡):M/𝐾?sgn(𝑠(𝑞A(𝑡)))  (3.78c) 

where 𝑠(𝑞A(𝑡))	is sliding surface function, and 𝐾? is the gain of switching function. The 

gain 𝐾? is chosen to satisfy the following stability condition for 𝜀 > 0, 

𝐾? = 𝑑̅ + 𝜀     (3.79) 

Then, the sliding surface can be expressed as 

𝑠(𝑞A(𝑡)) = 𝑐9(𝑞A(𝑡) − 𝑠N(𝑡))   (3.80a) 

where  

𝑐 = yΛ𝐼H
z     (3.80b) 

In Eq. (3.80b), Λ is a diagonal positive definite matrix, and 𝑠N(𝑡) shows an integral term 

such that 

𝑠̇N(𝑡) = 	𝑓(𝑞9(𝑡)) + 𝑔(𝑞9(𝑡))𝑢((𝑡)   (3.81) 

Then, the integral sliding surface in Eq. (3.80a) becomes 

𝑠(𝑡) = 𝑐9(𝑞A(𝑡) − 𝑞A(0) − ∫(𝑓(𝑡) + 𝑔(𝑡)𝑢((𝑡))𝑑𝑡) (3.82) 

To prove the stability of the controller, the Lyapunov candidate function is expressed 

as [45]: 

𝑉 = /
.
𝑠9(𝑡)𝑠(𝑡)     (3.83) 

The time derivative of the Lyapunov function yields 

           𝑉̇ = 𝑠9(𝑡)𝑠̇(𝑡) 

                   = 𝑠9(𝑡)𝑐9(𝑓(𝑡) + 𝑔(𝑡)𝑢?(𝑡) + 𝑑(𝑡)−	𝑓(𝑡) − 𝑔(𝑡)𝑢((𝑡)) 

     = 𝑠9(𝑡)𝑐9(𝑔(𝑡)𝑢">(𝑡) + 𝑑(𝑡)) 

    = 𝑠9(𝑡)(𝑐9𝑑(𝑡) − 𝐾?sgn(𝑠(𝑞A(𝑡)))) 

≤ ‖𝑑(𝑡)‖‖𝑠(𝑡)‖ − 8𝑑̅ + 𝜀:‖𝑠(𝑡)‖ 

 ≤ 8𝑑̅ − 𝑑̅ − 𝜀:‖𝑠(𝑡)‖ 

					≤ −𝜀‖𝑠(𝑡)‖ < 0        (3.84) 

which implies that the resulting closed-loop system is asymptotically stable in the sense 

of Lyapunov. 

Due to the use of the sign function, the sliding mode control input becomes 

discontinuous, which leads to the undesired chattering effect. In order to smoothly 

switch the controller and avoid the chattering, a hyperbolic tangent function is used 

instead of the sign function in Eq. (3.78c): 
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𝑢">(𝑡) = −8𝑐9𝑔(𝑡):M/𝐾?tanh(𝛼𝑠(𝑞A(𝑡)))   (3.85) 

where 𝛼 is an experimentally determined parameter. 

3.6.2 Simulation Results and Discussion 

In this section, simulation results are described to access the effectiveness of the 

proposed nonlinear robust controllers. The same properties of a scale model of a Stewart 

platform in Table 2.1 and 2.2 are used for the simulation. All parameters shown in the 

Tables are included in the dynamic model, Eq. (3.50a). 

The trajectories of the base plate used for this simulation, including heave, roll, 

and pitch motion are prescribed as: 

,𝑋($)(𝑡)- =

⎝

⎜
⎜
⎜
⎜
⎜
⎛
𝑥"(
($)(𝑡)
𝑥.(
($)(𝑡)
𝑥#(
($)(𝑡)

𝜓"
'*($)(𝑡)

𝜓.
'*($)(𝑡)

𝜓#
'*($)(𝑡)⎠

⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

0
0

0.01sin(𝑡)
0.15sin ,.P

Q
𝑡-

0.15sin ,P
Q
𝑡-

0 ⎠

⎟
⎟
⎟
⎞

   (3.86) 

where the maximum displacements of the base plate are in the range of workspace of 

the Stewart platform, and the desired top-plate accelerations, velocities, and trajectories 

are chosen as ,𝑞̈𝑇𝑃∗𝑑∗
∗ (𝑡). = ,𝑞̇𝑇𝑃∗𝑑∗

∗ (𝑡). = ,𝑞𝑇𝑃∗𝑑∗
∗ (𝑡). = 0.  

 In the simulation, four types of control schemes are compared: simple PID, 

ISMC with linearized model, IDC with linear 𝐻! control, and ISMC with nonlinear 

model. It is assumed that all states are known, but the parameters are not measured 

accurately and have errors within 20 percent. Additionally, the top plate of the Stewart 

platform is loaded by a cuboid whose parameters are uncertain. The load is placed so 

that its center of mass is located on the 𝑠#
("#) axis and assumed not to move. In order to 

impose nonparametric uncertainties and unmodeled dynamics, the mass and geometry 

of the cuboid are not included in the design of controllers. The controller parameters 

for the IDC-𝐻! control are chosen as follows: Kp = 400, Ki = 200, Kd = 40, wd = I6, we 

= I6, wu = 0.2I6, and then 𝐻! state feedback controller gain K is calculated from the 

LMI in Eq. (3.71). Here, PID gains are tuned by the trial-and-error method, and the 

weights are selected so that the control effort is reduced while keeping the control 

performance. For the ISMC, Ks = 10, Λ = 5I6, and 𝛼 = 10 are assigned. The gain Ks is 

chosen to be larger than perturbations, and Λ  is determined by the trial-and-error 

method. 
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 Figure 3.7(a-c) show the results of the controlled top plate against the excitation 

of the base plate. It is observed that each controller compensates the base-plate 

excitation. In Fig. 3.7(a), the top plate slightly moves downward initially because of the 

uncertain load. From Figs. 3.7(b) and 3.7(c), the amplitudes of angles of the top plate 

are very small compared with those of the base plate. Also, it can be seen that the load 

has an insignificant effect on the rolling and pitching motions since the center of mass 

of the load is assumed to be located on the 𝑠#
("#) axis. While the IDC-𝐻! controller 

performs well around the neutral position, the control performance far from the neutral 

position is lower than that of the nonlinear ISMC. This is because the mass matrix used 

for the 𝐻!  control design is assumed to be a constant matrix (in Eq. (3.69)). The 

constant mass matrix is specified so that the extension of a translational joint becomes 

half length of the stroke. To quantify the performance of each controller, the RMS errors 

calculated from the results of the simulations are given in Table 3.2. From Table 3.2, 

the nonlinear ISMC achieves smallest maximum absolute errors and RMS errors. From 

the plots and the errors, it can be seen that the controllers based on the equations of 

motion: ISMC with linearized model, IDC with linear 𝐻! control, ISMC with nonlinear 

model, show better results than simple PID controller. Also, the ISMC with nonlinear 

model converges more quickly and shows higher robustness compared to the 

performance of the other controllers. 

 

 
                            (a)             (b)           (c) 

Figure 3.8: Simulation results of the input base-plate configuration and the controlled top-plate 

configuration: (a) displacement in the x3-direction, (b) Tait-Bryan angle ψ1TB(t), (c) Tait-Bryan angle 

ψ2TB(t) 
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Table 3.3: RMS errors 

Control scheme Displacement 
in 𝑥,-direction 

Tait-Bryan angle 
𝜓.
4!(.,)(𝑡) 

Tait-Bryan angle 
𝜓1
4!(.,)(𝑡) 

PID 0.005 m 0.0091° 0.011° 

ISMC with linearized model 0.0017 m 0.0023° 0.0021° 

IDC with linear 𝐻= control 0.0011 m 0.0020° 0.0014° 

ISMC with nonlinear model 0.00098 m 0.00056° 0.00067° 

 

Figure 3.8 illustrates a comparison of the RMS errors for the linear ISMC and 

nonlinear ISMC when the frequency applied to the motion of the base plate is varied to 

0.1 to 8 Hz. As the frequency of the base-plate motion becomes higher, RMS errors of 

the linear ISMC is larger than the nonlinear ISMC. The results show that nonlinear 

ISMC successfully compensate the influence of the nonlinearity of the system by 

elaborating the control input based on the nonlinear equations of motion.  

 

     
                               (a)                 (b)              (c) 

Figure 3.9: RMS errors of (a) displacement in the x3-direction, (b) Tait-Bryan angle ψ1TB(t), (c) Tait-

Bryan angle ψ2TB(t) versus frequency change (0.1-8 Hz)  
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3.7 Concluding Remarks 

To derive analytical equations of motion, the principle of virtual work is 

variationally derived from Hamilton’s principle for multi-body systems, whose 

configuration space is defined utilizing both vectors and rotation matrices of SO(3). 

The resulting virtual work equation yields the principle of virtual power [17], which is 

a weighted residual equation for the Newton and Euler equations. 

Utilizing the velocities of constituent bodies, computed in chapter 2, a step-by-

step derivation of the equations of motion incorporates the loop closure constraints 

analytically to yield compact analytical equations of motion in matrix form. In the 

equations for inverse dynamics control (IDC), the forces of the actuated translational 

joints (ATJs) are explicitly expressed.  

 Then, experimental results, performed on a scale model, are presented to assess 

the performance of the two control laws: IDC and IKC. The tracking performance was 

examined for both IDC and IKC. The experimental results demonstrate that the IDC 

controller utilizing the equations of motion is more effective to control a Stewart 

platform against input disturbance of its base plate than the IKC controller, described 

in chapter 2.  

Finally, the IDC-𝐻!  control and the ISMC were examined by numerical 

simulations. Utilizing the analytical equations of motion, each control law was 

elaborated. In the numerical simulations, the tracking performance and robustness were 

examined for each controller by intentionally introducing uncertainties to the system. 
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3.8 Appendix 

3.8.1 Appendix 3.A: Equation of Motion for φ3(2k/2k-1)(t)  

The upper body of leg-(k), body-(2k), is a circular cylinder with a spherical ball 

at one end, as illustrated in Fig. 2.7. One first observes that (i) the damping couple 

induced at a spherical joint is negligible since 𝜇67 is small, and (ii) there is no external 

couple. The equations of motion for axial rotation 𝜙$
(#8 #8S!⁄ )(𝑡) of body-(2k) relative 

to body-(2k-1) is written including viscous damping couple as: 

𝐽m$%
(#8)𝜙̈$

(#8 #8S!⁄ )(𝑡) + 𝜇𝜙̇$
(#8 #8S!⁄ )(𝑡) = 0,      (3.A1) 

with the initial conditions: 

𝜙$
(#8 #8S!⁄ )(0) = 𝜙̇$

(#8 #8S!⁄ )(0) = 0.    (3.A2) 

However, the inertia term in Eq. (3.A1) is negligible since 𝐽m$%
(#8) ≪ 𝐽m!%

(#8) = 𝐽m#%
(#8) and the 

axial rotational acceleration is of order (1).  Neglecting the inertial term in Eq. (3.A1), 

the resulting equation with Eq. (3.A2) yields 𝜙$
(#8 #8S!⁄ )(𝑡) = 0. 

3.8.2 Appendix 3.B: Time Derivatives of [B*]-Submatrices  

`𝐵̇'K 'K⁄
∗ (𝑡)c  and `𝐵̇'K *K⁄

∗ (𝑡)c	 are obtained, respectively, by taking the time 

derivatives of `𝐵'K 'K⁄
∗ (𝑡)c = `𝐵'K 'K⁄ (𝑡)c  defined in Eq. (3.29c) and `𝐵'K 'K⁄

∗ (𝑡)c =

`𝐵'K 'K⁄ (𝑡)c in Eq. (3.29d). 

º𝐵̇+_ +_⁄
∗ (𝑡)½ =

⎣
⎢
⎢
⎢
⎡ 𝑅(')(𝑡)𝜔(')(𝑡)s⃖ssssssssssss⃗ 																																									 0$×$

0$×$																																							 0$×$
						𝑅(')(𝑡)𝜔(')(𝑡)s⃖ssssssssssss⃗ −𝑅(!$)(𝑡)𝜔(!$)(𝑡)s⃖ssssssssssssss⃗ 	𝑒$ℎF(!: !$⁄ )s⃖ssssssssssssssssss⃗

									0$×$ 																																			0$×$ ⎦
⎥
⎥
⎥
⎤
,   (3.A3) 

`𝐵̇'K *K⁄
∗ (𝑡)c =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

		

0#×# 																												−𝑅($)(𝑡) 7𝜔($)(𝑡)?⃖????????????⃗ 	𝑠(
("# $⁄ )(𝑡)?⃖?????????????????⃗ + 𝑠̇(

("# $⁄ )(𝑡)?⃖?????????????????⃗ 8

0#×# 			−𝜔("# $⁄ )(𝑡)?⃖??????????????????⃗ 	:𝑅("# $⁄ )(𝑡)<
'

0#×# −𝑅($)(𝑡) �
𝜔($)(𝑡)?⃖????????????⃗ 	𝑠(

("# $⁄ )(𝑡) + 𝑅("# $⁄ )(𝑡)𝑒#ℎ*("U "#⁄ )?⃖??????????????????????????????????????????????????????????????????⃗

+𝑠̇(
("# $⁄ )(𝑡) + 𝑅("# $⁄ )(𝑡)𝜔("# $⁄ )(𝑡)?⃖??????????????????⃗ 	𝑒#ℎ*("U "#⁄ )?⃖?????????????????????????????????????????????????????????????????????????????????????????⃗ �

0#×# −𝜔("# $⁄ )(𝑡)?⃖??????????????????⃗ 	:𝑅("# $⁄ )(𝑡)<
'

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (3.A4) 

Taking the time derivatives of Eqs. (3.44c) and (3.44d), respectively, one finds 

È𝐵̇Y +_⁄
(8)∗ (𝑡)É = È𝐵̇Y Y⁄

(8)(𝑡)É È𝑇Y +_⁄
(8) (𝑡)É + È𝐵Y Y⁄

(8) (𝑡)É È𝑇̇Y +_⁄
(8) (𝑡)É,    (3.A5) 

È𝐵̇Y J_⁄
(8)∗ (𝑡)É = È𝐵̇Y Y⁄

(8) (𝑡)É È𝑇Y J_⁄
(8) (𝑡)É + È𝐵Y Y⁄

(8) (𝑡)É È𝑇̇Y J_⁄
(8) (𝑡)É + È𝐵̇Y J_⁄

(8) (𝑡)É.   (3.A6) 

In Eqs. (3.A5) and (3.A6) È𝐵̇Y Y⁄
(8)(𝑡)É and È𝐵̇Y J_⁄

(8) (𝑡)É are computed from Eqs. (3.31c, d) 

as: 
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 :𝐵̇> >⁄
(-)(𝑡)= =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝑅(1-?.)(𝑡) ^𝜔(1-?.)(𝑡)N⃖NNNNNNNNNNNNNNNNNNN⃗ 	𝑠̂2 !!⁄

(1-?.)N⃖NNNNNNNNNNN⃗ 	-𝑅1!!#$(𝜙1
(-)(𝑡))/

4
𝑒. + 𝑠̂2 !!⁄

(1-?.)N⃖NNNNNNNNNNN⃗ 	𝑒,𝜙̇1
(-)(𝑡)a

𝑒,𝜙̇1
(-)(𝑡)

−𝑅(1-?.)(𝑡)b
𝜔(1-?.)(𝑡)N⃖NNNNNNNNNNNNNNNNNNN⃗ 	𝑒, P𝑙V#$

(1-?.) + 𝑑(-)(𝑡)QN⃖NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN⃗ 	d𝑅1!!#$ P𝜙1
(-)(𝑡)Qe

4
𝑒.

+𝑒,𝑑̇(-)(𝑡)N⃖NNNNNNNNNNNNNNNN⃗ -𝑅1!!#$(𝜙1
(-)(𝑡))/

4
𝑒. + 𝑒, P𝑙V#$

(1-?.) + 𝑑(-)(𝑡)QN⃖NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN⃗ 	𝑒,𝜙̇1
(-)(𝑡)

f

𝑒,𝜙̇1
(-)(𝑡)

 

−𝑅(1-?.)(𝑡)𝜔(1-?.)(𝑡)N⃖NNNNNNNNNNNNNNNNNNN⃗ 𝑠̂2 !!⁄
(1-?.)𝑒1 																																			0,×.

0,×. 																																			0,×.

−𝑅(1-?.)(𝑡) ^𝜔(1-?.)(𝑡)N⃖NNNNNNNNNNNNNNNNNNN⃗ 	𝑒, P𝑙V#$
(1-?.) + 𝑑(-)(𝑡)QN⃖NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN⃗ 	𝑒1 + 𝑒,𝑑̇(-)(𝑡)N⃖NNNNNNNNNNNNNNNN⃗ 	𝑒1a 𝑅(1-?.)(𝑡)𝜔(1-?.)(𝑡)N⃖NNNNNNNNNNNNNNNNNNN⃗ 	𝑒,
0,×. 0,×.																										 ⎦

⎥
⎥
⎥
⎥
⎤

(3.A7) 

:𝐵̇> !A⁄
(-) (𝑡)= =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0,×.																													 																										−𝑅(+)(𝑡)b

𝜔(+)(𝑡)N⃖NNNNNNNNNNNN⃗ 	𝑅(1-?. +⁄ )(𝑡)𝑠̂2 !!⁄
(1-?.) + 𝑠̂!!

(+)N⃖NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN⃗

+𝑅(1-?. +⁄ )(𝑡)𝜔(1-?. +⁄ )(𝑡)N⃖NNNNNNNNNNNNNNNNNNNNNNN⃗ 𝑠̂2 !!⁄
(1-?.)N⃖NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN⃗ f

0,×.																													 −𝜔(1-?. +⁄ )(𝑡)N⃖NNNNNNNNNNNNNNNNNNNNNNN⃗ -𝑅(1-?. +⁄ )(𝑡)/4

0,×. −𝑅(+)(𝑡) b
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⎥
⎥
⎥
⎤

. 

(3.A8) 

In Eqs. (3.A5) and (3.A6) È𝑇̇Y +_⁄
(8) (𝑡)É is computed from Eq. (3.39b). 

k𝑇̇D 'K⁄
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.  (3.A10) 

In Eq. (A6) È𝑇̇Y J_⁄
(8) (𝑡)É is computed from Eq. (3.41b) as: 
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where from Eq. (3.35c)   

∆𝑠%Y
(8)̇ (𝑡) = 𝑠̇%

(!$ '⁄ )(𝑡) + 𝑅(!$ '⁄ )(𝑡)𝜔(!$ '⁄ )(𝑡)s⃖ssssssssssssssssss⃗ 𝑠̂+"
(!$) 

−𝑅(#8S! '⁄ )(𝑡),𝜔(#8S! '⁄ )(𝑡)𝑒$𝑙(8)(𝑡) + 𝑒$𝑑̇(8)(𝑡)..  (3.A12) 
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CHAPTER 4: FORECASTING OF FUTURE BASE MOTION AND MODEL 

PREDICTIVE CONTROL 

4.1 Introduction 

For control of the base-moving Stewart platform, the following three features 

need to be considered.  

The first one is constraints, which include kinematic constraints, joint 

constraints, and input/output constraints. Under these constraints, a controller is 

required to maximize the performance of the system and actuators for fast tracking. 

The second one is the inertia and nonlinear terms acting on the system. Since 

one of the advantages of a Stewart platform is its capability of precise positioning of 

the loaded top table, inverse dynamic computation should be considered for 

feedforward element.  

The third feature is that there exists a time delay due to the process of the signal 

measurement of the motion of the base plate, computation of the desired signal to each 

actuator, and tracking of desired top plate states. This is because the desired states of 

the top plate and each actuator are determined from the measured states of the base 

plate at each time step. To enhance control performance, the future motion of the base 

plate must be forecasted in some way. Here, for the time series data of the base-plate 

motion, LSTM is applied as a tool for forecasting its future value within a certain 

section. 

In this chapter, first, forecasting using LSTM is described comparing with 

ARIMA model [46]. Then considering the above three features, as a control method 

combined with the forecasting of the base motion, MPC is adopted and designed. 

Finally, numerical simulations and scale model experiments show that the efficacy of 

the proposed method. 

 

4.2 Time Series Forecasting of Future Base Motion 

For control of the base-moving Stewart platform, in order to cancel out the time 

delay due to measurement and computation time, the future motions of the base plate 

caused by a ship or vehicle has to be forecasted in some way.  

In recent years, a deep learning method using a recurrent neural network (RNN) 

has been applied as a time series forecasting approach to predict future values from past 

data [47-49]. The approach is especially effective for time series predictions involving 
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non-steady process data, as compared to prediction methods such as a conventional 

autoregressive (AR) model or an autoregressive integrated moving average (ARIMA) 

model. However, simple RNN architecture generally has a vanishing/exploding 

gradient problem in the error backpropagation algorithm when a long time series is used 

for training. Once the gradient disappears and an optimum solution cannot be found, 

the learning process stops. To deal with this problem, Long Short Term Memory 

(LSTM), a deep learning method that extends the RNN structure, has been developed 

[32]. LSTM is capable of learning long time series data and maintains long-term 

dependence to avoid gradient disappearance or explosion. 

In this section, as an example of the use of LSTM, future vehicle accelerations 

are forecasted at sampling points in real time. The remainder of the section proceeds as 

follows: First, the RNN and LSTM architectures used here are briefly illustrated. Next, 

the training strategy for the time series forecasting of vehicle accelerations in each time 

step is discussed. The training of the LSTM using training data for the longitudinal and 

lateral directions is then described. Suitable hyperparameters—the number of hidden 

layers, hidden units, epochs, and the learning rate—are chosen by varying the parameter 

values. Real-time forecasting simulations are performed to evaluate the effectiveness 

of the LSTM trained from the measured acceleration data. Finally, the forecasting 

accuracy of the method is assessed by comparing forecast results with the results of a 

conventional ARIMA model. 

4.2.1 Long Short Term Memory 

4.2.1.1   Recurrent neural network 

An LSTM model extends the unit of the RNN structure. Figure 4.1(a) shows a 

simple RNN divided into an input layer, hidden layers, and an output layer. Here, x(t) 

is the observed value at discrete time t, y(t) is the output, and h(t) is the state of the 

hidden unit. A recurrent type of neural network can improve accuracy by using the 

output of the hidden state from the previous period, as shown in Fig. 4.1(b) [50]. Such 

a network is regarded as a suitable model for processing and predicting time series data. 

In neural network learning, an error backpropagation method is used in which the 

weights of each unit are updated so that the defined loss function based on the error 

between the output value and training data is minimized. To take into account the 

passage of time, backpropagation through time algorithm is commonly used as a way 

to expand the network of the RNN in the time direction via the hidden layer output [51]. 
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This makes it possible to apply the error backpropagation method by considering the 

RNN as a neural network that includes the passage of time. Notably, however, when 

learning long time series data, an RNN has difficulty due to gradient disappearance, 

whereby information cannot be transmitted, or gradient explosion, whereby the number 

of calculations increases massively. 

 

      
Figure 4.1: (a) RNN structure and (b) representation of RNN for a hidden unit over time 
 

4.2.1.2   LSTM architecture 

The LSTM model has been developed to overcome the limitations of RNN 

noted above. LSTM has a structure that introduces a memory cell controlled by three 

types of gates into the RNN structure. This makes it possible to learn long time series 

data and secure long-term dependence. The propagation equations of LSTM are as 

follows: 

 𝑖(𝑡) = 𝜎v(𝑊C𝑥(𝑡) + 𝑅Cℎ(𝑡 − 1) + 𝑏C) (4.1a) 

 𝑓(𝑡) = 𝜎v,𝑊�𝑥(𝑡) + 𝑅�ℎ(𝑡 − 1) + 𝑏�. (4.1b) 

 𝑜(𝑡) = 𝜎v(𝑊u𝑥(𝑡) + 𝑅uℎ(𝑡 − 1) + 𝑏u) (4.1c) 

 𝑐j(𝑡) = 𝜎B(𝑊jj𝑥(𝑡) + 𝑅jjℎ(𝑡 − 1) + 𝑏jj) (4.1d) 

 𝑐(𝑡) = 𝑓(𝑡)⨀𝑐(𝑡 − 1) + 	𝑖(𝑡)⨀𝑐j(𝑡) (4.1e) 

 ℎ(𝑡) = 𝑜(𝑡)⨀𝜎B,𝑐(𝑡). (4.1f) 

 𝑦(𝑡) = 𝑊�ℎ(𝑡) (4.1g) 

where i(t), f(t), o(t), cc(t), and c(t) represent the input gate, the forget gate, the output 

gate, the memory cell candidate, and the memory cell state, respectively [52]; 

additionally, ⨀ indicates the product of the designated terms. The memory cell c(t) acts 

(a) (b) 
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in the role of long-term memory, while the hidden state h(t) plays the role of short-term 

memory. Wi, Wf, Wo, and Wcc denote, respectively, the input weights for each gate and 

the cell candidate. In the same manner, Ri, Rf, Ro, and Rcc are the recurrent weights for 

each gate and cell candidate, and bi, bf, bo, and bcc are the bias weights. Wy shows the 

output weight, and σ represents the activation function. In this study, the sigmoid 

function 𝜎? is used for each gate, and the hyperbolic tangent function 𝜎O is used for the 

cell candidate and the hidden state which give the output state. This is because output 

accelerations have both plus and minus values (accelerations and decelerations). The 

LSTM block is illustrated in Fig. 4.2 

 
Figure 4.2: LSTM Block 

 

4.2.1.3   Application of LSTM for real-time forecast 

Figure 4.3 is a conceptual diagram showing how forecasts of the acceleration i 

steps ahead are produced from the measured acceleration data at each sampling point. 

In order to forecast future accelerations, the LSTM is trained with the output as the 

observed value in the next step, i.e., 𝑥(𝑡 + 1) = 𝑦(𝑡) . This makes it possible to 

sequentially forecast multiple steps ahead by using the forecasted data one step ahead 

as the input data for the next step. Then, to forecast the ith-step ahead data from the 

measured data at each sampling point, a series of LSTM blocks, from 𝑥 (𝑡) to 𝑥 (𝑡 + 𝑖), 

are combined into the LSTM sequence, enabling us to forecast the ith-step ahead output 

state while updating the hidden state. 
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Figure 4.3: Forecasting of the ith-step ahead using LSTM 

 

4.2.2 LSTM Training 

Before performing real-time forecast, the LSTM block was first trained using 

the training data collected in advance. The accelerations were measured by an 

accelerometer attached to a representative vehicle. Different types of driving data were 

used for training. The actual measurement data were obtained by installing an 

acceleration sensor inside the vehicle; the data were smoothed by low-pass filtering to 

remove noise. Figure 4.4 shows the longitudinal and lateral accelerations for the 

training data and the validation data. The training data were used for the LSTM training; 

the validation data were used to check the LSTM during the training. Data group 1 and 

data group 3 of the training data include basic vehicle driving states: startup, straight 

driving, making a left turn, making a right turn, and stopping. In data group 2, in 

addition to the basic driving states, longitudinal accelerations when the vehicle stops 

suddenly are included. Data group 4 includes lateral acceleration when the vehicle 

quickly changes lanes. The maximum amplitudes of data group 2 and data group 4 are 

thus larger than those of data group 1 and data group 3. 
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For training, acceleration data were collected every 0.04 s, at which time the 

acceleration five steps ahead (i.e., 0.2 s ahead) was forecast. As the initial weighting 

parameters, the Glorot initializer [53] was used for the input weight and the recursive 

weight. The initial forget-gate bias bf and the output weight Wy were each set to 1; the 

other initial bias weights, the memory cell and the hidden states, were set to 0. To assess 

forecast accuracy, the LSTM was trained using different numbers of hidden layers (1 

and 2), hidden units per layer (100 and 200), and epochs (training set iterations) (200, 

400, 600, and 800). MATLAB software was used for training and forecasting. 

Figure 4.5 shows the training loss during the training process for various 

learning rates, with 1 layer, 100 units, and 600 epochs. The loss indicates the difference 

between the value predicted by the neural network and the correct value. In this study, 

the half-mean-squared-error of the predicted responses was used as the loss function. 

During training, the weighting parameters were tuned to minimize the loss so that the 

likelihood of the output of the network is maximized. The Adam (adaptive momentum 

estimation) algorithm [54], which combines the advantages of AdaGrad [55] and 

RMSProp [56], was used as the deep learning optimization algorithm. A learning rate 

of 10-3 was selected for subsequent applications in the current study, since, as shown in 

Fig. 4.5, the loss converges to 0 with stability. Figure 4.6 shows the training loss and 

validation loss when the learning rate is 10-3. As shown in the figure, the losses for both 

the training and validation data decrease and converge as the number of epochs 

increases, indicating that the training was successful. 

 

 
Figure 4.4: Training and validation data 
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Figure 4.5: Comparison of training loss for different learning rates 

 

 
Figure 4.6: Training loss and validation loss 
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4.2.3 Real-Time Forecast 

4.2.3.1   Forecasting results for different parameters 

The trained LSTM was used to produce real-time forecasts of accelerations in 

both the longitudinal and lateral directions while updating the LSTM from the observed 

values at each time step. A time step of 0.04 s was selected in consideration of the 

computation time for the LSTM forecasting. 

Figure 4.7(a) shows the root mean square error (RMSE) for the forecasted 

accelerations in the longitudinal direction for various combinations of hidden layers, 

units and epochs using training data 2. Fig. 4.7(b) shows the fitting rate. To find suitable 

hyperparameters, the number of epochs was set at 200, 400, 600, and 800. In addition, 

for each epoch pattern, four combinations of hidden layers and hidden units were 

considered (as shown in the figure legend). Given that the RMSE was 0.1813 for a delay 

of 0.2 s without forecasting, LSTM forecasting reduced the error in all cases. According 

to the results for Case 1, forecasting accuracy improved with an increase in the number 

of epochs, up to 600; however, increasing the number of epochs to 800 resulted in an 

increase in the RMSE and a decrease in the fitting rate, as the number of epochs became 

too large for the number of units, which caused overfitting. In Cases 2 and 3, the same 

type of pattern appears; however, the error begins to increase at a smaller number of 

epochs (i.e., after 400 epochs rather than after 600 epochs). This is likely because, in 

Case 2, the number of units becomes too large for the number of layers, while, in Case 

3, the number of layers becomes too large for the number of units. Among the four 

cases shown in Fig. 4.7, Case 4 (with 800 epochs, two layers, and 200 units) showed 

the highest accuracy. 

Figure 4.8 shows the RMSE and fitting rate when the forecasting horizon 

changes. It can be seen that forecasting accuracy decreases almost linearly as the 

forecasting horizon (i.e., the number of time steps ahead) increases. 
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Figure 4.7: (a) RMSE and (b) fitting rate for different combinations of hidden layers, units, and epochs 

 

 
Figure 4.8: RMSE and fitting rate for different forecasting horizons 

(a) 

(b) 
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In this study, no experiment was conducted for the application of tilting a bed 

in an ambulance, but in order to improve the control performance during active 

control, the real-time forecasting of future vehicle acceleration was performed. Then, 

it was shown that the prediction can be made with an accuracy of 70% to 95% up to 

10 steps ahead. The forecasting accuracy and horizon to be achieved are different 

depending on the equipment used. If higher forecasting accuracy is required, it is 

necessary to shorten the calculation time by using suitable algorithms and software. 

In addition, to adapt to all driving conditions, it is necessary to collect and learn as 

much driving data as possible on different road surfaces. 

 

4.2.3.2   Forecasting comparison of the LSTM and ARIMA models 

In time series analysis, the ARIMA model, a conventional time series 

forecasting model, serves as a tool for forecasting future values within a particular 

period of time. The ARIMA model consists of a 𝑝-order AR model, d-order deference, 

and a 𝑞-order MA model. If we let 𝑥(𝑡) be the acceleration signal at discrete time t, the 

ARIMA model is  

 𝑥(𝑡) − 𝑥(𝑡 − 𝑑) =Ø𝛼(𝑖)𝑥(𝑡 − 𝑖) +Ø𝛽(𝑗)𝑊(𝑡 − 𝑗)
g

hk!

+𝑊(𝑡)
?

Ck!

 (4.2) 

where 𝛼(𝑖)  and 𝛽(𝑗)  are the coefficients of autoregression and moving average, 

respectively. In the equation given here, 𝑝 and 𝑞 denote the order of each model, which 

can be selected by using Akaike’s Information Criterion [57]. 𝑊(𝑡)  represents 

Gaussian white noise. Once the model parameters are estimated, the ARIMA model is 

used repeatedly to produce forecasts for any future time.  

Figures 4.9(a) and 4.9(b) show a portion of the actual measured values and the 

real-time forecast output from the LSTM model trained with the Case 4 settings (using 

800 epochs) and from the ARIMA model. The parameters of the ARIMA model in Eq. 

(8) were set as p = 4, d = 1, q = 2, so that the prediction errors were minimized. The 

average computation time for the LSTM and ARIMA models was 0.0306 s and 0.0375 

s, respectively. The results indicate that the future accelerations were successfully 

forecasted in each time step. Since the acceleration measurement data used here were 

for a vehicle in a moderate driving state, acceleration does not change rapidly in either 

the longitudinal or lateral direction, and the process is weakly non-stationary. From 
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Figs. 4.9(a) and 4.9(b), it can be seen that both the LSTM and ARIMA models 

forecasted the future acceleration values with some degree of accuracy; however, the 

prediction error of the ARIMA model was slightly larger when there was noise and at 

inflection points. 

 

  
Figure 4.9: Real-time forecasted accelerations in (a) the longitudinal direction and (b) the lateral direction 

 

The forecasted longitudinal acceleration when the vehicle suddenly stops and 

the forecasted lateral acceleration when the vehicle rapidly changes lanes were also 

analyzed. Results for the Case 4 hyperparameter set with 800 epochs are described 

below. 

Figure 4.10(a) shows the results for when the LSTM model trained with data 1, 

which does not include sudden stops, is used to forecast longitudinal accelerations. 

Figure 4.10(b) shows the results when data 2, which includes sudden stop data, is used 

as the training data. As can be observed here, by adding the sudden stop information, 

future accelerations are more accurately forecasted when the acceleration changes 

significantly. Figure 4.10(c) shows the results using the ARIMA statistical model. A 

comparison with the results of the LSTM model in Fig. 4.10(b) indicates that the 

ARIMA model produces a larger error due to large changes in acceleration and non-

stationarity, whereas the LSTM model produces forecasts with a smaller error. 

Figure 4.11(a) shows the results when the LSTM model trained with data 3, 

which does not include rapid lane change data, is used to forecast lateral accelerations. 

Figure 4.11(b) shows the results when the LSTM model is trained with data 4, which 

(a) (b) 
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includes lateral accelerations due to rapid lane change. It is apparent that prediction 

accuracy is improved by adding rapid lane change information. From Fig. 4.11(b) and 

4.11(c), it can be seen that the LSTM model is able to produce more precise forecasts 

than the ARIMA model for large rates of change in acceleration. 

 

 
Figure 4.10: Comparison of 5 steps (0.2 s) ahead forecasted longitudinal response (sudden stop) by 

LSTM trained with (a) data 1 and (b) data 2, and (c) ARIMA model 

 

 
Figure 4.11: Comparison of 5 steps (0.2 s) ahead forecasted lateral response (rapid lane change) by LSTM 

trained with (a) data 3 and (b) data 4, and (c) ARIMA model  

 

 

 

(a) (b) (c) 

(a) (b) (c) 
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4.3 Model Predictive Controller Design 

For the constrained system, model predictive control (MPC) is one of the 

effective control schemes. MPC is a control method that performs optimization and 

feedback control while predicting future responses at each time and calculating 

optimization problems online [58]. It is expected that higher performance control will 

be realized for complex systems, and it is receiving a great deal of attention in a wide 

range of industrial applications. MPC is also called real-time optimal control or 

receding Horizon control. One of the advantages of this method is the ease of design 

considering the constraint conditions for the behavior and control input. The use of the 

MPC allows us to handle this multi-input multi-output system while explicitly 

incorporating the constraints of each joint and actuator, which bound the workspace. 

Especially, an explicit incorporation of the constraints on the closed-loop mechanism 

of the Stewart platform is important for an accurate predictive model. It is noted that 

for a base-fixed Stewart platform model, some researchers applied linear MPC [24,25]. 

However, because of the nonlinearity and time-varying properties of the system, a 

challenge of the controller design is how to achieve accurate and fast speed tracking 

over the operating range. Therefore, in this study, the MPC scheme is adopted for 

nonlinear system. 

The derived nonlinear system of the predictive model, Eq. (3.50a) can be 

expressed as the following nonlinear state equation: 

 𝑞̇(𝑡) = 𝑓(𝑞(𝑡), 𝑢(𝑡), 𝑝(𝑡))  (4.3) 

where 𝑞(𝑡)  denotes the state vector defined as 𝑞(𝑡) = (𝑞𝑇𝑃
∗ (𝑡) 𝑞̇𝑇𝑃

∗ (𝑡))9  and 𝑢(𝑡) 

represents input actuation forces or signals, and 𝑝(𝑡) is the time-dependent parameters 

including the motion of the base plate and each leg. The control input 𝑢(𝑡) acting on 

the legs is determined by solving the following constrained optimization problem at 

each time t over the prediction horizon (t ≤ τ ≤ t + T). 

 min
�(�|A)

𝐽 = 𝜑,𝑞(𝑡 + 𝑇|𝑡). + ç 𝐿,𝑞(𝜏|𝑡), 𝑢(𝜏|𝑡).𝑑𝜏
Ad+

A
	 (4.4a) 

subject to the constraints 

 𝜕𝑞
𝜕𝜏

= 𝑓(𝑞(𝜏|𝑡), 𝑢(𝜏|𝑡), 𝑝(𝜏|𝑡)) (4.4b) 

 𝐶!,𝑞(𝜏|𝑡). ≤ 0 (4.4c) 
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 𝐶#,𝑢(𝜏|𝑡). ≤ 0 (4.4d) 

 𝑞(𝑡|𝑡) = 𝑞(𝑡) (4.4e) 

where the function to be optimized is the control input 𝑢(𝜏|𝑡). The predicted variable 

of the state starting from 𝑞(𝑡) at time t is represented by 𝑞(𝜏|𝑡) along a fictitious time 

𝜏. Eqs. (4.4c) and (4.4d) are the constraints of joints and input, and Eq. (4.4e) expresses 

the initial condition of the optimal control problem. Let 𝑞A(𝑡) = 𝑞PAQ(𝑡) − 𝑞(𝑡) be 

errors of the state from the reference 𝑞PAQ(𝑡), the cost function 𝐽 consists of two terms 

defined by a quadratic form as: 

 𝜑,𝑞(𝑡 + 𝑇|𝑡). ≡ 	𝑊!‖𝑞[(𝑡 + 𝑇|𝑡)‖# (4.4f) 
 𝐿,𝑞(𝜏|𝑡), 𝑢(𝜏|𝑡). ≡ 	𝑊#‖𝑞[(𝜏|𝑡)‖# +𝑊$‖𝑢(𝜏|𝑡)‖# (4.4g) 

where 𝜑8𝑞(𝑡 + 𝑇|𝑡): and 𝐿8𝑞(𝜏|𝑡), 𝑢(𝜏|𝑡): consist of the terminal cost and the energy 

of state errors and control input, respectively. Then, Eq. (4.4a) can be regarded as a 

problem that minimizes the energy of the system. 𝑊/ , 𝑊. , and 𝑊#  define weight 

matrices for each term. The response of the system is adjusted by changing the 

following control parameters: values of the weighting matrix of each term and the 

length of the prediction horizon. If relatively larger 𝑊/  and 𝑊.  are chosen, the 

evaluation of the tracking error becomes dominant, then a fast-tracking response can be 

realized. On the other hand, if relatively larger 𝑊# is chosen, the effect of suppressing 

changes in the actuation input will become stronger, and it is expected that tracking 

performance will become slower. 

The above continuous time formulation of the optimization problem can be 

discretized as follows: 

min
{�(8dm|8)}BC4D 𝐽 = 𝑊!‖𝑞[(𝑘 + 𝑛|𝑘)‖# +Ø(𝑊#‖𝑞[(𝑘 + 𝜀|𝑘)‖# +𝑊$‖𝑢(𝑘 + 𝜀|𝑘)‖#)∆𝜏

bS!

mk'

 

(4.5a) 

subject to 

𝑞(𝑘 + 𝜀 + 1|𝑘) = 𝑞	(𝑘 + 𝜀|𝑘)+ 𝑓,𝑞	(𝑘 + 𝜀|𝑘), 𝑢	(𝑘 + 𝜀|𝑘), 𝑝	(𝑘 + 𝜀|𝑘).∆𝜏 (4.5b) 

 𝐶!,𝑞(𝑘 + 𝜀|𝑘). ≤ 0 (4.5c) 
 𝐶#,𝑢(𝑘 + 𝜀|𝑘). ≤ 0 (4.5d) 



    
 

107 
 

  𝑞(𝑘|𝑘) = 𝑞(𝑘) (4.5e) 

where (𝑘 + 𝜀|𝑘) denote the prediction obtained by iterating Eq. (4.5a) 𝜀 times from the 

current discrete time 𝑘. n indicates the prediction horizon (number of prediction step 

and future input variables to be optimized). ∆𝜏 = 𝑇/𝑛 defines the time step. At each 

discrete time k, the optimization problem associated with m steps ahead of control 

inputs is solved, and the first input of the obtained optimum input sequences is applied 

until the next time k + 1. 

To obtain necessary conditions for the above nonlinear optimization problem 

with inequality constraints, the Karush-Kuhn-Tucker (KKT) condition can be used [59]. 

Suppose 𝑢∗ is a locally optimal solution and let 𝑞∗ be the corresponding state, then there 

exists a vector of Lagrange multipliers 𝜆, 𝜇/ ≥ 0, and 𝜇. ≥ 0 such that 

 ∇𝐽(𝑞∗, 𝑢∗) + 𝜆+∇𝑓(𝑞∗, 𝑢∗, 𝑝) + 𝜇!+∇𝐶!(𝑞∗) + 𝜇#+∇𝐶#(𝑢∗) = 0 (4.6a) 

 𝜇!+𝐶!(𝑞∗) = 𝜇#+𝐶#(𝑢∗) = 0 (4.6b) 

Since 𝜇! ≥ 0, 𝜇# ≥ 0 and 𝐶!(𝑞∗) ≤ 0,	𝐶#(𝑢∗) ≤ 0, Eq. (4.6b) is equivalent to that 

𝜇/ and 𝜇. may be nonzero only if the constraints are achieved. This can be observed as 

a complementary slackness condition: 𝐶!(𝑞∗) < 0 and 	𝐶#(𝑢∗) < 0 imply 𝜇! = 𝜇# = 0, 

and 𝜇! < 0 and 𝜇# < 0 imply 𝐶!(𝑞∗) = 	𝐶#(𝑢∗) = 0. Then there exists an adjoint variable 

such that 

𝜕𝐻
𝜕𝑢

(𝑘 + 𝜀|𝑘, 𝑞∗(𝑘 + 𝜀|𝑘), 𝑢∗(𝑘 + 𝜀|𝑘), 𝜆(𝑘 + 𝜀 + 1|𝑘),	𝑝(𝑘 + 𝜀|𝑘). = 0 

𝜀 = 0,1, … , 𝑛 − 1     (4.7a) 

where H denotes the Hamiltonian function, 

 𝐻(𝑘 + 𝜀|𝑘, 𝑞, 𝑢, 𝜆, 𝑝) = 𝐿(𝑘 + 𝜀|𝑘, 𝑞, 𝑢, 𝑝) + 𝜆+𝑓(𝑘 + 𝜀|𝑘, 𝑞, 𝑢, 𝑝) (4.7b) 

By defining a vector of input and multipliers as 

 
𝑈(𝑘 + 𝜀|𝑘) ≡ º𝑢,(𝑘|𝑘)., 𝜇!,(𝑘|𝑘)., 𝜇#,(𝑘|𝑘)., … 

, 𝑢(𝑘 + 𝑛 − 1|𝑘), 𝜇!(𝑘 + 𝑛 − 1|𝑘), 𝜇!(𝑘 + 𝑛 − 1|𝑘)]+ 
(4.8) 

then Eqs. (4.4b), (4.5a), and (4.6) can be regarded as one matrix as 



    
 

108 
 

𝐹(𝑈(𝑘 + 𝜀|𝑘), 𝑞(𝑘 + 𝜀|𝑘), 𝑘 + 𝜀|𝑘) ≡

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜕𝐻

𝜕𝑢

4

-𝑘|𝑘, 𝑞(𝑘|𝑘), 𝑢(𝑘|𝑘), 𝜆(𝑘 + 1|𝑘), 𝑝(𝑘|𝑘)/

𝐶.-𝑞(𝑘|𝑘)/
𝐶1-𝑢(𝑘|𝑘)/

⋮
𝜕𝐻
𝜕𝑢

4

(𝑘 + 𝑛 − 1|𝑘, 𝑞(𝑘 + 𝑛 − 1|𝑘), 𝑢(𝑘 + 𝑛 − 1|𝑘),

𝜆(𝑘 + 𝑛|𝑘), 𝑝(𝑘 + 𝑛 − 1|𝑘)/
𝐶.-𝑞(𝑘 + 𝑛 − 1|𝑘)/
𝐶1-𝑢(𝑘 + 𝑛 − 1|𝑘)/ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0 

(4.9) 

To solve the above matrix equation, the C/GMRES method is adopted [33]. 

Applying the continuation method to this equation and tracking the time change of the 

control input, the condition can be written as 

 𝐹(𝑈(𝑘|𝑘), 𝑞(𝑘|𝑘), 𝑘|𝑘) = 0 (4.10a) 

 
 𝐹̇(𝑈(𝑘 + 𝜀|𝑘), 𝑞(𝑘 + 𝜀|𝑘), 𝑘 + 𝜀|𝑘) = −𝜁𝐹(𝑈(𝑘 + 𝜀|𝑘), 𝑞(𝑘 + 𝜀|𝑘), 𝑘 + 𝜀|𝑘) (4.10b) 

where 𝜁 > 0. U is a vector containing the Lagrange multipliers for the discretized inputs 

and constraints on the evaluation interval. Eq. (4.10b) can be written in the form of 

simultaneous equations of 𝑈̇ if 𝜕𝐹 𝜕𝑈⁄  is nonsingular, 

𝑈̇ = ­RS
RT
®
M/
­−𝜁𝐹 − RS

RU
𝑞̇ − RS

R$
®.           (4.10c) 

When 𝜕𝐹 𝜕𝑈⁄  does not become nonsingular, a barrier function can be adopted by 

adding constraint conditions to the evaluation function. Then the term inside sigma 

in Eq. (4.5c) can be defined as 

𝐿(𝑘 + 𝜀|𝑘, 𝑞, 𝑢, 𝑝) ≡ (𝑊#‖𝑞[(𝑘 + 𝜀|𝑘)‖# +𝑊$‖𝑢(𝑘 + 𝜀|𝑘)‖#)∆𝜏 − ∑ 𝛼 log(−𝐶C(𝑞, 𝑢))5
Ck!

           (4.11) 

for 𝛼 >0. If 𝑈 is calculated by numerically integrating 𝑈̇, the iterative solution is not 

necessary. The simultaneous equations of 𝑈̇ can be solved efficiently by the GMRES. 

This allows the optimum control input to be updated without iterative calculations. 

Observing that any prediction includes some errors, which could deteriorate the 

control performance, we add robustness to the controller [60]. The forecasting errors of 

the motion of the base plate 𝑞VQA(𝑘) can be rewritten as: 

 𝑞VQA(𝑘) = 𝑞VW(𝑘) − 𝑞VQ(𝑘|𝑘 − 𝑛) (4.12) 
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where 𝑞VW(𝑘)  and 𝑞VQ(𝑘|𝑘 − 𝑛)  represents actual measured motion at 𝑘  and 

forecasted motion of the base plate at 𝑘 − 𝑛, respectively. Here, each component of the 

forecasting errors of the base plate is bounded as ¯𝑞NVQA(𝑘)¯ ≤ 𝑞°NVQA. The prediction 

errors of the state can be expressed by the function of 𝑞VQA(𝑘), 

 𝑞(𝑘 + 𝜀) − 𝑞(𝑘 + 𝜀|𝑘) = ℎ(𝑞VQA(𝑘 + 𝜀 − 1)) (4.13) 

Then each component of the prediction errors of the states is bounded as 

 |𝑞N(𝑘 + 𝜀) − 𝑞N(𝑘 + 𝜀|𝑘)| ≤ ℎN(𝑞°NVQA) (4.14) 

By modifying the constraint in Eq. (4.5c), stricter constraint condition will be 

applied as:  

 𝐶/8𝑞N(𝑘 + 𝜀|𝑘) + ℎN(𝑞°NVQA): ≤ 0 (4.15) 

If there exists a solution of the optimization problem at each time, the original 

constraints of Eq. (4.5c) are satisfied. 

 

 
Figure 4.12: Prediction with modified constraint 

 

Figure 4.12 illustrates refined constraints in the prediction horizon. By 

implicitly imposing a severe constraint plotted as the broken line on the set of predicted 

state, the control input which satisfies the constraint given by the one-dot chain line is 

determined. 
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4.4 Control Simulation and Experiment Using MPC with LSTM 

In this section, numerical simulation and scale model experiment are described 

to show the effectiveness of the use of MPC with LSTM forecasting of future base 

motion. Here, an application of compensating the base motion of a Stewart platform 

mounted on a ship is considered. In both the simulation and experiment, the control 

performance of MPC with LSTM is compared to that of the IDC. 

4.4.1 Settings for Control Simulation and Experiment 

In the simulation and experiment, the same specifications of a scale model of 

Stewart platform in Table 2.1 and 2.2 were utilized. The parameters used for the 

MPC design are presented in Table 4.1. Here, the time step is set by considering 

sufficient computation time for LSTM forecasting and MPC. It is assumed that the 

time delay including sensor signal processing time and actuator response time is 0.2 

seconds, and the prediction horizon steps are chosen as 5 steps. For weights, the 

larger weight matrices 𝑊/ and 𝑊. are selected to realize high tracking performance 

and fast response.  

Numerical simulations were performed by using MATLAB/Simulink and 

SimMechanics. It is assumed that all states are known, and the parameters are 

measured accurately and have errors within 1 percent. To simulate the motion of a 

ship, random waves with low frequency range 0.1~1Hz is applied, where the 

maximum amplitude of the waves are intentionally outside the range of the 

workspace of the platform. 

In the scale model experiment, to simply examine the control performance, a 

low-frequency wave around 0.1 Hz is applied as base plate excitations. The 

maximum amplitude of the wave is in the range of the workspace of the platform. 

Utilizing LSTM, the future motion of the base plate is forecasted at each time 

step in real time. Then the optimal control inputs for the future state are computed by 

the MPC. The framework of the MPC with LSTM forecasting is illustrated in Fig. 

4.13. 

 

 

 

 

 



    
 

111 
 

Table 4.1: MPC parameters 

Specification Parameter 

Time Step (s) 0.04 

Prediction Horizon n = 5 

Weights 𝑊( = 100𝐼(,, 𝑊, = 200𝐼(,, 𝑊) = 0.2𝐼E 

Constraints Range 

Actuation Force (N) −20 ≤ 𝑢 ≤ 20 

Leg Extension (m) 0 ≤ 𝑙 ≤ 0.1 

Universal Joint Angle (deg) −45 ≤ 𝜙 ≤ 45 

Reference Values 

Displacements and orientations C𝑞@FGHI(𝑡)E = (0, 0, 0, 0, 0, 0) 

Velocities C𝑞̇@FGHI(𝑡)E = (0, 0, 0, 0, 0, 0) 

 

 
Figure 4.13: Framework of the Stewart platform compensator with LSTM forecasting 

 

4.4.2 Simulation Results 

Figures 4.14(a) and (b) show the extension of the actuator 1 when applying each 

of the IDC and MPC-LSTM. From the result of the MPC with LSTM, the time delay is 

compensated by forecasting the future base-plate motion. In the Figs., the motion of the 

base plate is outside the feasible range at 𝑡 =13-14 s. At this time, the controlled actual 

extension stays inside the maximum boundary while the computed reference length of 

the actuator 1 goes outside the boundary. Also, input actuation force when using the 

MPC becomes zero as shown in Fig. 4.15. Therefore, the controller successfully keeps 

satisfying the defined constraints even if the reference state becomes outside the 
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workspace. Since the plotted data keeps staying inside the minimum and maximum 

boundaries, it can be observed that the controller works properly satisfying defined 

constraints.  

 

 

 
Figure 4.14: Extension of the actuator 1 when applying (a) IDC and (b) MPC with LSTM forecasting 

 

 
Figure 4.15: Input actuation force of the actuator 1 for when applying MPC with LSTM forecasting 
 

 

 

(a) 

(b) 
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Figures 4.16(a-c) show the results of the base-plate excitation and controlled 

top-plate configuration for IDC and MPC with LSTM forecasting. The top plate is 

controlled to remain horizontal and its center of mass stationary. Since near the time 

13-14s the states are going outside the workspace, there exist the tracking errors for 

vertical displacement in  𝑥#-direction and Tait-Bryan angle 𝜓14!
(.,)(𝑡). Also, the other 

small tracking errors seen can be considered as local forecasting errors of the base plate.  

 

 

 
Figure 4.16: Comparison of simulation results by IDC and MPC with LSTM forecasting: (a) 

displacement in the x3-direction, (b) Tait-Bryan angle ψ1TB(t), (c) Tait-Bryan angle ψ2TB(t)  

(a) 

(b) 

(c) 
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4.4.3 Experimental Results 

Figure 4.17 shows that real time forecasted results of the rotation of the base 

plate. For the verification of the forecasting accuracy, the resulting data of forecasted 

response after 5 steps is plotted with the actually observed motion. Since the RMSE 

when purely delayed by 0.2 seconds without forecasting is 0.97, the LSTM achieves 

high forecasting accuracy, which indicates that the forecasting result is applicable for 

improvement of the tracking performance. 

Figures 4.18(a-c) show the experimental results of the extension and actuator 

force of the actuator 1 by the IDC and MPC combined with LSTM forecasting. 

Similar to the results in the simulation, most of the time delays are successfully 

compensated through the use of the LSTM forecasting method.  

The comparison of the control results of Tait-Bryan angle 𝜓"'*(𝑡) of the top plate 

by MPC-LSTM and IDC when the base plate rotates is illustrated in Fig. 4.19 and Table 

4.2. From the results of plots, errors, and compensation rates, the MPC combined with 

LSTM forecasting achieves higher control performance than IDC without forecasting 

of base motion. It can be observed that the tracking error of MPC seen in Fig. 4.19 

exists due to the local forecasting error of the base plate. In addition, although the time 

delay was assumed to be 0.2 s, the actual time delay is different at each time. Then, if 

the fitting rate described in Fig. 4.17 is improved and an accurate time delay is estimated 

at each time, the tracking performance can also be improved. 

For application to a hospital ship, it has not been clarified to what accuracy the 

performance should be achieved since it has not been ergonomically verified. In this 

study, control methods are evaluated based on the rate of achievement for the goal of 

keeping the top plate as horizontal as possible. From the experimental results, about 

88% was absorbed by using IDC mainly in the 𝑥,-, 𝜓(@A-, and 𝜓,@A- directions, and about 

93% was achieved in MPC with LSTM forecasting in the 𝜓(@A- direction. Although it 

has not reached the stage where it can be actually applied, in this study, it was confirmed 

that the compensation rate can be increased by applying dynamics, nonlinear control 

scheme and prediction compared to the simple PID in the previous research. In the 

future, to further improve the accuracy, it will be necessary to enhance the performance 

of sensors, actuators and the computational speed. 
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Figure 4.17: Real-time forecasted response of 5 steps (0.2 s) ahead Tait-Bryan angle ψ1TB(t) by LSTM 

 

 

 

(a) 

(b) 
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Figure 4.18: Experimental results of extension of the actuator 1 when applying (a) IDC and (b) MPC 

with LSTM forecasting, and (c) actuation force of the actuator 1 for each control method 
 

 
Figure 4.19: Results of Tait-Bryan angle ψ1TB(t) of controlled top plate against the motion of the base plate 

for MPC with LSTM forecasting and IDC 

 

Table 4.2: Comparison of errors and compensation rates between MPC with LSTM and IDC 

 Controller RMSE MAE Compensation Rate 
RMSE MAE 

Tait-Bryan Angle 
𝜓(
@A(())(𝑡) 

MPC 0.2912° 0.2216° 93.51 % 93.78 % 
IDC 0.5511° 0.3589° 88.65 % 89.11 % 

 

 

 

 

 

 

(c) 

MPC 
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4.5 Concluding Remarks 

In this chapter, MPC with LSTM forecasting of mount motion was applied to 

the system. In order to forecast the future excitation of the base plate caused by the 

motion of the moving body, LSTM was adopted as a predictor of the time series data 

based on the past measured data. 

To investigate the forecasting performance of the proposed approach, the LSTM 

model was trained with different parameters and different training data, as forecasting 

accuracy can be improved by tuning the hyperparameters and by training on driving 

data that includes multiple driving states. Through the use of LSTM, unsteady time 

series data that includes such elements as sudden or large acceleration changes can be 

forecasted with greater accuracy than can be achieved with the conventional ARIMA 

model, where forecasting accuracy deteriorates in such cases. Study results validate the 

capability of a pre-trained LSTM model to produce accurate real-time forecasts of 

future vehicle accelerations. 

Then MPC was designed by developing a nonlinear dynamics model of the 

system by defining the constrained optimization problem for the computation of control 

input in each time step. 

Finally, simulation and experiment results for the scale model of the base-

moving Stewart platform were presented to assess the performance of the proposed 

controller and forecasting. The tracking performance of the top plate was examined 

and the results show that the proposed method is effective for stabilization of the top 

plate when there exists a time delay under low-frequency wave excitation of the base 

plate of the Stewart platform. 
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CHAPTER 5: CONCLUSION 

This dissertation focused on kinematic and dynamic modeling and control of a 

Stewart platform as base motion compensators. 

Chapter 2 presented kinematic computation and control results of scale model 

experiments. Utilizing body- and joint-attached, orthonormal coordinate frames, the 

configuration space is mathematically defined. Configurational loop closure constraints 

are presented for a representative closed loop and solved analytically for both inverse 

and forward kinematics. Also, velocities of each moving coordinate frame are 

computed.  

Chapter 3 presented the derivation of equations of motion for a base-moving 

Stewart platform and inverse dynamics control experiment. To derive analytical 

equations of motion, the principle of virtual work is variationally derived from 

Hamilton’s principle for multi-body systems. A step-by-step derivation of the equations 

of motion incorporates the loop closure constraints analytically to yield compact 

analytical equations of motion in matrix form. Furthermore, the numerical and 

experimental results demonstrated that the IDC controller utilizing the equations of 

motion is more effective to control a Stewart platform against input disturbance of its 

base plate than the IKC controller. 

In Chapter 4, MPC with LSTM forecasting was applied to the system to 

compensate a time delay during control. In order to forecast the future excitation of the 

base plate caused by motion of moving body, LSTM was adopted as a predictor of the 

time series data based on the past measured data. The capability of real time forecasting 

of the future motion was validated showing the usefulness of the proposed method. 

Then MPC was designed by developing a nonlinear dynamics model of the system. 

Finally, the numerical and experimental results for the scale model of the base-moving 

Stewart platform were presented showing that the proposed method is effective for 

stabilization of the top plate when there exists a time delay under low-frequency wave 

excitation of the base plate of the Stewart platform. 

From the above results, it was confirmed that the proposed methods, including 

the development of the kinematic and dynamic model and future forecasting, effectively 

contribute to the improvement of the motion compensation. 
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APPENDIX: PLANAR THREE DEGREES-OF-FREEDOM MANIPULATOR 

This section presents dynamic modeling of a planar, three degrees-of-freedom 

manipulator consisting of two parallel plates, referred to as top and base plates, which 

are connected by three actuated legs. This system is an economical planar version of a 

six degrees-of-freedom base-moving Stewart platform. 

 In the derivation of analytical equations of motion, the moving frame method is 

utilized to describe the kinematics of the two-dimensional multibody system. For the 

manipulator system comprised of jointed bodies, a graph tree is utilized, which visually 

illustrates how the constituent bodies are connected to each other. For kinetics, the 

principle of virtual work is employed to derive the analytical equations of motion for 

the manipulator system. 

The resulting equations of motion are used to numerically assess the 

performance of a SMC to stabilize the top plate from the motion of the translating and 

rotating base plate. In the numerical simulation, the SMC is compared with a simple 

PID controller to evaluate both the tracking performance and robustness. 

 

A.1 Description of a Planar Three Degrees-Of-Freedom Manipulator 

As shown in Fig. A.1, a planar, three degrees-of-freedom manipulator consists 

of a moving base plate and top plate, which are connected by three linear actuators. 

Each actuator consists of the lower body and upper body, which are connected to the 

base and top plate through a revolute joint (RJ). The axial distance between the centers 

of mass of the lower and upper bodies changes by actuating an actuated translational 

joint (ATJ) of each linear actuator. The motion of the top plate is manipulated with two 

translational degrees-of-freedom and one rotational degree-of-freedom. Since this 

manipulator rotates in only one degree-of-freedom, this system can be utilized for 

stabilization of either rolling or pitching angle. Therefore, if the moving object rotates 

in more than one dimension, a six degrees-of-freedom base-moving Stewart platform 

should be adopted. In this section, an economical version of the Stewart platform is 

considered. In order to facilitate the modeling of the planar manipulator, the body 

connection of the planer manipulator is effectively illustrated by utilizing a directed 

graph in Fig. A.2. 
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Figure A.1: A planar three degrees-of-freedom manipulator 

 

   
(a)    (b) 

Figure A.2: (a) A modified directed graph and (b) representative closed loop 
 

In Fig. A.2(a), vertices show rigid bodies identified by body numbers in 

parentheses, and lines indicate joint connections. Body-(0) and body-(7) represent the 

base plate and the top plate, respectively. The vertices B1, B2, B3 and T1, T1, T3 are the 

centers of revolute joints on the base plate, body-(0) and the top plate, body-(7). Body-

(8) represents a manipulator or load. The kth actuator, for k =1, 2, 3, consists of the lower 

body-(2k-1) and the upper body-(2k). The line between body-(0) and body-(2k-1), and 

that between body-(2k) and body-(7) show RJ. The line between the lower body-(2k-1) 

and the upper body-(2k) of the kth actuator expresses an ATJ. 

Figure A.2(b) shows a representative closed loop involving body-(0), body-(7) 

and the kth actuator consisting of body (2k-1) and body-(2k). To effectively impose the 

loop closure constraints, a free link between body-(0) and body-(7), shown in a broken 

line, is introduced. Path (i) starts from the center of mass of body-(0), C(0), to that of 

body-(7), C(7), by the free link and to the center of the RJ, Tk, on body-(7). On the other 
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hand, path (ii) starts from C(0) to the point, Bk, of the kth RJ on body-(0), then, moves 

along the axis of the kth actuator passing the center of mass of body-(2k-1), C(2k-1), and 

the center of mass of body-(2k), C(2k), and finally, reaches the point, Tk. The loop closure 

constraints are imposed to assure that the translational and angular velocities of the 

coordinate frame at Tk on body-(7) remain the same for the path (i) and path (ii). 

 

A.2 Kinematics of a 3-Dof Planar Platform 

A.2.1 Body Frames and Connections 

 
Figure A.3: Configuration of a 3-dof planar platform 

 

Figure A.3 defines the configuration of a three degrees-of-Freedom planar 

platform. An orthonormal coordinate system 2𝑠.
(+) 𝑠1

(+)3 is attached at its center of mass 

C(0) with the 𝑠1
(+)-axis normal to the plane of the plate. The coordinate unit vectors are 

adopted as the vector basis -𝐞.
(+)(𝑡) 𝐞1

(+)(𝑡)/ to describe vectors. An inertial coordinate 

system {𝑥. 𝑥1} is defined by using the body-attached coordinate system of body-(0) at 

time t = 0. The coordinate vector basis (𝐞.5 𝐞15 ) is used to express the components of 

position vectors of origins of the moving-coordinate systems. The inertial coordinate 

frame is now defined by the inertial vector basis 𝐞W and the origin 0 as (𝐞" 𝟎). The 

position vector 𝐫2
(+)(𝑡) of C(0) is expressed with respect to 𝐞% with the components 𝑥2

(+)(𝑡). 

For notational simplicity, the compact notation, adopted by Frankel is used for moving 

frames, where unit coordinate vectors are stored in 1 × 2 row matrices and components 

in 2 × 1 column matrices. The body-(0) coordinate vector basis 𝐞(+)(𝑡) is obtained by 

applying a 2 × 2 rotation matrix 𝑅(𝜃($)(𝑡)) starting from 𝐞W as: 

𝐞(')(𝑡) = 𝐞"𝑅(𝜃(')(𝑡)),     (A.1a) 
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where the body-(0) vector basis is compactly expressed as: 

𝐞($)(𝑡) ≡ :𝐞"
($)(𝑡) 𝐞.

($)(𝑡)<.     (A.1b) 

and the rotation matrix is  

𝑅(𝜃(+)(𝑡)) = y
cos(𝜃(+)(𝑡)) −sin(𝜃(+)(𝑡))
sin(𝜃(+)(𝑡)) cos(𝜃(+)(𝑡))

�   (A.1c) 

and assume that 𝜃($)(0) = 0. 

The inverse relation of Eq. (A.1a) is obtained as 

𝐞"=	𝐞($)(𝑡):𝑅(𝜃($)(𝑡))<'.    (A.1d) 

The position vector 𝐫(
($)(𝑡) of 𝐶($) is expressed with respect to 𝐞" as: 

𝐫(
($)(𝑡) = 	𝐞W𝑥(

($)(𝑡),     (A.2) 

where 𝐞W ≡ (𝐞"W 𝐞.W ) and 𝑥2
(+)(𝑡) = -𝑥.2

(+)(𝑡) 𝑥12
(+)(𝑡)/

4. 

The connection of the body-(0) coordinate frame -𝐞(+)(𝑡) 𝐫2
(+)(𝑡)/  from the inertial 

frame (𝐞5 𝟎) is compactly expressed by a 3 × 3 frame connection matrix as: 

:𝐞($)(𝑡) 𝐫(
($)(𝑡)< = (𝐞W 𝟎) F

𝑅(𝜃($)(𝑡)) 𝑥(
($)(𝑡)

0"×.' 1
G.   (A.3) 

The set of differentiable frame-connection matrices form the special Euclidean group, 

SE(2). In what follows, frame connection matrices are used to define coordinate frames. 

For path (i), the top-plate frame relative to the base-plate frame is expressed as: 

:𝐞(X)(𝑡) 𝐫(
(X)(𝑡)< = :𝐞($)(𝑡) 𝐫(

($)(𝑡)< F
𝑅(𝜙(X/$)(𝑡)) 𝑠(

(X/$)(𝑡)
0"×.' 1

G  (A.4a) 

where 

𝐞(�)(𝑡) = 𝐞(')(𝑡)	𝑅(𝜙(�/')(𝑡))       

=	𝐞"𝑅(𝜃(')(𝑡))𝑅(𝜙(�/')(𝑡)      

= 𝐞"𝑅(𝜃(')(𝑡) + 𝜙(�/')(𝑡))      

=	𝐞"𝑅(𝜃(�)(𝑡))      (A.4b) 

𝜃(�)(𝑡) = 𝜃(')(𝑡) + 𝜙(�/')(𝑡)                (A.4c) 

𝐫%
(�)(𝑡) = 𝐫%

(')(𝑡) + 𝐞(')(𝑡)	𝑠%
(�/')(𝑡)        (A.4d) 
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   (a)     (b) 

Figure A.4: (a) A relative representation of the manipulator frame from the top-plate frame and (b) a 

relative representation of the Tk-frame from the top-plate frame 
 

As shown in the Fig. A.4(a), the frame of the manipulator relative to the top plate is 

expressed as: 

:𝐞(Y)(𝑡) 𝐫(
(Y)(𝑡)< = :𝐞(X)(𝑡) 𝐫(

(X)(𝑡)< �
𝐼. , 0

𝑙r(Y/X)-

0"×.' 1
�    (A.5a) 

where 

𝐞(Y)(𝑡) = 𝐞(X)(𝑡)          (A.5b) 

𝐫(
(Y)(𝑡) = 𝐫(

(X)(𝑡) + 𝐞(X)(𝑡)	, 0
𝑙r(Y/X)-   (A.5c) 

𝑥(
(Y)(𝑡) = 𝑥(

(X)(𝑡) + 𝑅(𝜃(X)(𝑡)) , 0
𝑙r(Y/X)-   (A.5d) 

Similarly, the Tk-frame of the top-plate(body-(7)) is expressed by 

:𝐞'!
(X)(𝑡) 𝐫'!(𝑡)< = :𝐞(X)(𝑡) 𝐫(

(X)(𝑡)< �
𝐼. �

ℎ*+
(X)

−𝑙r+
(X)�

0"×.' 1
�   (A.6a) 

where 

𝐞'!
(X)(𝑡) = 𝐞(X)(𝑡)     (A.6b) 

𝐫'!(𝑡) = 𝐫(
(X)(𝑡) + 𝐞(X)(𝑡) �

ℎ*+
(X)

−𝑙r+
(X)�       (A.6c) 

From the above, the flow of the frames on path (i) are :𝐞($)(𝑡) 𝐫(
($)(𝑡)< →

:𝐞(X)(𝑡) 𝐫(
(X)(𝑡)< → :𝐞'!

(X)(𝑡) 𝐫'!(𝑡)<. 

Next, frame connections along path (ii) are defined as illustrated in Fig. A.5 below. 
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Figure A.5: Frame connections along path(ii) 

 

  
(a)      (b) 

Figure A.6: (a) Relative representations of the Bk-frame of body-(0) from the base-plate frame, and the 

Bk-frame of body-(2k-1) from the Bk-frame of body-(0), and (b) Relative representations of the Tk-frame 

of body-(2k) from the (2k)-frame, and Tk-frame of body-(7) from the Tk-frame of body-(2k) 
 

Firstly, starting from the Bk-frame at point Bk on body-(0) as shown in Fig. A.6(a), 

:𝐞*!
($)(𝑡) 𝐫*!(𝑡)< = :𝐞($)(𝑡) 𝐫(

($)(𝑡)< �
𝐼. �

ℎ*+
($)

𝑙r+
($)�

0"×.' 1
�   (A.7) 

Second, the Bk-frame of body-(2k-1) is expressed by rotating the Bk-frame of body-(0) 

as described in Fig. A.6(b): 

:𝐞*!
(.+B")(𝑡) 𝐫*!(𝑡)< = :𝐞*!

($)(𝑡) 𝐫*!(𝑡)< F
𝑅(𝜙(+/$)(𝑡)) 0.×"

0"×.' 1
G  (A.8a) 

where 

𝐞J"
(#8S!)(𝑡) = 𝐞J"

(')(𝑡)𝑅(𝜙(8/')(𝑡)) = 𝐞" 	𝑅(𝜃(')(𝑡) + 𝜙(8/')(𝑡)).     (A.8b) 

Thirdly, the (2k-1)-frame at the center of mass of body-(2k-1) is expressed by parallel 

translating the Bk-frame of body-(2k-1) along the kth actuator: 

:𝐞(.+B")(𝑡) 𝐫(
(.+B")(𝑡)< = :𝐞*!

(.+B")(𝑡) 𝐫*!(𝑡)< �
𝐼. , 0

𝑙r(.+B")-

0"×.' 1
� (A.9) 
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Similarly, the (2k)-frame at the center of mass of body-(2k) is obtained by translating 

the (2k-1)-frame in 𝐞1
(1-?.)(𝑡) direction, 

-𝐞(1-)(𝑡) 𝐫2
(1-)(𝑡)/ = -𝐞(1-?.)(𝑡) 𝐫2

(1-?.)(𝑡)/ I
𝐼1 d 0

𝑑(-)(𝑡)e

0.×14 1
R  (A.10) 

Then, the Tk-frame of body-(2k) is expressed by translating the (2k)-frame in 𝐞1
(1-)(𝑡) 

direction,     

-𝐞4!
(1-)(𝑡) 𝐫4!(𝑡)/ = -𝐞(1-)(𝑡) 𝐫2

(1-)(𝑡)/ �
𝐼1 P 0

𝑙V(1-)Q

0.×14 1
�   (A.11) 

Finally, the connection to the Tk-frame of body-(7) is obtained by rotating the Tk-frame 

of body-(2k) as shown in Figure 8 above: 

-𝐞4!
(B)(𝑡) 𝐫4!(𝑡)/ = -𝐞4!

(1-)(𝑡) 𝐫4!(𝑡)/ y
𝑅(𝜙(B/1-)(𝑡)) 01×.

0.×14 1
�  (A.12) 

A.2.2 Velocities of the Frames 

Translational velocities and angular velocities are easily obtained by taking time 

derivative of each frame. Firstly, he velocities of the frames along path (i) for bodies 

(0), (7), and (8) are computed. The velocities of the body-(0) frame become 

:𝐞̇($)(𝑡) 𝐫̇(
($)(𝑡)< = :𝐞($)(𝑡)𝜔($)(𝑡)?⃖????????????⃗ 𝐞W𝑥̇(

($)(𝑡)<   (A.13a) 

where the skew-symmetric angular velocity matrix, which is the member of the Lie 

algebra of SO(2), se(2), is defined as: 

𝜔(')(𝑡)s⃖ssssssssssss⃗ = ,𝑅(𝜃(')(𝑡)).+𝑅̇(𝜃(')(𝑡)) = È0 −1
1 0 É 𝜃̇

(')(𝑡)   (A.13b) 

In the same manner, the velocities of the body-(7) can be expressed as: 

,𝐞̇(�)(𝑡) 𝐫̇%
(�)(𝑡). = ,𝐞(�)(𝑡)𝜔(�)(𝑡)s⃖ssssssssssss⃗ 𝐞"𝑥̇%

(�)(𝑡).  (A.14a) 

For the computation of body-(7) frame velocities, the time derivative of Eq. (A.4b) 

yields 

𝐞̇(X)(𝑡) = 𝐞̇($)(𝑡)	𝑅(𝜙(X/$)(𝑡)) + 𝐞($)(𝑡)	𝑅̇(𝜙(X/$)(𝑡)) 

= 𝐞($)(𝑡) k0 −1
1 0 l 𝜃̇

($)(𝑡)𝑅(𝜙(X/$)(𝑡)) +	𝐞(X)(𝑡)	:𝑅(𝜙(X/$)(𝑡))<'𝑅̇(𝜙(X/$)(𝑡)) 

= 𝐞(X)(𝑡) j:𝑅(𝜙(X/$)(𝑡))<
'
k0 −1
1 0 l 𝜃̇

($)(𝑡)𝑅(𝜙(X/$)(𝑡))+ k0 −1
1 0 l 𝜙̇

(X/$)(𝑡)m 

= 𝐞(X)(𝑡) k0 −1
1 0 l :𝜃̇

($)(𝑡) + 𝜙̇(X/$)(𝑡)<  

= 𝐞(X)(𝑡) k0 −1
1 0 l 𝜃̇

(X)(𝑡)            (A.14b) 

where 

𝜃̇(X)(𝑡) = 𝜃̇($)(𝑡) + 𝜙̇(X/$)(𝑡)   (A.14c) 
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and  

𝜃(X)(𝑡) = 𝜃($)(𝑡) + 𝜙(X/$)(𝑡)   (A.14d) 

The time derivative of Eq. (A.4d) yields 

𝐫̇(
(X)(𝑡) = 𝐫̇(

($)(𝑡) + 𝐞̇($)(𝑡)	𝑠(
(X/$)(𝑡) + 𝐞($)(𝑡)	𝑠̇(

(X/$)(𝑡)  

= 𝐞W𝑥̇(
($)(𝑡) + 𝐞($)(𝑡)	jk0 −1

1 0 l 𝜃̇
($)(𝑡)𝑠(

(X/$)(𝑡) + 𝑠̇(
(X/$)(𝑡)m (A.15a) 

The translational velocities of body-(7) in Eq. (A.14a) with respect to inertial frame are 

obtained as: 

𝑥̇(
(X)(𝑡) = 𝑥̇(

($)(𝑡) + 𝑅(𝜃($)(𝑡)) ��
−𝑠.(

(X/$)(𝑡)
𝑠"(
(X/$)(𝑡)

� 𝜃̇($)(𝑡) + 𝑠̇(
(X/$)(𝑡)�  (A.15b) 

The velocities of the body-(8) frame is obtained by taking the time derivatives of Eq. 

(A.5a):  

:𝐞̇(Y)(𝑡) 𝐫̇(
(Y)(𝑡)< = ,𝐞(Y)(𝑡) k0 −1

1 0 l 𝜃̇
(Y)(𝑡) 𝐞W𝑥̇(

(Y)(𝑡)-   (A.16a) 

where the angular velocities and the translational velocities are easily obtained as: 

𝜃̇(�)(𝑡) = 𝜃̇(�)(𝑡)     (A.16b) 

𝑥̇(
(Y)(𝑡) = 𝑥̇(

(X)(𝑡) + 	𝑅:𝜃($)(𝑡) + 𝜙(X/$)(𝑡)< 7−ℎ*
(Y/X)

0
8 :𝜃̇($)(𝑡) + 𝜙̇(X/$)(𝑡)<  (A.16c) 

Substitution of Eq. (A.15b) into Eq. (A.16c) yields  

𝑥̇(
(Y)(𝑡) = 𝑥̇(

($)(𝑡) + 𝑅(𝜃($)(𝑡)) + 𝑅(𝜃($)(𝑡))	��
−𝑠.(

(X/$)(𝑡)
𝑠"(
(X/$)(𝑡)

� + 𝑅:𝜙(X/$)(𝑡)< 7−ℎ*
(Y/X)

0
8� 𝜃̇($)(𝑡) 

+𝑅(𝜃($)(𝑡)) C𝑠̇(
(X/$)(𝑡) + 𝑅:𝜙(X/$)(𝑡)< 7−ℎ*

(Y/X)

0
8 𝜙̇(X/$)(𝑡)D    (A.16d) 

Finally, the time derivatives of Eq. (A.6a) become 

:𝐞̇'!
(X)(𝑡) 𝐫̇'!(𝑡)< = ,𝐞'!

(X)(𝑡) k0 −1
1 0 l 𝜃̇'!

(X)(𝑡) 𝐞W𝑥̇'!(𝑡)-   (A.17a) 

where the angular velocities and the translational velocities for path (i) are  

𝜃̇'!
(X)(𝑡);<=>(?) = 𝜃̇(X)(𝑡) = 𝜃̇($)(𝑡) + 𝜙̇(X/$)(𝑡)   (A.17b) 

𝐫̇'!(𝑡);<=>(?) = 𝐞W �𝑥̇(
(X)(𝑡) + 𝑅(𝜃(X)(𝑡)) �

𝑙r+
(X)

ℎ*+
(X)� 𝜃̇

(X)(𝑡)�.  (A.17c) 

Then, the translational velocities of the Tk-frame of body-(7) with respect to inertial 

frame are  

𝑥̇'!(𝑡);<=>(?) = 𝑥̇(
($)(𝑡) + 𝑅(𝜃($)(𝑡)) ��

−𝑠.(
(X/$)(𝑡)

𝑠"(
(X/$)(𝑡)

� + 𝑅:𝜙(X/$)(𝑡)< �
𝑙r+
(X)

ℎ*+
(X)�� 𝜃̇

($)(𝑡) 

+𝑅(𝜃($)(𝑡)) �𝑠̇(
(X/$)(𝑡) + 𝑅:𝜙(X/$)(𝑡)< �

𝑙r+
(X)

ℎ*+
(X)� 𝜙̇

(X/$)(𝑡)�.   (A.17d) 
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Next, the velocities along path (ii) for bodies (0), (2k-1), (2k) and (7) are computed. 

First, the velocities of Bk-frame at point Bk on body-(0) are obtained from Eq. (A.7a) 

:𝐞̇*!
($)(𝑡) 𝐫̇*!(𝑡)< = ,𝐞*

($)(𝑡) k0 −1
1 0 l 𝜃̇*!

($)(𝑡) 𝐞W𝑥̇*!(𝑡)-   (A.18a) 

where 

𝜃̇*!
($)(𝑡) = 𝜃̇($)(𝑡)     (A.18b) 

𝑥̇*!(𝑡) = 𝑥̇(
($)(𝑡) + 𝑅(𝜃($)(𝑡)) �

−𝑙r+
($)

ℎ*+
($) � 𝜃̇

($)(𝑡)  (A.18c) 

Secondly, the velocities of Bk-frame at point Bk on body-(2k-1) are 

:𝐞̇*!
(.+B")(𝑡) 𝐫̇*!(𝑡)< = ,𝐞*

(.+B")(𝑡) k0 −1
1 0 l 𝜃̇*!

(.+B")(𝑡) 𝐞W𝑥̇*!(𝑡)- (A.19a) 

where 

𝜃̇*!
(.+B")(𝑡) = 𝜃̇($)(𝑡) + 𝜙̇(+/$)(𝑡)    (A.19b) 

Thirdly, the velocities of body-(2k-1) frame are  

:𝐞̇(.+B")(𝑡) 𝐫̇(
(.+B")(𝑡)< = ,𝐞(.+B")(𝑡) k0 −1

1 0 l 𝜃̇
(.+B")(𝑡) 𝐞W𝑥̇(

(.+B")(𝑡)- (A.20a) 

where 

𝜃̇(.+B")(𝑡) = 𝜃̇*!
(.+B")(𝑡)    (A.20b) 

and also 

𝜃(.+B")(𝑡) = 𝜃($)(𝑡) + 𝜙(+/$)(𝑡)    (A.20c) 

𝑥̇(
(.+B")(𝑡) = 𝑥̇(

($)(𝑡) + 𝑅(𝜃($)(𝑡))	��
−𝑙r+

($)

ℎ*+
($) � + 𝑅:𝜙

(+/$)(𝑡)< 7−ℎ*
(.+B")

0
8� 𝜃̇($)(𝑡) 

+	𝑅:𝜃($)(𝑡) + 𝜙(+/$)(𝑡)< 7−ℎ*
(.+B")

0
8 𝜙̇(+/$)(𝑡) (A.20d) 

Similarly, the velocities of body-(2k) frame become 

:𝐞̇(.+)(𝑡) 𝐫̇(
(.+)(𝑡)< = ,𝐞(.+)(𝑡) k0 −1

1 0 l 𝜃̇
(.+)(𝑡) 𝐞W𝑥̇(

(.+)(𝑡)-  (A.21a) 

where 

𝜃̇(.+)(𝑡) = 𝜃̇(.+B")(𝑡)     (A.21b) 

𝑥̇(
(.+)(𝑡) = 𝑥̇(

($)(𝑡) + 𝑅(𝜃($)(𝑡)) ��
−𝑙r+

($)

ℎ*+
($) � + 𝑅:𝜙

(+/$)(𝑡)< 7−:ℎ
*(.+B") + 𝑑(+)(𝑡)<

0
8� 𝜃̇($)(𝑡) 

+	𝑅:𝜃($)(𝑡) + 𝜙(+/$)(𝑡)< 7−:ℎ
*(.+B") + 𝑑(+)(𝑡)<

0
8 𝜙̇(+/$)(𝑡) + 	𝑅:𝜃($)(𝑡) + 𝜙(+/$)(𝑡)< 7 0

𝑑̇(+)(𝑡)8

          (A.21c) 

Then, the velocities of Tk-frame at point Tk on body-(2k) are 

:𝐞̇'!
(.+)(𝑡) 𝐫̇'!(𝑡)< = ,𝐞'!

(.+)(𝑡) k0 −1
1 0 l 𝜃̇'!

(.+)(𝑡) 𝐞W𝑥̇'!(𝑡)-  (A.22a) 
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where 

𝜃̇'!
(.+)(𝑡) = 𝜃̇(.+)(𝑡)    (A.22b) 

𝑥̇'!(𝑡) = 𝑥̇(
($)(𝑡) + 𝑅(𝜃($)(𝑡))	��

−𝑙r+
($)

ℎ*+
($) � + 𝑅:𝜙

(+/$)(𝑡)< 7−𝑙
(+)(𝑡)
0

8� 𝜃̇($)(𝑡) 

+	𝑅:𝜃($)(𝑡) + 𝜙(+/$)(𝑡)< 7−𝑙
(+)(𝑡)
0

8 𝜙̇(+/$)(𝑡) + 	𝑅:𝜃($)(𝑡) + 𝜙(+/$)(𝑡)< 7 0
𝑑̇(+)(𝑡)8  (A.22c) 

where 𝑙(+)(𝑡) is the length of the kth leg: 

𝑙(8)(𝑡) = 𝑙m(#8S!) + 𝑑(8)(𝑡) + 𝑙m(#8)   (A.22d) 

Finally, the velocities of Tk-frame on body (7) along path(ii) are obtained as: 

:𝐞̇'!
(X)(𝑡) 𝐫̇'!(𝑡)< = ,𝐞'!

(X)(𝑡) k0 −1
1 0 l 𝜃̇'!

(X)(𝑡) 𝐞W𝑥̇'!(𝑡)-  (A.23a) 

where 

𝜃̇+"
(�)(𝑡)?@AB(CC) = 𝜃̇+"

(#8)(𝑡) + 𝜙̇(�/#8)(𝑡) = 𝜃̇(')(𝑡) + 𝜙̇(8/')(𝑡) + 𝜙̇(�/#8)(𝑡)  (A.23b) 

and also, 

𝜃+"
(�)(𝑡) = 𝜃(')(𝑡) + 𝜙(8/')(𝑡) 	+ 𝜙(�/#8)(𝑡).     (A.23c) 

A.2.3 Loop Closure Constraints on Velocities and Virtual Displacements 

Assuming that the loop is closed at t = 0, we equate the velocities of the Tk-

frame of body-(7) computed along path (i) and path (ii) to ensure that the loop remains 

closed at each time. Before adopting the loop closure constrains, the essential velocities 

for the top plate, base plate, and kth leg are defined as 

:𝑞̇';(𝑡)<#×" ≡ V𝑠̇(
(X/$)(𝑡)
𝜙̇(X/$)(𝑡)

W,  :𝑞̇*;(𝑡)<#×" ≡ V𝑥̇(
($)(𝑡)
𝜃̇($)(𝑡)

W, ,𝑞̇D
(+)(𝑡)-

.×"
≡ V

𝜙̇(+/$)(𝑡)
𝑑̇(+)(𝑡)

W

 (A.24a, b, c) 

and the virtual displacements of the top-plate and kth leg are defined as: 

:𝛿𝑞';(𝑡)< ≡ V𝛿𝑠(
(X/$)(𝑡)

𝛿𝜙(X/$)(𝑡)
W,  ,𝛿𝑞D

(+)(𝑡)- ≡ V
𝛿𝜙(+/$)(𝑡)
𝛿𝑑(+)(𝑡)

W (A.25a, b) 

Since the translational and angular displacements of the base plate, 𝑥%
(')(𝑡) and 𝜃(')(𝑡), 

are prescribed at each time, the variations of the base plate can be defined as :𝛿𝑞*;(𝑡)< ≡

𝟎. The first loop closure constraint can be defined as: 

𝜃̇'!
(X)(𝑡);<=>(?) = 𝜃̇'!

(X)(𝑡);<=>(??)    (A.26a) 

From Eqs. (A.17b) and (A.23b), the above constraint gives 

𝜙̇(X/.+)(𝑡) = 𝜙̇(X/$)(𝑡) −	𝜙̇(+/$)(𝑡)   (A.26b) 

and the corresponding variational constraint is expressed as:  
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𝛿𝜙(X/.+)(𝑡) = 	𝛿𝜙(X/$)(𝑡) − 𝛿𝜙(+/$)(𝑡)   (A.26c) 

Next, the second loop closure constraint is defined as: 

𝑥̇+"(𝑡)?@AB(C) = 𝑥̇+"(𝑡)?@AB(CC)        (A.27a) 

and from Eqs. (A.17d) and (A.22c), the above condition leads to the following loop 

closure constraint expressed by the essential velocities. 

,𝑞̇D
(+)(𝑡)- = F

B"
Z(!)(=)

0
0 1

G �,𝑅:𝜙(+/$)(𝑡)<-
'
j𝑠̇(
(X/$)(𝑡)+𝑅:𝜙(X/$)(𝑡)< �

𝑙r+
(X)

ℎ*+
(X)� 𝜙̇

(X/$)(𝑡)�               

+�,𝑅:𝜙(+/$)(𝑡)<-
'
��
−𝑠.(

(X/$)(𝑡) + 𝑙r+
($)

𝑠"(
(X/$)(𝑡) − ℎ*+

($) �+𝑅:𝜙
(X/$)(𝑡)< �

𝑙r+
(X)

ℎ*+
(X)��−7

−𝑙(+)(𝑡)
0

8� 𝜃̇($)(𝑡)� 

= k𝑄[D/';
(+) (𝑡)l :𝑞̇';(𝑡)< + k𝑄[D/*;

(+) (𝑡)l :𝑞̇*;(𝑡)<          (A.27b) 

where Q-matrices for the top-plate and base-plate velocities are defined as: 

k𝑄[D/';
(+) (𝑡)l = F

B"
Z(!)(=)

0
0 1

G ,𝑅:𝜙(+/$)(𝑡)<-
'
�𝐼. 𝑅:𝜙(X/$)(𝑡)< �

𝑙r+
(X)

ℎ*+
(X)�� (A.27c) 

and 

5𝑄D>/!E
(-) (𝑡)F = �

−1
𝑙(-)(𝑡)

0

0 1
� (01×.			01×. 

P𝑅-𝜙(-/+)(𝑡)/Q
4
��
−𝑠12

(B/+)(𝑡) + 𝑙V-
(+)

𝑠.2
(B/+)(𝑡) − ℎ)-

(+) � + 𝑅-𝜙
(B/+)(𝑡)/ �

𝑙V-
(B)

ℎ)-
(B)�� − d

−𝑙(-)(𝑡)
0

e� (A.27d) 

Then, the corresponding variational constraint is expressed by the virtual displacements 

of the kth leg and top plate.  

,𝛿𝑞D
(+)(𝑡)- = k𝑄[D/';

(+) (𝑡)l :𝛿𝑞';(𝑡)<        (A.27e) 

Here, we let 𝛿𝑑(8)(𝑡) vary to allow the actuating force to be used for the feedback 

control. 

 

A.3 Kinetics of a 3-Dof Planar Platform 

In this section, the equations of motion are derived by utilizing the principle of 

virtual work obtained from Hamilton’s principle. Firstly, the kinetic energy and 

potential energy as well as those variations are defined. 

A.3.1 Kinetic Energy 

The system kinetic energy is obtained as the sum of the kinetic energy of the 

top-plate with body-(8) and that for three legs: 

𝐾 = 𝐾+?(𝑡) + ∑ 𝐾Y
(8)(𝑡)$

8k! .    (A.28) 
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In Eq. (A.28), the kinetic energy of the top-plate with body-(8) is expressed as: 

𝐾+?(𝑡) =
!
#
,𝑋̇+?(𝑡).

+º𝑀¼+?½,𝑋̇+?(𝑡).   (A.29a) 

where the generalized velocities for the top-plate with body-(8) are 

-𝑋̇4E(𝑡)/ ≡

⎝

⎜
⎛
𝑥̇2
(B)(𝑡)
𝜃̇(B)(𝑡)
𝑥̇2
(F)(𝑡)
𝜃̇(F)(𝑡)⎠

⎟
⎞     (A.29b) 

and the mass matrix is expressed by mass: m and mass moment of inertia: JC, 

:𝑀<4E=<×< =

⎣
⎢
⎢
⎢
⎡𝑚

(B)𝐼1 01×.
0.×14 𝐽,G

(B) 0,×,

0,×,
𝑚(F)𝐼1 01×.
0.×14 𝐽,G

(F) ⎦
⎥
⎥
⎥
⎤

   (A.29c) 

In the Eq. (A.28), the kinetic energy of the kth leg is expressed as: 

𝐾D
(+)(𝑡) = 	 "

.
,𝑋̇D

(+)(𝑡)-
'
k𝑀bD

(+)l ,𝑋̇D
(+)(𝑡)-   (A.30a) 

where the generalized velocities for the upper and lower legs are defined as  

-𝑋̇>
(-)(𝑡)/ ≡

⎝

⎜
⎛
𝑥̇2
(1-?.)(𝑡)
𝜃̇(1-?.)(𝑡)
𝑥̇2
(1-)(𝑡)
𝜃̇(1-)(𝑡) ⎠

⎟
⎞    (A.30b) 

and the mass matrix is 

:𝑀<>
(-)=

<×<
=

⎣
⎢
⎢
⎢
⎡𝑚

(1-?.)𝐼1 01×.
0.×14 𝐽,G

(1-?.) 0,×,

0,×,
𝑚(1-)𝐼1 01×.
0.×14 𝐽,G

(1-)⎦
⎥
⎥
⎥
⎤

  (A.30c) 

The generalized velocities in Eq. (A.29a) are expressed by the essential velocities of 

the top-plate, Eq. (A.24a) and the base-plate excitation velocities, Eq. (A.24b) as  

:𝑋̇';(𝑡)< = `𝐵';(𝑡)c:𝑞̇';(𝑡)< + `𝐵';/*;(𝑡)c:𝑞̇*;(𝑡)<   (A.31a) 

where B-matrices for the top-plate and base-plate velocities are 

:𝐵4E(𝑡)= =

⎣
⎢
⎢
⎢
⎡𝑅(𝜃

(+)(𝑡))
0.×1

01×.
1

𝑅(𝜃(+)(𝑡))
0.×1

𝑅 P𝜃(+)(𝑡) + 𝜙(B/+)(𝑡)Q d−𝑙V
(F/B)

0
e

1 ⎦
⎥
⎥
⎥
⎤
  (A.31b) 

and 
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:𝐵4E/!E(𝑡)= =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐼1 𝑅(𝜃(+)(𝑡)) �

−𝑠12
(B/+)(𝑡)

𝑠.2
(B/+)(𝑡)

�

0.×1 1

𝐼1
0.×1

𝑅(𝜃(+)(𝑡))	��
−𝑠12

(B/+)(𝑡)
𝑠.2
(B/+)(𝑡)

� + 𝑅-𝜙(B/+)(𝑡)/ d−𝑙V
(F/B)

0
e�

1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A.31c) 

The generalized velocities of the kth leg are also expressed by its essential velocities and 

the excitation velocities as: 

,𝑋̇D
(+)(𝑡)- = k𝐵D

(+)(𝑡)l ,𝑞̇D
(+)(𝑡)- + k𝐵D/*;

(+) (𝑡)l :𝑞̇*;(𝑡)<  (A.32a) 

where B-matrices for the kth leg and base-plate velocities are 

:𝐵>
(-)(𝑡)= =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑅-𝜃(+)(𝑡) + 𝜙(-/+)(𝑡)/ d−𝑙V

(1-?.)

0
e

1

𝑅-𝜃(+)(𝑡) + 𝜙(-/+)(𝑡)/ d−-𝑙
V(1-?.) + 𝑑(-)(𝑡)/

0
e

1

       

01×.
0

𝑅-𝜃(+)(𝑡) + 𝜙(-/+)(𝑡)/ P01Q
0 ⎦

⎥
⎥
⎥
⎤
 (A.32b) 

and 

5𝐵>/!E
(-) (𝑡)F = �

𝐼1
0.×1
𝐼1
0.×1

      

𝑅(𝜃(+)(𝑡)) ^d
0
ℎ)-
(+)e + 𝑅-𝜙(-/+)(𝑡)/ d−𝑙

V(1-?.)
0

ea

1

𝑅(𝜃(+)(𝑡)) ^d
0
ℎ)-
(+)e + 𝑅-𝜙(-/+)(𝑡)/ d−-𝑙

V(1-?.) + 𝑑(-)(𝑡)/
0

ea

1 ⎦
⎥
⎥
⎥
⎥
⎤

 (A.32c) 

A.3.2 Potential Energy 

The virtual potential energy due to the gravitational force is expressed as:  

𝛿𝑈\ = :𝛿𝑈\<'; +∑ :𝛿𝑈\<D
(+)#

+G"     (A.33a) 

where :𝛿𝑈\<'; represents the virtual potential energy due to the gravitational force, of 

the top-plate with body-(7): 

:𝛿𝑈\<'; = −:𝛿𝑋';(𝑡)<
':𝐹*\';< = −:𝛿𝑞';(𝑡)<

':𝐹\';(𝑡)<   (A.33b) 

-𝐹)H4E/ =

⎝

⎜⎜
⎛

0
−𝑚(B)𝑔

0

−
0

𝑚(F)𝑔
0 ⎠

⎟⎟
⎞

,    :𝐹\';(𝑡)< = `𝐵';(𝑡)c
':𝐹*\';<  (A.33c, d) 

and where the virtual potential energy :𝛿𝑈\<D
(+)of the kth leg due to the gravitational 

force is 

:𝛿𝑈\<D
(+) = −,𝛿𝑋D

(+)(𝑡)-
'
,𝐹*\D

(+)- = −,𝛿𝑞D
(+)(𝑡)-

'
,𝐹\D

(+)(𝑡)-   (A.33e) 
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-𝐹)H>
(-)/ =

⎝

⎜⎜
⎛

0
−𝑚(1-?.)𝑔

0
0

−𝑚(1-)𝑔
0 ⎠

⎟⎟
⎞

,    ,𝐹\D
(+)(𝑡)- = k𝐵D

(+)(𝑡)l
'
,𝐹*\D

(+)-  (A.33f,g) 

A.3.3 Derivation of Equations of Motion 

Hamilton’s principle expressed by velocities are defined as 

∫ ,𝛿𝐾 − 𝛿𝑈r + 𝛿𝑊 .A#
A4

𝑑𝑡 = 0    (A.34a) 

where the virtual work by non-conservative force 𝛿𝑊M  is obtained from the kth leg 

actuation force  

𝛿𝑊 = ∑ 𝛿𝑑(8)(𝑡)𝐹(8)(𝑡)$
8k!     (A.34b) 

The variational velocities which correspond to Eqs. (A.29b) and (A.30b) are 

-𝛿𝑋4E(𝑡)/ ≡

⎝

⎜
⎛
𝛿𝑥2

(B)(𝑡)
𝛿𝜃(B)(𝑡)
𝛿𝑥2

(F)(𝑡)
𝛿𝜃(F)(𝑡)⎠

⎟
⎞
= :𝐵4E(𝑡)=-𝛿𝑞4E(𝑡)/   (A.35a) 

and  

-𝛿𝑋>
(-)(𝑡)/ ≡

⎝

⎜
⎛
𝛿𝑥2

(1-?.)(𝑡)
𝛿𝜃(1-?.)(𝑡)
𝛿𝑥2

(1-)(𝑡)
𝛿𝜃(1-)(𝑡) ⎠

⎟
⎞
= :𝐵>

(-)(𝑡)=-𝛿𝑞>
(-)(𝑡)/    (A.35b) 

In order to obtain the equations of motion for the top plate, the loop closure constrains 

on variations, Eq. (A.27e) and velocities, Eq. (A.27b) are applied. Then, Eq. (A.33a) 

can be expressed by ,𝛿𝑞+?(𝑡). as: 

𝛿𝑈r = −,𝛿𝑞+?(𝑡).
+,𝐹r(𝑡).    (A.36a) 

where 

:𝐹\(𝑡)< = V:𝐹\';(𝑡)< + ∑ k𝑄[D/';
(+) (𝑡)l

'
,𝐹\D

(+)(𝑡)-#
+G" W   (A.36b) 

and Eq.(A.34b) is also expressed by ,𝛿𝑞+?(𝑡).: 

𝛿𝑊 = ,𝛿𝑞+?(𝑡).
+[𝑄`(𝑡)]+(𝐹 (𝑡))    (A.37a) 

where 

[𝑄;(𝑡)],×, =

⎣
⎢
⎢
⎢
⎡5𝑄D>/4E

(.) (𝑡)F
1

5𝑄D>/4E
(1) (𝑡)F

1

5𝑄D>/4E
(,) (𝑡)F

1⎦
⎥
⎥
⎥
⎤

,  (𝐹M(𝑡)) = H
𝐹M
(")(𝑡)
𝐹M
(.)(𝑡)
𝐹M
(#)(𝑡)

J  (A.37b, c) 
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and 5𝑄D>/4E
(-) (𝑡)F

1
 for k=1,2,3, represents the second row of the kth Q-matrix. Substitution 

of Eqs. (A.35a, b), (A.36a), and (A.37a) into Eq.(A.34a) yields 

� ,:𝛿𝑋̇';(𝑡)<
'`𝑀b';c:𝑋̇';(𝑡)<

=#

=$
+�,𝛿𝑋̇D

(+)(𝑡)-
'
k𝑀bD

(+)l ,𝑋̇D
(+)(𝑡)-

#

+G"

 

+:𝛿𝑞';(𝑡)<
' ,:𝐹\(𝑡)< + [𝑄M(𝑡)]'(𝐹M(𝑡))-8𝑑𝑡 = 0 (A.38) 

Then, from the Eqs. (A.31a), (A.32a), (A.35a, b), and (A.38), the equations of motion 

for the top plate in configuration space are obtained as: 

º𝑀+?(𝑡)½,𝑞̈+?(𝑡). + º𝑁+?(𝑡)½,𝑞̇+?(𝑡). − ,𝐹r(𝑡). = −(𝐹J(𝑡)) + [𝑄`(𝑡)]+(𝐹 (𝑡))  (A.39a) 

where the mass matrix is  

:𝑀4E(𝑡)= = :𝐵4E(𝑡)=
4:𝑀<4E=:𝐵4E(𝑡)= +�5𝑄D>/4E

(-) (𝑡)F
4

,

-8.

:𝐵>
(-)(𝑡)=

4
:𝑀<>

(-)=:𝐵>
(-)(𝑡)= 5𝑄D>/4E

(-) (𝑡)F 

(A.39b) 

and the nonlinear matrix due to centripetal and Coriolis accelerations is 

:𝑁4E(𝑡)= = :𝐵4E(𝑡)=
4:𝑀<4E=:𝐵̇4E(𝑡)=

+�5𝑄D>/4E
(-) (𝑡)F

4
,

-8.

:𝐵>
(-)(𝑡)=

4
:𝑀<>

(-)= P:𝐵̇>
(-)(𝑡)= 5𝑄D>/4E

(-) (𝑡)F + :𝐵>
(-)(𝑡)= 5𝑄̇D>/4E

(-) (𝑡)FQ 

(A.39c) 

and (𝐹J(𝑡)) comes from the motion of the base plate as 

(𝐹J(𝑡)) = º𝑀+?/J?(𝑡)½,𝑞̈J?(𝑡). + º𝑀+?/J?(𝑡)½,𝑞̇J?(𝑡).  (A.39d) 

where the mass matrix and the nonlinear matrix of the excitation accelerations and 

velocities of the base plate are  

:𝑀4E/!E(𝑡)= = :𝐵4E(𝑡)=
4:𝑀<4E=:𝐵4E/!E(𝑡)= 

+∑ 5𝑄D>/4E
(-) (𝑡)F

4
,
-8. :𝐵>

(-)(𝑡)=
4
:𝑀<>

(-)= P5𝐵>/!E
(-) (𝑡)F + :𝐵>

(-)(𝑡)= 5𝑄D>/!E
(-) (𝑡)FQ  (A.39e) 

:𝑁4E/!E(𝑡)= = :𝐵4E(𝑡)=
4:𝑀<4E=:𝐵̇4E/!E(𝑡)= 

+∑ 5𝑄D>/4E
(-) (𝑡)F

4
,
-8. :𝐵>

(-)(𝑡)=
4
:𝑀<>

(-)= P5𝐵̇>/!E
(-) (𝑡)F+:𝐵̇>

(-)(𝑡)= 5𝑄D>/!E
(-) (𝑡)F + :𝐵>

(-)(𝑡)= 5𝑄̇D>/!E
(-) (𝑡)FQ 

(A.39f) 
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