
A Research on Detection and
Classification of Automated

HTTP Communication
(HTTP 自動通信の検出と分類に関する研究)

防衛大学校理工学研究科後期課程

電子情報工学系専攻　　情報知能メディア学教育研究分野

トラン　コン　マン

平成２９年３月

Dedicated to
My family

Declaration

The work in this thesis is based on research carried out at the Software Laboratory

of Computer, Intelligent and Media System of Electronics and Information Engi-

neering, Graduate School of Science and Engineering, National Defense Academy,

Japan. No part of this thesis has been submitted elsewhere for any other degree

or qualification and it is all my own work unless referenced to the contrary in the

text.

Copyright © 2017 by TRAN CONG MANH （トラン　コン　マン）.

“The copyright of this thesis rests with the author. No quotations from it should

be published without the author’s prior written consent and information derived

from it should be acknowledged”.

iii

研究成果の概要

近年，様々なアプリケーションの実装基盤として HTTP が用いられるよ

うになってきた．利用者が必要とするサービスのほとんどがウェブ上で提供

されるため，HTTP はインターネット上で最も多用されるプロトコルと認知

されている．このため多くのネットワーク環境において，HTTP 通信は制限

されることなく自由に利用できる．HTTP は，個別の要求と応答のみが定義

されており，会話的な相互通信を行わないため，アプリケーションが連続的

かつ会話的な非同期通信を必要とする場合は，クライアントは能動的かつ自

動的にサーバへ接続要求を送信し続ける必要がある．この論文では，このよ

うな通信を行うソフトウェアを自動化ソフトウェア (autoware)，生成された

通信を自動化トラフィックと呼ぶ．

自動化トラフィックには，OS の更新などの良性のもの，ボットネットの

C&C 通信などの悪性のもの，およびアドウェアなどのグレーのものがある．

ユーザのコンピュータやネットワークに危害を与えるのはマルウェアだけで

なく，アドウェアなどのグレーウェアの可能性もある．一部のアドウェアは，

ユーザのウェブアクセスの習慣や設定を監視し，その情報をターゲット広告

を目的とした第三者に送信する．この自動化の結果として，ウェブアクセス

の通信はユーザのウェブ操作とは無関係に生起することになる．正当なユー

ザーは，未知のトラフィックや制御されていないトラフィックのためにイン

ターネット上でランザクションを行うため，常にリスクに直面している．近

年，サイバー犯罪者は，不正なアドウェア，スパイウェア，ボットなどの悪

意のある HTTP オートウェアを拡散させるための通信媒体としてウェブを

iv

v

活用するようになってきている．

このような問題への従来の対策のひとつとして，アンチウィルス（AV）

製品は，コンテンツおよびシグネチャベースのマルウェア検出技術を用いて

アプリケーションの良性または悪性を判定する．しかし，近年のさまざまな

調査の結果，シグネチャベースの手法を使用して検出されないマルウェアが

数多く存在し，主要な AV エンジンは最近のマルウェアのわずか 30 〜 70％

しか検出できていないことが明らかとなった．本研究では，コンテンツベー

スの検出手法における問題に対処するため，ネットワークトラフィックの分

析と分類による手法を用いる．

これまでの HTTP 環境におけるマルウェア検出は，ボットネットを対象

としたものが多い．このような検出法は，一般的なマルウェアを対象として

いるため，正当なソフトウェアに類似した様々なアドウェアなどのグレーウ

ェアを識別することができない．したがって，HTTP 自動通信を分析し，そ

れらのアクティビティを検出および分類する必要がある．そこで本研究では，

自動通信の振る舞いの特徴量を観測，分析することにより，ホストベースお

よびネットワークベースでの HTTP 自動通信を検出，分類する手法を提案す

る．

ホストベースの検出アプリケーションモデルは，メモリとリソースの制

限を伴う単一の PC に適用できる利点がある．ホストベースのシステムを導

入することにより，マルウェア感染の可能性のあるトラフィックを低減でき

るため，ネットワーク全体のリスク軽減に役立つ．このアプリケーションモ

デルは，ユーザがネットワークトラフィックを監視して，不審なトラフィッ

クをフィルタリングすることができる．

ネットワークレベルの検出手法は，特定の URL ではなく，特定の目的

のための URL グループに着目する．この分析結果は，ネットワークやシス

テムの管理者がユーザにはほとんど知られていない HTTP 自動トラフィッ

クを検知することができる．その結果から，HTTP オートウェアによって引

き起こされる内部脅威を早期に検知することができる．

vi

様々な種類のオートウェアの通信が混合した実ネットワークトラフィッ

クを用いて実験を行った結果，高い識別精度が得られ，手法の有効性を確認

した．また，提案手法を実環境に実装する場合のアプリケーションモデルに

ついても考察，提案している．

今後の課題は誤警報を減らすことと達成されている結果を広げることで

ある．ネットワークベースの手法において，クラスタ化されなかった疑わし

い URL を通常の URL と識別するために，新しい特徴量について検討する必

要がある．また，いくつかのソフトウェアはセキュアチャネルを使用する傾

向があるため，悪意のある HTTPS 通信の検出について検討する必要がある．

Outline of Research Results

HTTP is recognized as the most widely used protocol on the Internet since ap-

plications are being transferred more and more by developers onto the web, and

users can find everything they need through web services. For this reason, HTTP

based communication is always allowed in most of networks. Utilization of HTTP

based software is blooming and reaching all Internet users. HTTP is designed to

defines only individual requests and responses protocol and it does not perform

interactive communication protocol. Therefore, HTTP based autoware have to

actively send requests to its servers in order to perform the communication with

their servers.

Automated communication can be good such as OS updates, or malicious

such as botnet command and control (C&C) or gray such as adware. In computer

system, not just malware harm the users computers and network system but also

grayware such as adware. Adware monitor web access habits or preferences and

transmits that information to the third parties that use it for target advertis-

ing [1]. As a result of this automation, communication is no longer strictly driven

by user actions, and legitimate users alway face with risks since they do their

transaction on the Internet because of the unknown or uncontrolled traffic. In

recent years, cyber criminals turn to fully exploit web as a medium of communica-

tion environment to lurk forbidden action or to spread HTTP malicious autoware

such as fraudulent adware, spyware or bot.

One of traditional approach is to detect the benign or malicious application

vii

viii

such as Anti-Virus (AV) products. They are the most common content and sig-

nature based malware detection techniques. These types of AV software employ

signature based detection to identify variants of known malware. As a conse-

quence, the signature generation and update cycle cause an inherent delay in

protecting users against new variants of malware. Additionally, with the aim of

limiting AV engines effectiveness, malware authors have developed increasingly

sophisticated evasion techniques such as packing and polymorphism, aimed at

circumventing detection by AV engines. Various studies figure that many un-

detected malware binaries by using signature-based techniques, and major AV

engines just detect only 30% to 70% of recent malware. Overcoming the issue

of contents based detection studies, network traffic analysis and classification are

suggested and approached.

In HTTP environment, most of the work concerning malware detection fo-

cuses on such as botnet. The same type of detection methods would be unsuc-

cessful when dealing with grayware, for example adware, which a part of them

are more similar to legitimate software than such types of malware. Nevertheless,

recently grayware represents a serious threat to privacy and, as such, the research

on grayware is also important, especially in terms of detection approaches. In

network, the traffic of all kind of software are merged transparent with each oth-

ers. The classification and detection of their purposes are really serious challenge

because of similarity in their requests format and structures.

This raises the demand for analyzing HTTP autoware communication be-

havior to detect and classify malicious and normal activities via HTTP traffic.

Hence, in this research, based on many studies and analysis of the autoware com-

munication behavior,a new method using minor features at application layer and

access graph to detect and classify HTTP autoware communication at host and

network level are presented, and they are summarized as bellow:

At host level, based on the observation of communication pattern of HTTP

ix

autoware, it is proposed a detection method of suspicious HTTP-based autoware.

The behavior of autoware is observed and analyzed through two parameters pe-

riodic access and access rate. The observation shows that these two features of

suspicious autoware are stable than others normal autoware. In another word,

there is almost no variation in the graph of periodic access and access rate in a

period of time. The advantage of host-based application is that it can be applied

for single PC (without interconnected network) with limitation of memory and

resource. In addition, the design in host space within interconnected network will

help to reduce the risk for the whole network since the traffic are possible gener-

ated from malware infection can be banned from the source. It is self-surveillance

for users. The application will help users to monitor or watch their traffic to iden-

tify suspicious one and do the filtering before they are allowed to join the network

from their PC.

At network level, based on the study and analysis of the autoware commu-

nication behavior, a method clustering and identifying HTTP automated com-

munication is proposed. In that, multiple traffic from many clients are observed

and behavior of each kind of autoware are recognized. In that, malicious HTTP-

based bots always connect to their command and control server periodically in

order to get the commands and updates. The number of requests from mali-

cious bots are not high as normal autoware (e.g. updater and downloader) which

just generate requests with a long interval than unusual malicious bots. Mali-

cious access is recognized by scoring the its access speed. Malicious bots often

connect to one control domain and to a specific server resource during a given

period of time. Difference with that, unwanted HTTP applications, or grayware,

such as annoying adware or spyware, often report back to or request new infor-

mation from many external resources. Therefore, they keep communicating to

their numerous advertising sites or URLs to update pop-up or advertisement and

commercial content areas. Autoware will behave the same communication pat-

tern to its difference URLs. if they are requested at the same or approximately

x

equivalent timing, access graph of URLs from a specified autoware are presented

similar. In addition, autoware requested to many URLs with the same timing,

so the access duration to these URLs is approximately equal. It means that the

first and the last requests’ timing to these URLs are almost the same with others.

Suspicious autoware, for instance adware, since they update contents, like other

autoware they access to many URLs however they will collect data from many

URLs of multiple sites which own various domain names. This is not alike with

normal autoware, such as a electronic newspaper, since it self-refresh the contents

of presenting page by accessing to many URLs but with only one domain name.

A suspicious autoware starts with the time of human computer start. Therefore,

it expected that the access duration of a suspicious autoware might be similar

with user computer interaction. The results in network level are not focused for

a specific URLs but for group of URLs for a specific purpose. The findings as-

sist network and system administrator clarify the HTTP automated traffic which

are almost unknown to users, from there the internal threats caused by HTTP

autoware might be inspected early.

All methods are experimented by using real traffic and give a good results

since mixture traffic of all kind autoware are still identified and detected. In

that, suspicious and other autoware traffic are detected in experiment data for

host-based proposed method. In network based proposed method, in general,

100% URLs are clustering and identifying into normal, suspicious and malicious

groups. The accuracy rate reaches at 91.18% and error rate constitutes 8.82%.

Host based or network level methods are also able to be applied in the real

environment. Especially, used features are minor which are easily extract from

application layer traffic. All experiments show good results. In that, network pro-

posed method can be implemented in distributed processing environment such as

Map Reduce of Hadoop. These will help increasing the performance in detection

process. the implementation of big data application for network level proves that

it shows good performance since it takes the logarithm complexity in processing.

xi

Although, false alarm is still exists, the research propose a new method to detect

and classify to all kind of HTTP automated traffic which are not just malicious

but also suspicious and normal.

The key necessary improvement in the future work is to reduce the false

alarm and to extend the achieved results. For this to be done, new features are

considered to be added, that are related to the URLs properties to improve the

accuracy in suspicious and normal identifying for unclustered URLs in network

based method.

Along with that, deep machine learning method is also considered in order

to improve the achievement of current result. In addition, suspicious and mali-

cious software always effort to spread out them-self on other clients in the same

network. A proposal method in order to cluster of clients based on their auto-

mated communication is considered, in which, system or network administrator

can score the activity of malware and also early detect the threats from inter-

nal. In addition, malicious HTTPS detection need to be considered since all the

communication has trend to establish in secure channel.

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Traffic Classification Techniques 6

1.3 Research Objectives . 11

1.4 Outlines . 15

2 Host-based Suspicious HTTP Autoware Detection 17

2.1 Methodology . 18

2.1.1 HTTP based Autoware Communication Characteristics . . 19

2.1.2 Proposed method in suspicious HTTP based autoware de-

tection . 23

2.2 Experimental Results . 27

2.3 Conclusions . 29

3 Clustering and Identifying HTTP Automated Communication 30

3.1 Introduction . 30

3.2 Methodology . 32

3.2.1 Feature Extraction . 32

xii

Contents xiii

3.2.2 Access Graph . 33

3.2.3 HTTP Access Behavior Analysis 34

3.3 Access Graph Similarity . 39

3.3.1 Modified Hausdorff Distance 40

3.3.2 Access Graph Similarity 43

3.4 Proposed Method . 44

3.5 Preprocessing Phase . 45

3.6 Clustering Phase . 47

3.7 Identifying Phase . 50

3.7.1 Group Identifying Phase 50

3.7.2 URL Identification Phase 51

3.8 Experimental Results and Discussion 55

3.9 Conclusions . 60

4 Application Model Proposal 61

4.1 Host based application model proposal 61

4.2 Network level application model proposal 62

5 Conclusion and Future work 70

5.1 Research Results Summary . 70

5.2 Future Work . 72

Acknowledgements 74

Bibliography 75

Contents xiv

List of Publications 88

List of Figures

1.1 A lot of non-human (automated) traffic is unknown and unnoticed

with users. 2

1.2 HTTP is always allowed in network because of its flexibility and

commonality. 2

1.3 HTTP autoware always actively requests to their servers to per-

form the communication because of HTTP properties. 4

1.4 HTTP traffic and automated software categories. 5

1.5 General flows of proposed methods in this research. 15

2.1 GET request time interval sequence graph of each observed appli-

cation. X axis is the number of requests. Y axis represents the

time(Interval) different in second of two requests side by side. . . 21

2.2 The dispersion of GET requests number of each observed appli-

cation. X axis is the index of each access time segment which is

divided by △ (1 hour) , Y axis represents the number of GET

requests (Requests Count) in a △ of time. 22

2.3 The distribution of HTTP-based normal and suspicious autoware. 23

2.4 Overall flow of host-based proposed method. 25

2.5 Description of AutowareScore calculation for a server Si. 26

2.6 Experimental model and environment. 28

xv

List of Figures xvi

3.1 Main flows in proposed method in network level 31

3.2 Main parts of URL. 32

3.3 An access graph of a client request to a URL. 34

3.4 Almost no variation in access graphs of two malicious bots to their

C&C servers. 35

3.5 Access graph of 2 URLs which are accessed with very high speed. 36

3.6 Access graphs from an adware of a client IP to two different URLs

are similar . 37

3.7 Autoware have trend access to many URLs at the same timing. . 37

3.8 Access time to two URLs from an Autoware are nearly equiva-

lent. The (URL1 is requested from August 21, 12:52:34 (URL2 is

accessed from August 21, 12:52:33) to Dec 09, 16:38:45. 38

3.9 Main flows of network level proposed method. 44

3.10 Phases of network level proposed method. 45

3.11 Suspicious websites are less consistent with their content when

compared with those of legitimate websites. 46

3.12 The first step of clustering algorithm 48

3.13 The third step of clustering algorithm 49

3.14 Group identifying phase . 50

3.15 Unclustered URL identifying phase 51

3.16 Experimental environment for network level proposed method. . . 56

3.17 Proportion of clustered and unclustered URLs of clustering phase 57

4.1 Proposal application model of host based method 62

4.2 Proposal application model of network based method 63

List of Figures xvii

4.3 Big data application for observation, clustering and identifying

framework. Phase 1, 2, 3 are pre-processing, clustering and iden-

tifying phase respectively . 64

4.4 Process flow of Clustering phase on MapReduce of Hadoop 65

4.5 Number of requests in each log data of one IP. X axis shows the

number of requets and Y axis show the client’s log data index from

1 to 70. 66

4.6 Access time from client IP to the Internet. X axis shows the access

time in Hours and Y axis show the client’s log data index from 1

to 70. 67

4.7 Processing time of experimental implementation 68

List of Tables

2.1 Data Collection Information for Host-based Method 19

2.2 Experimental Data Collection Information 28

2.3 Experimental Results . 28

3.1 Suspicious autoware have trend access to many URLs with differ-

ence domain . 39

3.2 24 distance measures between two point sets 43

3.3 Steps of Clustering Algorithm . 49

3.4 Density-based Algorithm Discovering Clusters 53

3.5 ExpandCluster Function of DBSCAN 54

3.6 Experimental Data Statistic . 56

3.7 Clustering Phase Results . 58

3.8 Group Identifying Results . 58

3.9 URL Identifying Results . 58

3.10 Overall Experimental Results . 58

4.1 Experimental System Specification 68

xviii

Chapter 1

Introduction

1.1 Overview

The Internet, nowadays, has become more and more an importance part of ev-

eryday life of people. Every services, which users need, are able to find on the

Internet such as online banking, advertising and shopping. Internet services have

expanded its role from a basic communication network to interconnected set of

among things. Therefore, desktops and servers become more complicated, they

employ an increasing amount of automatic, non-user initiated communication [2].

Automated communication can be good such as OS updates, or malicious such

as botnet command and control (C&C) or gray such as adware. In computer

system, not only malware but also grayware such as adware can harm the users’

computers and network system. Adware monitor web access habits or preferences

and transmits that information to the third parties that use it for target adver-

tising [1]. As a result of this automation, communication is no longer strictly

driven by users’ actions, and legitimate users always face risks since they perform

their transaction on the Internet because of the unknown or uncontrolled traffic,

as presented in Figure 1.1.

The threats of Internet transaction can be internal and external. External

1

1.1. Overview 2

Figure 1.1: A lot of non-human (automated) traffic is unknown and unnoticed with
users.

Figure 1.2: HTTP is always allowed in network because of its flexibility and com-
monality.

threats to the cyber-infrastructure of an organization are constantly evolving and

it is clear that organizations spend a majority of their security countermeasure

in protecting malicious attacks from external. However, one of the toughest and

most insidious problems in information security, and indeed in security in general,

is that of protecting against attacks from an insider [55].

One of the effective method on defend network from inside, system or net-

work security administrators block all unnecessary outbound protocol or direct

connections from TCP/IP and just permit outgoing communication only over

selected protocols. In many decades, the flexibility and interoperability of HTTP

1.1. Overview 3

make users progressively explore it in a much wider range of applications. It

is recognized as the most widely used protocol on the Internet since users can

find everything they need there when applications are being transferred more and

more by developers onto the web. Therefore, HTTP is always allowed the net-

work perimeter. In addition, in web environment, digital spies and thieves can

cover their identities, conceal their physical locations, and create the malicious

code from side to side. Consequently, cyber criminals or the Internet spiders

have tendency to turn to fully exploit web technology and use it as a medium for

communication to lurk malware (malicious software) or variety of illicit activities.

In this case, as can be seen in Figure 1.2, malicious and other HTTP traffics will

be passed through firewall because of its popularity.

Due to fast growing of malware and virus threats, destructive payloads can

be inadvertently introduced to the network by employees since they look at video

or file-sharing websites, playing games or using social media which can emblemed

rootkit or unwanted software. When these unauthorized HTTP software infect

into an user network, they will act like robot and mimic normal behavior web

access and bypass network firewall or IDS. From there, they could turn to be a

agent to receive command from outside and generate serious attacks from inside.

Therefore, application layer attacks, including HTTP based attacks, still pose

an ever serious threat to network security for years such as low-rate DoS attack

in [3]. Application layer attack is difficult to be detected since it always comes

after a technically legitimate connection has been established.

As usual, HTTP traffic can be classified into two categories: human traffic

and non-human traffic or automated traffic. Human traffic is generated by users

when they use normal web browsers (e.g. Internet Explorer...) to access web-

sites which they want or need. On the contrary, non-human traffic comes from

automated software (autoware).

HTTP is designed to defines only individual requests and responses proto-

1.1. Overview 4

Figure 1.3: HTTP autoware always actively requests to their servers to perform the
communication because of HTTP properties.

col and it does not perform interactive communication. If a HTTP application

requires continuously and interactively asynchronous communication, the client

necessary to continue sending the connection request to the server actively and

automatically as illustrated in Figure 1.3. As a result, HTTP network commu-

nication is not just rigorously controlled by users intention and HTTP based

automated software is blooming in utilizing in reaching Internet users. Auto-

mated traffic can be controlled and beneficial for user, however a lot of them

are unknown and noticed with users, as described in Figure 1.1. Normal traffic,

which are generated from normal autoware to benefit users usage purposes. This

may include traffic for operating system update, virus definition updates. Gray

traffic may generated from software which are not obviously malicious. However

1.1. Overview 5

Figure 1.4: HTTP traffic and automated software categories.

this kind of traffic is unknown and unnoticed to user, not all of them are bad for

user but some of them can be annoying or even harmful to the user. In the dark

side, suspicious traffic can generated to download unwanted contents to local such

as from adware for advertising purpose or spyware for either collect information

for marketing purposes or to deliver advertisements to web pages. Although this

kind of software is legitimate, it can be installed on users computer without their

knowledge or intention. Malicious traffic are generated from malicious autoware

such as botnet. A good sample is Zeus and its variant. They are very danger-

ous malicious botnet [4, 5] on the Internet recent years and it is readily available

for sale and also traded in underground forums [5]. Therefore, traffic in HTTP

environment are merge of communication generated by all kind of normal, grey

and malicious autoware. This raises the demand for analyzing HTTP autoware

communication behavior to detect and classify malicious and normal activities

via HTTP traffic.

One of traditional approach is to detect the application associated withe

generated traffic such as Anti-Virus (AV) products. They are the most common

content and signature based malware detection techniques. These types of AV

1.2. Traffic Classification Techniques 6

software employ signature based detection to identify variants of known malware.

As a consequence, the signature generation and update cycle cause an inherent

delay in protecting users against new variants of malware [8]. Additionally, with

the aim of limiting AV engines effectiveness, malware authors have developed

increasingly sophisticated evasion techniques such as packing and polymorphism,

aimed at circumventing detection by AV engines [6, 56]. Oberheide et al. [7]

figure many undetected malware binaries by using signature-based techniques,

and major AV engines just detect only 30% to 70% of recent malware. As the

same content, Rajab et al. [8] show that less than 40% of malicious binaries can

be detected by four AV engines in their experiment. Overcoming the issue of

contents based detection studies, network traffic analysis and classification are

suggested and approached. Hence, in this research, based on many studies and

analysis of the autoware communication behavior, a new method to detect and

classify HTTP autoware communication at host and network level are presented.

1.2 Traffic Classification Techniques

Review of traffic classification is presented in [9], and some of them are sum-

marized in the following. The large body of literature about traffic classifica-

tion [10–17, 19–28, 43] is a further evidence of the great interest of the research

community towards this topic. In the first days of the Internet, identifying the

application associated with some network packets was not an issue whatsoever:

protocols were assigned to well-known transport layer ports by IANA [29]. There-

fore, Port-based classification [22, 23, 25] simply extracted such value from the

packet header and then look it up in the table containing the port-application

associations. Unfortunately Port-based classification has become largely unreli-

able [23, 30]. In fact, in order to circumvent control by ISPs, modern applica-

tions, especially P2P ones, either use non-standard ports, or pick a random port

at startup. Even worse, they hide themselves behind ports of other protocols

1.2. Traffic Classification Techniques 7

–this might enable bypassing firewalls as well. While port-based classification

may still be reliable for some portion of the traffic [19], nevertheless it will raise

undetectable false-positive (e.g., a non-legitimate application hiding beyond well-

known port numbers) and falsenegative (e.g., a legitimate application running on

non-standard ports) classifications.

To overcome this problem, Payload-based classifiers [14, 16, 20, 23, 27] were

proposed. They inspect the content of packets well beyond the transport layer

headers, looking for distinctive hints of an application protocol in packet payloads.

We actually split this family of classification algorithms in two subcategories,

Deep packet inspection (DPI) techniques that try to match a deterministic set of

signatures or regular expressions against packet payload, and Stochastic packet

inspection (SPI), rather looking at the statistical properties of packet content.

DPI has long provided extremely accurate results [23] and has been im-

plemented in several commercial software products as well as in open source

projects [31] and in the Linux kernel firewall implementation [32]. The payload

of packets is searched for known patterns, keywords or regular expressions which

are characteristic of a given protocol: the website of [32] contains a comprehensive

lists of well known patterns. Additionally, DPI is often used in intrusion detec-

tion systems [25] as a preliminary step to the identification of network anomalies.

Besides being extremely accurate, DPI has been proved to be effective from the

very first payload packets of a session [33,34], thus being particularly convenient

for early classification.

Despite its numerous advantages, DPI has some significant drawbacks. First

the computational cost is generally high, as several accesses to packet memory are

needed and memory speed is long known to represent the bottleneck of modern ar-

chitectures [35]. String and regular expression matching represent an additional

cost as well: although there exist several efficient algorithms and data struc-

tures for both string matching and regular expression, hardware implementation

1.2. Traffic Classification Techniques 8

(e.g. FPGA), ad hoc coprocessors (e.g. DFA) possibly massively parallel (e.g.,

GPU) are often required to keep up with current transmission speed [36]. These

hardware-based approaches have been analyzed and used to improve the perfor-

mance of machine learning algorithms, traffic classification approaches, and plat-

forms for network security [37–42]. Yet, it is worth noting that while [42] estimate

that the amount of GPUs power can process up to 40 Gbps worth of traffic, bot-

tlenecks in the communication subsystem between the main CPU and the GPU

crushes the actual performance down to a mere 5.2 Gbps [42]. Similarly, Network

Processors [39] and [40] achieve 3.5 Gbps and 6 Gbps of aggregated traffic rate at

most. As will see, statistical classification outperforms these classification rates

without requiring special hardware. Another drawback of DPI is that keywords

or patterns usually need to be derived manually by visual inspection of packets,

implying a very cumbersome and error prone trial and error process. Last but

not least, DPI fails by design in the case of encrypted or obfuscated traffic.

Stochastic packet inspection (SPI) tries to solve some of these issues, for

instance by providing methods to automatically compute distinctive patterns for

a given protocol. As an example, authors of [20] define Common Substring Graphs

(CSG): an efficient data structure to identify a common string pattern in packets.

Other works instead directly apply statistical tools to packet payload: authors

of [16] directly use the values of the first payload bytes as features for machine

learning algorithms; in [14], instead, a Pearson Chi-square test is used to study

the randomness of the first payload bytes, to build a model of the syntax of the

protocol spoken by the application. Additionally, this last algorithm is able to

deal with protocols with partially encrypted payload, such as Skype or P2P-TV

applications.

Authors of [43], instead, propose a fast algorithm to calculate the entropy

of the first payload bytes, by means of which they are able to identify the type

of content: low, medium and high values of the entropy respectively correspond

to text, binary and encrypted content. Authors argue that, even if this is a very

1.2. Traffic Classification Techniques 9

rough repartition of traffic and moreover some applications are very likely to use

all of these kinds of content, nonetheless such information might reveal useful

to prioritize some content over the others (e.g. in enterprise environments, bi-

nary transfers corresponding to application updates to fix bugs deserve an high

priority). Yet, SPI is still greedy in terms of computational resources, requir-

ing several accesses to packet payload, though with simpler operations (i.e., no

pattern matching).

While both [14, 43] use entropy-based classification, a notable difference is

represented by the fact that in [14] entropy is computed for chunks of data across

a stream of packets, while [43] computes entropy over chunks within the same

packet.

Statistical classification [11, 12, 21, 26, 44–48] is based on the rationale that,

being the nature of the services extremely diverse (e.g., Web vs VoIP), so will

be the corresponding traffic (e.g., short packets bursts of full-data packets vs

long, steady throughput flows composed of small-packets). Such classifiers exploit

several flow-level measurements, a.k.a. features, to characterize the traffic of the

different applications [21,26,47]: a comprehensive list of a large number of possible

traffic discriminators can be found in the technical report [49]. Finally, to perform

the actual classification, statistical classifiers apply data mining techniques to

these measurements, in particular machine learning algorithms.

Unlike payload-based techniques, these algorithms are usually very lightweight,

as they do not access packet payload and can also leverage information from

flow-level monitors such as [50]. Another important advantage is that they can

be applied to encrypted traffic, as they simply do not care what the content of

packets is. Nevertheless, these benefits are counterbalanced by a decrease in ac-

curacy with respect to DPI techniques, which is why statistical-based algorithms

have not evolved to commercial products yet. Still, researchers claim that in the

near future operators will be willing to pay the cost of a few errors for a much

1.2. Traffic Classification Techniques 10

lighter classification process.

This class of algorithms can further be divided in a few subclasses according

to the data mining techniques employed and to the protocol layer of the fea-

tures used. Concerning the first criterion, on one hand, unsupervised clustering

of traffic flows [21] (e.g., by means of the K-means algorithm) does not require

training and allows to group flows with similar features together, possibly identi-

fying novel unexpected behaviors; on the other hand, supervised machine learning

techniques [19,48] (e.g., based on Naive Bayes, C4.5 or Support Vector Machines)

need to be trained with already classified flows, but are able to provide a precise

labeling of traffic. Regarding the protocol layer, we have classifiers employing only

flow-level features [47] (e.g., duration, total number of bytes transferred, average

packet-size), as opposed to algorithms using packet-level features [11, 12] (e.g.,

size and direction of the very first packets of a flow). The former ones are usually

capable of late (in some cases only post-mortem), coarse-grained classification,

whereas the latter ones can achieve early, fine-grained classification.

Finally, Behavioral classification [17, 28, 51] moves the point of observation

further up in the network stack, and looks at the whole traffic received by a host,

or an (IP:port) endpoint, in the network. By the sole examination of the generated

traffic patterns (e.g., how many hosts are contacted, with which transport layer

protocol, on how many different ports) behavioral classifiers try to identify the

application running on the target host. The idea is that different applications

generate different patterns: for instance, a P2P host will contact many different

peers typically using a single port for each host, whereas a Web server will be

contacted by different clients with multiple parallel connections.

Some works [17, 28] characterize the pattern of traffic at different levels of

detail (e.g., social, functional and application) and employ heuristics (such as the

number of distinct ports contacted, or transport-layer protocols used) to recog-

nize the class of the application running on a host (e.g., P2P vs HTTP). Works

1.3. Research Objectives 11

taking the behavioral approach to its extreme analyze the graph of connections

between endpoints [52, 53], showing that P2P and client-server application gen-

erate extremely different connection patterns and graphs. They prove also that

such information can be leveraged to classify the traffic of these classes of services

even in the network core. A second group of studies [10,15], instead, propose some

clever metrics tailored for a specific target traffic, with the purpose of capturing

the most relevant properties of network applications. Combining these metrics

with the discriminative power of machine learning algorithms yields extremely

promising results. The Abacus classifier [10] belongs to this last family of algo-

rithms, and it is the first algorithm able to provide a fine-grained classification

of P2P applications.

Behavioral classifiers have the same advantages of statistical-based classi-

fiers, being lightweight and avoiding access to packet payload, but are usually

able to achieve the same accuracy with even less information. Such properties

make them the perfect candidate for the most constrained settings. Moreover

given the current tendency toward flow-level monitors such as NetFlow [50], the

possibility to operate on the sole basis of behavioral characteristics is a very de-

sirable property for classifiers. Based on these review in [9] and the target of

research, behavior approaches are focused. In which, automated traffic of mul-

tiple autoware are analysis from there features or parameters, which presented

their behavior, are extracted to classify and detect automated traffic.

1.3 Research Objectives

HTTP traffic are simpled categories in Figure 1.4. In that, HTTP traffic can be

classified into two categories: human traffic and non-human traffic or automated

traffic. Human traffic is generated by users when they use normal web browsers

(e.g. Internet Explorer...) to access websites which they want or need. The char-

acteristic of type of traffic is the accessed websites are known for users and they

1.3. Research Objectives 12

know what kind of data/information they will get. On the contrary, non-human

traffic come from autoware can be classified into three types: normal software

such as anti-virus updater, mail client, browser’s toolbar; grayware encompasses

adware, spyware, joke programs; malware acting as HTTP based bot. This kind

of autoware accesses to unknowing servers without user intention. The distinc-

tion of normal and malicious activity from HTTP traffic is really serious challenge

when sophisticated malware generate HTTP traffic requests similar with normal

HTTP requests. When these malicious autoware infect into a user network, they

will act like robot and mimic normal behavior web access and bypass network

firewall or IDS. Furthermore, in a large private network, detection and also classi-

fication between types of HTTP autoware traffic are really great challenge when

huge requests are generated each day.

Studies about malware detection over network data include multiple ap-

proaches. However, it continues to be a serious challenge since operational meth-

ods of malware are constantly changing. Overcoming the issue of contents based

detection studies, many studies suggest to use network traffic analysis approaches.

Botnets detection methods are presented in [57–63]. In host-based approach, Lee

et al. [58] introduced a parameter based on one of the pre-defined characteris-

tics of HTTP-based botnet. They suggested a Degree of Periodic Repeatability

(DPR) to show the pattern of regular connections (i.e. pull style) of HTTP-

based botnet to certain servers. Meisam Eslahi at el. [59] proposed an approach

to reduce the false alarm HTTP botnet detection, in this research, high access

rate traffic, which might be other security threats, is filtered out. Lee et al. [58]

and Meisam Eslahi et al. [59] did not give the details of formula or method to

calculate and measure each parameter.

Wei Lu et al. in [60], using signature-based techniques, propose a hierar-

chical framework to automatically discover malicious bot on a large-scale Wi-Fi

ISP network, in which the network traffic is classified into different application

communities by using payload-signature. These signatures were used to separate

1.3. Research Objectives 13

known traffic from unknown traffic in order to decrease the false alarm rates.

Like other signature-based techniques the proposed classifier is less effective as it

is unable to identify new or encrypted patterns [59].

Basil AsSadhan [61] at el. proposed a detection method in which concen-

trates in C&C communication analysis and find that it exhibits a periodic behav-

ior. In [61], a method which applied discrete time series are analyzed to examine

the aggregate traffic behavior in order to detect botnet C&C communication

channels traffic. In CoCoSpot of Chiristian et al. [62], they proposed a clustering

method to analyze relationships between botnet C&C flows and an approach to

recognize botnet command and control channels solely based on traffic analysis

features. To achieve this, the authors collected different parameters of the net-

work traffic and consider to response message length from the server. However,

in many C&C servers, the length of each response message is not stable or even

there is no response in each request. Thus, the detection result might be reduce in

that cases. Sung Jin Kim et al. [63] proposed HTTP activity set (HAS) analyzer

in detection HTTP C&C. In that, the discriminative features set (low density and

high content variability) for distinguishing C&C flows based on HTTP activity

set are found and evaluated. In that, user-agent is one of items for HAS. However,

attacker tool can modified user-agent with phishing the legitimate content of be-

gin browsers or software. Therefore, the overall accuracy of the method might

be degraded. These researches [57–63] focus on botnet communication to C&C

server, but actually HTTP threats not just come from malicious bots but also

can be from other types of automated software such as HTTP spyware, adware

or unauthorized applications.

Seungwon Shin et al. in [64] proposed a framework to detect bot malware at

host and network level. At host level, they monitor human-process interactions

by using hook technique to capture user mouse and keyboard activities. These

hook actions might affect to users PC systems. At network level, a simple way

to prevent a malware infected PC sending out the information is to prevent all

1.3. Research Objectives 14

the direct TCP/IP connection from clients. However allowing HTTP protocol

is really leaking hole which might be exploited by HTTP malware. In [64], to

over come this issue, they monitored DNS queries to determine C&C server, but

actually, many botnets use hacked domain names and its resource as C&C server.

Therefore, the detection method might be insufficient.

Some of approaches the use lexical features or keywords extracted from URL

and web contents as in [65–67, 81]. However, many other type of malicious web

pages which are disguised by domain names or URLs like normal website and

can harm users PC systems. In this case, lexical or keywords features might be

compromised. Bartlett el at [2] proposed an approach to identify low-rate periodic

network traffic and changes in regular communication of autoware. Their research

also focus on many types of autoware and monitor TCP flows to detect, but, in

this research, the target not just focus only to detect general types of autoware

but also on particular URLs where autoware request to. In addition, the proposed

methods just collect and process related HTTP traffic at application layer, this

will help reduce expensive in process compare with method use TCP packets

process.

In this research, in order to clarify automated traffic in HTTP environ-

ment and with the efforts using minor and basic features to solve the problem,

many studies in analysis HTTP autoware Internet access behavior has been done.

From there, characters and properties are extracted from HTTP requests prop-

erties such as number or timing of requests.... HTTP automated communication

classification and detection method in host and network based are proposed. In

general, flows of method is summarized in Figure 1.5. In that, HTTP requests

are captured and processed through multiple layers and classified and detected

in to many types of traffic such as normal, suspicious, or malicious.

1.4. Outlines 15

Figure 1.5: General flows of proposed methods in this research.

1.4 Outlines

The dissertation is organized into 5 chapters. chapter 2 to chapter 3 will present

about methods in detection and classification of autoware communication at host

and network level. All experimental data for each method is real data which are

captured in clients or network. The details of each chapter are given below.

Chapter 2 shows a host-based method in detection of suspicious HTTP au-

toware. The algorithm for this is based on observation of many autoware com-

munication.

Chapter 3, a network level method in clustering and identifying of HTTP

automated communication. Chapter 4 presents the application model of two

proposed methods and especially a big data based is presented and evaluated

with real environment.

1.4. Outlines 16

Chapter 5 summarizes the results of this work, and provides ideas for future

research.

Chapter 2

Host-based Suspicious HTTP

Autoware Detection

Malicious autoware can penetrate into users computer in dozen of ways such as

plugged into free software, drive-by download attack, or spam link. Consequently,

users might not control what or how many auto-wares are installed in their com-

puters. Despite the fact that all types of auto-ware periodically automatically

communicate with their servers to keep up the maintenance as analysis in previ-

ous chapter, there still the difference in the way communication between normal

HTTP-based software and suspicious HTTP based software in some character-

istics that are indicated as periodic access and access rate. In this chapter, by

observing the variation of above two features of HTTP based application commu-

nication, a simple and new host-based suspicious autoware detection method is

proposed. Through which, two parameters, Autoware Score and Suspicious

Score are defined. The method is examined on the real traffic and produces a

good result in detection. By in-host type method, it is helpful for users and also

administrators in control the autoware in their computers and networks. The

method is design suitable for not huge data process, single PC with limitation of

memory and resource.

17

2.1. Methodology 18

2.1 Methodology

In this section, HTTP based autoware communication characteristics have been

reviewed and the detail of method is also interpreted. No public data set is avail-

able for use in suspicious detection experiments as opposed to what is available

for, e.g., virus and intrusion detection. Therefore, for the purpose of reviewing

the different of normal and suspicious auto-ware based on periodic access and

access rate characteristics, four of HTTP based autoware are selected, they are

included:

• Two normal toolbars (Toolbar 1, 2): these toolbars are browser’s software

help people access to their favorite services.

• A cloud service backup tool (Cloud Drive Sync Tool): These kinds of tools

will sync users’files from clients to cloud and vice versa. It helps users

access the files or documents from anywhere based on their using cloud

service, such as Dropbox or iCloud.

• A Malicious Zeus botnet with its C&C server: Zeus is HTTP-based bot.

It has reportedly infected over 3.6 million computers in the United States.

Zeus can be updated and directed by the bot master through C&C channel

[4, 5].

This set of software is installed in a computer and their requests to server

are captured and observed in two days. The data collection information is sum-

marized in Table 2.1. In there, the communicated requests to server activities of

malicious Zeus botnet are not as much as normal autoware.

2.1. Methodology 19

Table 2.1: Data Collection Information for Host-based Method

HTTP-based
Autoware

Number of
GET requests Data collection length (2014)

Toolbar 1 1351 From 21:35:20 Sep 28
To,21:28:06 Sep 30

About 47 hours

Toolbar 2 1205
Cloud Drive Sync Tool 4079
Zeus Bot 220

2.1.1 HTTP based Autoware Communication Character-

istics

In this section, by using real above data, two periodic access and access rate

characteristics are compared between normal and malicious autoware.

• Periodic access: HTTP-based malicious software, such as botnet, which

follow the PULL style where they periodically steadily connect to their

server (i.e. command and control server) by GET requests with an interval

in order to get the commands and updates [57, 59, 73, 74].

The observation data for this feature are shown in Figure 2.1. In that X axis

is the number of requests and Y axis represents the time different in second

of two requests side by side. The graphs in Figure 2.1 illustrates the GET

requests interval of selected auto-ware in attempt to keep communication

to their servers.

Toolbar 1 and Toolbar 2’s graphs (respectively in Figure 2.1(a), Figure

2.1(b)) are looked similar with each other. They have many long inac-

tive durations which shows as high peaks in diagrams. The Cloud Drive

Sync Tool’s graph (in Figure 2.1(c)) express high intensity activities by big

number of requests. The frequency of requests are also high and interval

fluctuates around 50 seconds. Like Toolbar 1 and Toolbar 2, Cloud Drive

Sync Tool shows the long inactive durations. In summary, these three nor-

mal auto-ware illustrates that they do not keep communication to their

servers with steady periodic or interval of time. In contrary, the diagram

2.1. Methodology 20

of malicious Zeus bot (in Figure 2.1(d)) shows that it owns the most steady

interval with only some peaks and the frequency of requests is at normal

level with about 800 seconds between two requests. The requests are equally

distributed during the running time.

• Access rate: Normal automatic software (e.g. updater and downloader)

transmits a similar periodic pattern of traffic that has been generated within

a short period of time. A suspicious software does not generate bulk data

transfer [59, 75].

The observation data of the feature are shown in Figure 2.2. In that X

axis is the index of 1 hour time slot (about 47 slots, see Table I), Y axis

represents the number of GET requests in a slot of time. The graphs in

Fig. 4 illustrates the fluctuation of number of GET requests in each time

slot for each selected auto-ware in attempt to keep communication to their

servers.

Once again, Toolbar 1 and Toolbar 2’s graphs (respectively in Figure 2.2(a),

Figure 2.2(b)) are looked similar with each other with the high fluctuation

in the graphs. They send many requests in a short of time which shown as

peaks. Normal fluctuation in diagram is represented in The Cloud Drive

Sync Tool’s graph (Figure 2.2(c)), however the number of requests in each

slot always keep at high level around 80 requests. Can be conducted that

three normal auto-ware keep the high variation access rate in communica-

tion with their servers. In contrast that, the graph of Zeus bot, in Figure

2.2(d), illuminates that in Zeus bot’s requests, there is almost no varia-

tion in requests number in each time segment just around 4-5 requests and

active time is equally distribution in running time.

In both observations of features, the negligible variation of suspicious auto-

ware characteristics can be seen. If the total data collection is divided into

N equivalent segments from t1 to tN with time duration △, the distribu-

2.1. Methodology 21

(a) Toolbar 1’s periodic access data observation

(b) Toolbar 2’s periodic access data observation

(c) Cloud Drive Sync Tool’s periodic access data observation

(d) Zeus bot’s periodic access data observation

Figure 2.1: GET request time interval sequence graph of each observed application.
X axis is the number of requests. Y axis represents the time(Interval) different in second
of two requests side by side.

2.1. Methodology 22

(a) Toolbar 1’s access rate data observation

(b) Toolbar 2’s access rate data observation

(c) Cloud Drive Sync Tool’s access rate data observation

(d) Zeus bot’s access rate data observation

Figure 2.2: The dispersion of GET requests number of each observed application. X
axis is the index of each access time segment which is divided by △ (1 hour) , Y axis
represents the number of GET requests (Requests Count) in a △ of time.

2.1. Methodology 23

Figure 2.3: The distribution of HTTP-based normal and suspicious autoware.

tion of normal and suspicious auto-ware activities through two properties

mentioned above can be illustrated as in Figure 2.3. Based on this obser-

vation, a method to detect suspicious HTTP-based auto-ware is proposed

and expressed in next section.

2.1.2 Proposed method in suspicious HTTP based auto-

ware detection

The method is proposed based on examining the variation of two features which

are reviewed in section 2.1.1. Correspondingly, two parameters are introduced,

AutowareScore and SuspiciousScore , they are respectively shows the variation

periodic access and access rate requests. Standard deviation is used usefully in

measuring the amount of variation or dispersion from the average of sequences.

For that meaning, the calculation approach of each parameter is using standard

deviation σ formula [76]. σ of a vector X = (x1, x2, ...xn) is illustrated as in

Equation (2.1.1):

2.1. Methodology 24

σ(X) =

√√√√√√
n∑

j=1

(x̄− xj)

n− 1
(2.1.1)

General imagination of method is show in Figure 2.4. In the remainder of

the section, all parts of flow will be gone throw. For that purpose, assume that

the total data collection is divided into N equivalent segments from t1 to tN with

time duration △.

Preprocessing step helps to reduce or filter out unnecessary information.

There is many ways to do this, for example, if the number of URIs connects

to a server is too small in a long period of time, that server is not a candidate for

a suspicious communication (e.g. entire data collecting period) because botnet/-

malicious software are designed to perform bigger tasks and much faster than

humans, hence they do not generate brief traffic [59, 75]. Another simple way is

using a good white list.

AutowareScore is determined by observing the periodic access of client to

server with some following steps, a calculation sample of AutowareScore for a

server Si is illustrated in Figure 2.5.

• Access time to server Si is divided into segments. Each time segment △j

from tj to tj+1, (j = 1, 2, ...N − 1), kj is defined by a number of requests

in that segment, and Xj = (xj1, xj2, ...xjn) is a vector which presents the

periodic access graph between this time segment △j, the δ(tj) is calculated

as in Equation (2.1.2).

δ(tj) =


σ(Xj) (kj > 0)

δBIG (kj = 0)

(2.1.2)

In the case of kj > 0, δ(tj) is standard deviation of vector Xj by using

formula in Equation (2.1.1). The constant δBIG is a big number.

2.1. Methodology 25

Figure 2.4: Overall flow of host-based proposed method.

2.1. Methodology 26

Figure 2.5: Description of AutowareScore calculation for a server Si.

• A vector δ = (δ(t1), δ(t2), ...δ(tN−1)) is accomplished after last step, σ(δ)

is calculated based on Equation (2.1.1) and reform as in Equation (2.1.3)

below:

σ(δ) =

√√√√√√
N−1∑
j=1

(¯δ(t)− δ(tj))

N − 2
(2.1.3)

• AutowareScore of server Si is determined as in Equation (2.1.4), one more

time Equation (2.1.1) is used.

AutowareScore(Si) = 1− σ(δ)

σBIG

(2.1.4)

σBIG is chosen big enough which σBIG ≥ Max(δ(σ)) for standardization

0 ≤ AutowareScore(Si) ≤ 1.

SuspiciousScore is determined by observing the access rate of client to

server. As is defined above, k = (k1, k2, ...kN−1) is a vector which presents the

number of requests in each time segment. The of SuspiciousScore server Si is

standard deviation of k which is formulated as in Equation (2.1.5).

2.2. Experimental Results 27

SuspiciousScore(Si) = σ(k) (2.1.5)

Threshold1 and Threshold2 are can be set as configurable parameters, de-

pending on typical traffic on a network.

2.2 Experimental Results

The experiment has been done by using the data which are described in Table 2.1

of section 2.1.1 (PC1) and web access data of 3 other clients (PC2, PC3, PC4), the

information of experimental data is represented in Table 2.2, and experimental

environment is shown in Figure 2.6, these data is after data preprocessing step,

as in Figure 2.4.

Exception the applications which are installed in PC1 is already known as

can be seen in Table 2.1, all the information about the kind of applications using

in PC2, PC3 and PC4 are unknown before applying the proposed method.

An host-based Windows application is developed to apply the proposed ap-

proach with above data. All the threshold values has been chosen as description

in Figure 2.4 and section 2.1.2, the time duration △ will be 1 hour, δBIG has been

automatically chosen as 30 after calculate by using Equation (2.1.3).

Threshold1 and Threshold2 are can be set as configurable parameters, de-

pending on typical traffic on a network. In this implementation, Threshold1 =

0.9 and Threshold2 = 0.5 are chosen for experimentation purpose.

The experimental results have been summarized in Table 2.3. For evaluation

the data of PC2, PC3, PC4 the application servers (column servers in Table 2.3)

are referenced with users of these PCs.

The results show that all autoware are well detected by the parameter

AutowareScore of method combined with Threshold1, and Zeus bot is detected

2.2. Experimental Results 28

Figure 2.6: Experimental model and environment.

Table 2.2: Experimental Data Collection Information

PCs Number requests Data
Length Descriptions

PC1 60,439 2 days Zeus Bot, 2 toolbars,
1 cloud drive sync tool are installed.

PC2 18,889 1 day No information
PC3 10,094 1 day No information
PC4 7,036 1 day No information

Table 2.3: Experimental Results

PC Servers Autoware
Score

Suspicious
Score

Detection
Results

PC1

Zeus Bot
C & C server 0.994 0.49 Suspicious

Auto-ware
Toolbar1 server 0.989 3.84 Auto-ware
Toolbar2 server 0.940 12.35 Auto-ware
Cloud Drive
Sync Tool server 0.997 14.89 Auto-ware

PC2 Anti-virus
software Server 0.947 13.52 Auto-ware

PC3
Cloud Drive
Sync Tool server 0.965 23.9 Auto-ware

Anti-virus
software Server 0.967 176.18 Auto-ware

PC4 All servers ≤0.79 ≤35.03 No Auto-ware

as a suspicious autoware by SuspiciousScore in combined with Threshold2.

Comparing to the methods are presented in [57, 58], the proposed method do

not try to detect the periodic or interval of bot traffic which may face with the

false alarm of other autoware traffic. Results in [57, 58] will be more effective if

the proposed method is applied as a preprocessing before method of [57, 58].

2.3. Conclusions 29

2.3 Conclusions

This chapter has proposed an approach to detect suspicious HTTP based auto-

ware merely through observing communication pattern features of natural HTTP

traffic at host level. Compare to traditional using signature method, this method

can detect new type of suspicious which behaving periodic communication to

their server without contents investigation. The proposed methods are evaluated

based on the detection of real data and its efficiency in the detection of a HTTP

based botnet and other normal autoware. Proposed method also will be needed

improvement for detection in various working models of autoware such as in net-

work level. Furthermore, the thresholds, which are used in this method, depend

on the network traffic condition. A method to calculate adaptive thresholds need

to be considered for the future work.

Chapter 3

Clustering and Identifying HTTP

Automated Communication

In this chapter, a network level method in classification of HTTP autoware is

introduced. The method is based on the study of autoware Internet access be-

havior. In order to analysis HTTP autoware communication behavior, access

graph is extracted from request based features. Accordingly, HTTP automated

traffic are clustered into groups based on their behavior. All traffic will be iden-

tified as normal, suspicious or malicious. The method is tested with real HTTP

traffic data collected through a proxy server of a private network.

3.1 Introduction

In a private network, due to security threats, all direct Transmission Control

Protocol/Internet Protocol (TCP/IP) outbound/inbound connections should be

banned. However, HTTP is an exception since, nowadays, application develop-

ment is transferred more and more onto the web, and everything users need can

be found through web services. Therefore, in some ways, if HTTP autoware can

infect a user’s PC or network, it might still transparently communicate with

30

3.1. Introduction 31

Figure 3.1: Main flows in proposed method in network level

its servers/sites. Furthermore, in a large private network, classification between

types of HTTP autoware traffic is becoming more difficult when huge numbers

of requests are generated each day.

To maintain communication, perform updates, or receive commands, all

kinds of HTTP-based autoware have common characteristics in that they repet-

itively generate legal traffic and requests to their servers/domains. However, in

details, there are some sophisticated differences in the communicating behavior of

autoware with their sites. In this chapter, a method in clustering and identifying

type of communication is proposed. Accordingly, HTTP automated traffic are

not only classified but are also identified into three kinds of traffic (normal, sus-

picious and malicious) based on HTTP autoware access behavior as summarized

in Figure 3.1

All output results are manually checked with the support of VirusTotal online

system [84] and McAfee Web Gateway [85]. In this scope of research, some

definition and evaluated steps are summarized as bellow:

3.2. Methodology 32

Figure 3.2: Main parts of URL.

• Grayware, which has not been detected as malicious in MacAfee and Virus-

total, are unknown and unnoticed traffic with users.

• Grayware might include normal and suspicious traffic. In that, suspicious

traffic are unrecommended or advertisement in MacAfee and VirusTotal.

• Other traffic will be checked manually by content investigation.

3.2 Methodology

3.2.1 Feature Extraction

HTTP traffic from a client consisted of many requests from that client to outside.

At application layer, a request includes basic information: IP address of client,

full URL, and request method. Full URL’s parts contain webpage/server URL

and parameter path, as shown in Figure 3.2. At network level, numerous features

are extracted which are made from basic client requests information as follows

• Client IP: Source IP address of machine in network which generated requests

• Request Method: main methods of HTTP requests, POST/GET.

• Request date time: Date and time when a client sends request.

• Webpage/Server URL (shorten as URL): URL requested by a Client IP but

without parameters part, as shown in Figure 3.2. Some normal web servers

3.2. Methodology 33

are hacked and some of its resource paths are exploited as C&C servers.

Additionally, parameter part are easily changed based on the specification

of requests’ content, but actually the functionality of that webpage/server

URL, such as C&C server or advertise content update, are the same in each

request. Therefore, non-parameter URL is used instead of domain or full

URL to add more detail and accuracy in classification of autoware access

behavior.

• Unique URL: Set of unique URLs requested by a Client.

• Request Interval: Break time between two consecutive requests to the same

URLs.

• Request Count: Number of requests to a URL from a client in a period of

observation data.

• URL Access Time: A period of time in second which a client accessed to a

URL from the first request to the end request

• Client Access Time: a period of time in seconds which a client accessed to

the Internet by HTTP protocol. It is determined by checking the difference

in second between the first and the end request

• Access Graph: A graph is based on requests’ intervals. It presents the access

behavior of a client to a URL. Details are described in next slide

3.2.2 Access Graph

Access graph presents communication behavior of a client to a specific URL in a

duration of time. It is formed on request interval which is extracted from HTTP

traffic. Assuming that R = {r1, r2, ..., rN} is set of requests from a client to a web-

page/server and all ri have the same webpage/server URL, as described in Figure

3.2, then access graph G is a sequence included N-1 items, G = {g1, g2, ..., gN−1}

3.2. Methodology 34

Figure 3.3: An access graph of a client request to a URL.

which is gi is a pair of (ti, di) which ti is timing of request ri+1 and di is request

interval between ri and ri+1. An access graph is shown as in Figure 3.3, in which,

X axis is timing of request (except the first request), Y axis shows the request

interval value in second. An installed autoware in a client will behave in different

access graph to each URL which it requested to. For that, this graph can present

the behavior in communication between an autoware to its webpage or server

URLs.

3.2.3 HTTP Access Behavior Analysis

In order to maintain the communication with its servers and because HTTP is

a protocol which just defines individual requests and responses, and it does not

perform interactive communication, HTTP autoware have common characteris-

tics since they follow pull style and actively requests to their servers. However, in

details, each type of them have sophisticated differences in their communication

behavior.

Malicious HTTP-based bots always connect to their command and control

server periodically in order to get the commands and updates. The number of

requests from malicious bots are not high as that from normal autoware (e.g.

3.2. Methodology 35

(a) Access graph from a malicious bot to a C&C server

(b) Access graph from a malicious bot to a C&C server

Figure 3.4: Almost no variation in access graphs of two malicious bots to their C&C
servers.

updater and downloader) which just generate requests with a long interval than

unusual malicious bots [61]. Because intervals in communication between a mali-

cious bot to their C&C server is stable, there is almost no variation in their access

graph, Figure 3.4 shows the access graph of two malicious bots’ communication.

As can be seen there, even some outlier intervals are found but the main inter-

vals of these two malicious bots are durable. Figure 3.4(a) shows access graph of

a malicious bot which has a main interval is 1800 seconds, and the bot Figure

3.4(b) owns two main intervals of around 50 seconds and 100 seconds. Malicious

access can be recognized by scoring its access speed . If they are requested with

extremely high speed they will be detected as malicious. As in Figure 3.5(a).

3.2. Methodology 36

(a) Access graph of URL which is accessed at high speed. It is accessed continuously in 23.9
hours from Dec 10, 17:00:02 to Dec 11, 16:59:59, which is the same with client’s web access time.
This constitutes 71,994 requests with speed at 0.82 times per second.

(b) Access graph of URL which is accessed at extremely high speed. This URL is accessed
continuously in 0.68 hours from Dec 12, 01:06:35 to Dec 12, 01:47:28, which is much smaller
than the client’s web access time in 23.88 hours from Dec 11, 17:02:13 to Dec 12, 16:55:15. This
constitutes 80,903 requests with speed at 32.98 times per second.

Figure 3.5: Access graph of 2 URLs which are accessed with very high speed.

This graph shows that a malicious URL’s access graph is requested 71,99 times

in 23.9 hours (0.82 time per second).

Malicious bots often connect to one control domain and to a specific server

resource during a given period of time [63]. Different from that, unwanted HTTP

applications, or grayware, such as annoying adware or spyware, often report back

to or request new information from many external resources [2]. Therefore, they

keep communicating to their numerous advertising sites or URLs to update pop-

up or advertisement and commercial content areas.

Autoware will behave with the same communication pattern to its Different

3.2. Methodology 37

(a) Access graph from an adware to URL1

(b) Access graph from an adware to URL2

Figure 3.6: Access graphs from an adware of a client IP to two different URLs are
similar

Figure 3.7: Autoware have trend access to many URLs at the same timing.

URLs as shown in Figure 3.7. If they are requested at the same or approximately

equivalent timing, access graph of URLs from a specified autoware are presented

similarly. Illustrated in Figure 3.6, a sample of two similar access graphs present

3.2. Methodology 38

Figure 3.8: Access time to two URLs from an Autoware are nearly equivalent. The
(URL1 is requested from August 21, 12:52:34 (URL2 is accessed from August 21,
12:52:33) to Dec 09, 16:38:45.

the communication from one adware to two different URLs. In order to measure

the similarity between any access graphs, a graph distance is proposed in section

3.3. In addition, autoware requested to many URLs with the same timing, so the

access duration to these URLs is approximately equal. It means that the first

and the last request’s timing to these URLs are almost the same with each other.

As can be seen on Figure 3.8, beside of the similarity of access graph, the first

and the last request’s moment of them are nearly equivalent.

Since suspicious autoware - adware, for instance- update contents, like other

autoware, they access to many URLs. However, they will collect data from many

URLs of multiple sites which own various domain names. This is not alike with

normal autoware, such as an electronic newspaper, because it self-refreshes the

contents of presenting page by accessing to many URLs but with only one domain

name. As can be seen in Table 3.1, a suspicious adware access to multiple URLs

from 10 various domains, but news update requests also access to many URLs

but just from one domain.

A suspicious autoware starts with the time of human computer start. There-

3.3. Access Graph Similarity 39

Table 3.1: Suspicious autoware have trend access to many URLs with difference
domain

No Description Access Samples

1

Suspicious autoware
,ex. adware, access
to many URLs from
various domains

http://domain1/a/h/sUK48UTFUtM2xUGD6uq5_qdnVgRzoU_ZYbtGp4ZBCeA=
http://domain2/x/brs1024
http://domain3/a/h/H9HzuwJ17XDi4ZEalNIJgcQTzfLdWpgZJrXem
http://domain3/a/h/VlXJI07mKkppFeZ7norZRqmL43NzxlE+LnJIHOG8Wy0=
http://domain4/publisher/VASTGenerator.xml
http://domain5/crossdomain.xml
http://domain6/lr/bid.php
http://domain7/crossdomain.xml
http://domain8/crossdomain.xml
http://domain8/6019&vid_id=YOUR_VIDEO_ID&vid_title=YOUR_VIDEO_TITLE
http://domain9/server/bid/liverail.bid
http://domain10/lg.php
http://domain10/

2

Normal autoware
,ex. news update,
accesses to many
URLs but from
the same domain

http://domain/_layouts/TNO.tn.MainPageSection/SdkIntegration.swf
http://domain/_layouts/Images/img-tn/yahoo.gif
http://domain/PublishingImages/img-tn/Null.gif;pv74463024071c66a5
http://domain/PublishingImages/img-tn/banner.jpg
http://domain/PublishingImages/img-tn/input-search.jpg
http://domain/PublishingImages/img-tn/bg_tag.gif
http://domain/PublishingImages/img-tn/arrow-breakcum.png
http://domain/PublishingImages/img-tn/zingmeicon.gif;pvead4c6fe82dfdf0d
http://domain/PublishingImages/img-tn/menu-top.gif

fore, it is expected that the access duration of a suspicious autoware might be

similar with user computer interaction.

On contrary with autoware, there are no interval or periodic pattern in

users’ web access. However, in recent years, many sites (e.g. shopping online

site or social media webpage) append advertisement path to their sites and use

JavaScript or Flash as auto-aware part to automatically collect the advertising

content. Therefore parts of users access sites can generate HTTP traffic which

acts as autoware communication.

3.3 Access Graph Similarity

As analysis in section 3.2.3, autoware has trend to access to multiple URLs, so

they will behave with similar access graph as can be seen in Figure 3.6. In order to

find similar access behavior among URLs, an access graph similarity is considered

to be used. There are many kind of distance or similarity measures are presented

in [69] and [70] such as Minkowski family including Euclidean L2, City block

L1 or Inner Product family including Cosine, Harmonic mean. Accordingly, the

3.3. Access Graph Similarity 40

number of items in an element needs to be equal to be compared with each other.

However, the number of requests from autoware to each URLs are not always

the same with each other. Therefore, number of points in its graph are also not

equal. In addition, autoware access graph to an URL might be difference each

time, so can not use the normal distance such as Euclidean distance to score

their similarity. To solve the problem, Modified Hausdorff distance is suggested,

the distance is presented in [79] which based on the Hausdorff distance [80] and

summarized in next sub section.

3.3.1 Modified Hausdorff Distance

This section presents about Modified Hausdorff distance which is extracted from

[79, 80]. The Hausdorff distance measures the extent to which each point of a

”model” set lines near some point of an ”image” set vice versa. Given tow finite

point sets A = (a1, a2, ..., ap) and B = (b1, b2, ..., bq), the the Hausdorff distance

is defined as:

H(A,B) = max(h(A,B), h(B,A)) (3.3.1)

where

h(A,B) = maxa∈Ah(a,B) (3.3.2)

and

h(a,B) = minb∈B||a− b|| (3.3.3)

and || · || is some underlying norm on the points of A and B, it might be L2

or Euclidean norm.

The function h(A,B) is called the directed Hausdorff distance from A to B. It

identifies the point a ∈ A. That is the furthest from any point of B and measures

the distance from a to its nearest neighbor in B (using the given norm || · ||), that

3.3. Access Graph Similarity 41

is, h(A,B) in effect ranks each point of A based on its distance to the nearest

point of B and then uses the largest ranked such point as the distance (the most

mismatched point of A). Intuitively, if h(A,B) = d, then each point of A must

be within distance d of some point of B, and there is also some point of A that

is exactly distance d from the nearest point of B (the most mismatched point).

The Hausdorff distance H(A,B) is the maximum of h(A,B) and h(B,A).

Thus, it measures the degree of mismatch between two sets by measuring the

distance of the point of A that is furthest from any point of B and vice versa.

Intuitively, if the Hausdorff distance is d, then every point of A must be within

a distance d of some point of B and vice versa. Thus, the notion of resemblance

encoded by this distance is that each member of A be near some member of B

and vice versa. Unlike most methods of comparing shapes, there is no explicit

pairing of points of A with points of B (for example, many points of A might be

close to the same point of B). The function H(A,B), can be trivially computed

in time O(pq) for two point sets of size p and q, respectively.

The Modified Hausdorff distance (MHD) in [79] compare the many functions

of h(A,B) using with H(A,B), in which h(A,B) could be as bellow, where in

that Equation 3.3.8 is similar with Equation 3.3.2.

h1(A,B) = mina∈Ah(a,B) (3.3.4)

h2(A,B) =50 Kth
a∈Ah(a,B) (3.3.5)

h3(A,B) =75 Kth
a∈Ah(a,B) (3.3.6)

h4(A,B) =90 Kth
a∈Ah(a,B) (3.3.7)

3.3. Access Graph Similarity 42

h5(A,B) = maxa∈Ah(a,B) (3.3.8)

h6(A,B) =
1

N

∑
a∈A

h(a,B) (3.3.9)

where xKth
a∈A represents the Kth ranked distance such that K/p = x%. For

example, 50Kth
a∈A corresponds to the median of the distances d(a,B),∀a ∈ A.

The directed distance h(A,B) and h(B,A) between two point sets A and

B can be combined in the following four ways to define an undirected distance

measures H(A,B), where Equation 3.3.1 is similar with Equation 3.3.11.

H1(A,B) = min(h(A,B), h(B,A)) (3.3.10)

H2(A,B) = max(h(A,B), h(B,A)) (3.3.11)

H3(A,B) =
h(A,B) + h(B,A)

2
(3.3.12)

H4(A,B) =
p×h(A,B) + q×h(B,A)

p+ q
(3.3.13)

where h(A,B) is any 3.3.4 to 3.3.9 and summarized in Table 3.2, in that

h5(A,B) and H2A,B are similar3.3.1 and 3.3.2 respectively, so D18 is original

definition of Hausdorff distance in [80].

After comparing the ways of usage which are summarized in Table 3.2 with

experiment, [79] determined that, D22 is best for matching two objects based on

their edge points. Therefore, the Equation 3.3.9 and 3.3.11 will be used to score

the similarity between access graphs in this thesis.

3.3. Access Graph Similarity 43

Table 3.2: 24 distance measures between two point sets

Directed
Distance

Function
H1 H2 H3 H4

h1 D1 D2 D3 D4

h2 D5 D6 D7 D8

h3 D9 D10 D11 D12

h4 D13 D14 D15 D16

h5 D17 D18 D19 D20

h6 D21 D22 D23 D24

3.3.2 Access Graph Similarity

In an assumption that there are two access graphs: A = (a1, a2, ..., aN) and

B = (b1, b2, ..., bM). In order to score the similarity between any two access

graphs A and B, a distance is proposed. It is based on the modified Hausdorff

(MH) distance which is presented in previous section 3.3.1.

Firstly, the distance between two points ai and bj is defined, which is calcu-

lated as a Euclidean distance d(ai, bj) = ||ai − bj|| based on the Equation 3.3.3.

After that, based on the Equation 3.3.9 the distance between point ai and

graph B is defined as d(ai, B) = minbj∈B||ai − bj||.

Finally, based on Equation (3.3.1), the modified Hausdorff (MH) distance [79]

between graph A and B is

S(A,B) = max(d(A,B), d(B,A)) (3.3.14)

The smaller the S(A,B) between graphs A and B, the more graphs A and B

are similar to each other. Two more type of distances which are based on S(A,B)

in Equation (3.3.14) are proposed. They are max and average distance between

any access graph of a group URLs, and are defined as bellow:

MaxS(G) = max(S(Ui, Uj)∀Ui,Uj∈G) (3.3.15)

3.4. Proposed Method 44

Figure 3.9: Main flows of network level proposed method.

AvgS(G) = average(S(Ui, Uj))∀Ui,Uj∈G) (3.3.16)

In Equation (3.3.15) and (3.3.16), G is group of URLs, and Ui and Uj are

any access graphs of URLs in G.

3.4 Proposed Method

Based on the autoware analyzed communication behavior and many suggested

parameters, a clustering and identifying automated communication method in

HTTP environment, including main three phrases, is proposed, as outline in

Figure 3.9 and 3.10. Three phases are pre-processing, clustering and identifying

phases. Accordingly, bellow steps will be processed

3.5. Preprocessing Phase 45

Figure 3.10: Phases of network level proposed method.

• The traffic will be captured from network, for example from a proxy.

• These traffic will be preprocessed in order to reduce the unnecessary pro-

cessed data by checking the legitimate via a second level domain. Detail of

preprocessing phase will be presented in next section 3.5.

• Next, remain URLs will be group by an unique URLs set without parameter.

This set will be clustered in clustering phase based on an algorithm which

presented in section 3.6.

• After that, in the clustering phase, unique URLs will be classified into two

group clustered URLs and unclustered URLs. All of them will be identified

in identifying phase which is presented in section 3.7.

3.5 Preprocessing Phase

This preprocessing phase is objective to eliminate unnecessary processed data.

For each client IP, the one day HTTP traffic features are extracted and prepro-

3.5. Preprocessing Phase 46

Figure 3.11: Suspicious websites are less consistent with their content when compared
with those of legitimate websites.

cessed, in order for this phase to be processed, two methods are applied:

• The first one is to filter URLs requests from Client IP through a white

list of second level domain name (SLDN). This filter method is described

in [81], according to which, the tokens in the URLs of phishing websites

are less consistent with their content when being compared with those of

legal websites. An example is illustrated in Figure 3.11. In this example,

the legitimate website contains the brand names apple in the SLDN. Even

though the phishing website also contains the brand name apple in the URL,

it is not in the SLDN. Therefore, a domain name which contains a second

level domain name is defined in SLDN white list is marked as benign.

• The second method is based on the number of requests to a URL from a

client IP. Based on the number of observed requests from autoware to a

URL, it can be seen that suspicious autoware are accessed many times to a

URL in a duration of time. Therefore, if the number of requests to a URL

is too small, it seem not to be requested by an autoware.

Also in this phase, URLs which requested with extremely fast speed in a certain

duration of time will pose a malicious autoware communication. Access speed is

3.6. Clustering Phase 47

defined as in Equation (3.5.17).

AccessSpeed(URLi) =
RequestCount(URLi)

AccessT ime(URLi)
(3.5.17)

In that, Access Time and Request Count features are described in section 3.2.1.

3.6 Clustering Phase

After pre-processing phase, in clustering phase, remaining URLs will be clus-

tered into number of groups based on their characteristics. As presented in [70],

there are many types of clustering algorithms or methods such as supervised and

unsupervised methods. In supervised method, which k-means algorithm is a fa-

mous one, the number of classes needs to be determined as its input parameter.

However, in this research, URLs are clustered based on their access behavior

with undetermined number of classes because the access graph from an auto-

ware can change by its setting or their timely update. In this section propose

an unsupervised clustering method is proposed with only minor input parameter

which is just URLs access graph. The proposed algorithm is distance/similarity

based algorithm, the input data is just access graph. The number of classes do

not need to be determined as a parameter. In which, two URLs are the same

group (requested by the same autoware from a client) if they match one of follow

conditions:

• The first and the last request timing to two URLs are approximately the

same.

• Based on the similarity of its access graphs, by checking through adaptive

threshold if their similarity score is small enough, they will be marked as

in the same group.

Accordingly, adaptive thresholds are proposed to score the similarity of access

3.6. Clustering Phase 48

Figure 3.12: The first step of clustering algorithm

graph of each URL to determine the group.

In this chapter, in order to improve the clustering phase, a new algorithm

is proposed in Table 3.3. Accordingly, there are three main steps by using the

characteristics of access time and access graph similarity.

• The first step is to determine group of URLs based on their access time,

two URLs are marked as in the same group if they have approximately

equivalent access time. This step is illustrated in Figure 3.12.

• The second step will collect the group from result of step 1 and calculate

a threshold δ which is average similarity of any two in URLs. This δ will

3.6. Clustering Phase 49

Figure 3.13: The third step of clustering algorithm

Table 3.3: Steps of Clustering Algorithm

Step Description

1

For each pair (ui, uj) in set U of unique URLs (1−M).
Denoted that (iStart, iEnd) and (jStart, jEnd)
are timing of start and end request of ui and uj respectively.
If (iStart ∼= jStart) and (iEnd

∼= jEnd) then ui and uj, are in the same group.

2 After the first step, part of URLs are clustered, each group owns
at-least two URLs. A threshold δ = AvgS(U) as in Equation (3.3.16).

3
For each URL ui which is not set group in previous step 1,
find a uj which has minimum similarity to ui denote that value is minSi

ui and uj are in the same class if one of two bellow conditions is matched:
- if minSi <δ in the case uj is still not set to any group yet.
- if minSi <MaxS(Group of uj) (as Equation (3.3.15))
in the case uj was already set to a group.

help cluster remaining URLs based on their access graph similarity.

• The last step is to continuously cluster remaining URLs after step 1 by

checking the similarity of their access graph. In that, two adaptive thresh-

olds are determined for an unclustered URL to be a member of clustered

3.7. Identifying Phase 50

Figure 3.14: Group identifying phase

group which is determined in step 1 or to be paired with other unclustered

URL to become a new group. This step is illustrated in Figure 3.13

3.7 Identifying Phase

3.7.1 Group Identifying Phase

After clustering phase, groups which contain from more than 2 URLs will be

identified into two type of group normal or adware. The steps for this phase

is shown in Figure 3.14. This phase is based on the analysis in section 3.2.3,

in which, adware tends to access to many different domain name to maintain

advertising contents. Therefore, in this phase, by counting the unique domain

names in each group, if it is greater or equal to 2, this group will be marked as

suspicious group. Vice versa, group will be marked as normal one.

3.7. Identifying Phase 51

Figure 3.15: Unclustered URL identifying phase

3.7.2 URL Identification Phase

For URLs are not clustered, a suspicion score based on their access graphs is

presented to recognize a URL is malicious or normal. Malicious bot always com-

municate to a specific URL or resource by automatically generating requests with

a stable interval (section 3.2.3), therefore, malicious bot access graph almost has

no variation. In this phase, the method do not try to detect the interval of ma-

licious requests but in target to score the variation of access graph. However,

the interval of malicious bot requests are changed some times, these are outlier

intervals, but the main interval is steady. As can be seen in Figure 3.4(a), some

intervals are uncertain but stable interval is around 1800 seconds. The number

of points in access graph outlier intervals in access graph is minor in comparison

3.7. Identifying Phase 52

with main stable intervals. In order to detect outlier intervals from access graph

X, a density-based algorithm (DBSCAN) in [86] is suggested. DBSCAN will help

cluster all the similarity intervals in access graph X, from there, outlier intervals

are clustered in group with smaller number of members. Details of DBSCAN

algorithm is in [86], a basic contents of this algorithm is presented in next section

3.7.2.

The flow for this phase with three main steps are shown in Figure 3.15:

• First, intervals in access graph of URL are clustered into groups by DB-

SCAN algorithm. Because malicious bot will communicate to their server

by main intervals, so groups containing main intervals will own much more

members than other groups. Outlier intervals account for the few points in

access graph, and they are belong groups which they contain smallest num-

ber of members, for that matter. These groups will be removed from access

graph. As can be seen in Figure 3.4, intervals in the dashed circles will be

detected by DBSCAN algorithm and remove from access graph before to

be processed in next step.

• Next, in order to identify a URL is malicious or not, a suspicion score is

calculated based on its access graph (outlier intervals are omitted). This

score is described in section 3.7.2. If suspicion score of a URL is less than

a threshold, this URL will be recognized as being accessed by malicious

communication.

• Remaining URLs are identified by checking the access time and dispersion

score. Suspicious autoware working along with human computer, therefore,

if access time to a URL is similar with user computer interaction, URL

will marked as accessing from suspicious. Different with malicious bot,

communication which is generated from suspicious autoware such as adware,

is alway with variation intervals. Therefore, URL own high dispersion score

(above 0.5 in this experiment) in access graph is also marked as suspicious

3.7. Identifying Phase 53

Table 3.4: Density-based Algorithm Discovering Clusters

DBSCAN (SetOfPoints, Eps, MinPts)
//SetOfPoints is UNCLASSIFIED

ClusterId := nextId(NOISE);
FOR i FROM 1 TO SetOfPoints.size DO

Point := SetOfPoints.get(i);
IF Point.ClId = UNCLASSIFIED THEN

IF ExpandCluster(SetOfPoints, Point, ClusterId, Eps, MinPts)
THEN
ClusterId := nextId(ClusterId)

END IF
END IF

END FOR
END; // DBSCAN

one. Dispersion score is described in Sub-section 3.7.2.

Density-based algorithm discovering clusters

A basic version of DBSCAN omitting details of data types and generation of

additional information about clusters is in Table 3.4 [86]. In that, SetOfPoints

is either the whole database or a discovered cluster from a previous run. Eps

and MinPts are the global density parameters determined either manually.

The function SetOfPoints.get(i) return the i-th element of SetOfPoints. The

most important function used by DBSCAN is ExpandCluster which is presented

as in Table 3.5. In that, A call of SetOfPoints.regionQuery(Point, Eps) re-

turns the Eps − Neighborhood Point in SetOfPoints as a list of points. The

ClId(clusterId) of points which have been marked to be NOISE may be changed

later, if they are density-reachable from some other point of the database. This

happens for border points of a cluster. Those points are not added to the seeds-

list because we already know that a point with a ClId of NOISE is not a core

point. Adding those points to seeds would only result in additional region queries

which would yield no new answers.

3.7. Identifying Phase 54

Table 3.5: ExpandCluster Function of DBSCAN

ExpandCluster(SetOfPoints, Point, ClId, Eps, MinPts) : Boolean;
seeds := SetOfPoints.regionQuery(Point, Eps);
IF seeds.size <MinPts THEN //no core point

SetOfPoint.changeClId(Point, NOISE);
RETURN False;

ELSE //all points in seeds are density-reachable from Point
SetOfpoints.changeClIds(seeds,ClId);
seeds.delete(Point);
WHILE seeds ̸= Empty DO

currentP := seeds.first();
result := setofPoints.regionQuery(currentP,Eps);
IF result.size ≥ MinPts THEN

FOR i FROM 1 TO result.size DO
resultP := result.get(i);
IF resultP.ClId IN (UNCLASSIFIED, NOISE} THEN

IF resultP.CiId = UNCLASSIFIED THEN
seeds.append(resultP);

END IF;
SetOfPoints.changeCiId(resultP,CiId);

END IF; // UNCLASSIFIED or NOISE
END FOR ;

END IF; // result.size >= MinPts
seeds.delete(currentP);

END WHILE; //seeds <>Empty
RETURN True ;

END IF
END; //ExpandCluster

Suspicion Score

After removing the outlier intervals by DBSCAN algorithm. A score is proposed

to measure the variation of a access graph, from which it shows suspicion of com-

munication between client to its URL. Assuming that the access graph after re-

moving outlier intervals of a URL U is specified and denoted as X = (x1, ..., xN).

Most of the HTTP malware intent to use a constant time interval or a ran-

dom interval time within a constant value between two request periods. For

example in Figure 3.4(b), it shows that the malicious bot have random inter-

vals switching between 50 and 100 seconds. Therefore, in order to detect the

periodic characteristics occurred in C&C communication, average time interval

3.8. Experimental Results and Discussion 55

vector XAvg = (x̄1, ..., x̄M) is are established, by calculating the average interval

between consecutive two subsequent flows in X. It means that x̄1 is average of

(xi1, ..., xik). A suspicion score will be defined as coefficient of variation of XAvg

as bellow equation.

SuspiciousScore(XAvg) =
σ(XAvg)

µ(XAvg)
(3.7.18)

In that σ(XAvg) and µ(XAvg) are standard deviation and mean of XAvg respec-

tively. The smaller suspicious score shows that URL is more suspicious.

Dispersion Score

Dispersion score of a URL is to measure the fragment degree of intervals in its

access graph. The score is determined by proportion between number clusters of

access graph by DBSCAN algorithm and number of requests to a URL. Assuming

that N is number of requests to a URL from a client and C is number of groups

which are clustered by DBSCAN. The dispersion score is determined as bellow.

DispersionScore(X) =
C

N
(3.7.19)

3.8 Experimental Results and Discussion

From the experiment purpose, outbound HTTP traffic from a university network

are captured through a proxy server in separated files and stored in a proxy stor-

age. The experimental model is shown as in Figure . For experiment purpose, 70

HTTP log data are selected from 430 GB real traffic imported in our experimen-

tal system. Statistic of experimental data are summarized in Table 3.6. Data

are collected from various range of time which not just in one day. As in Table

3.6, log data is from 150 minutes to 5 days, after pre-processing phase 58.85% of

URLs need to be continuously clustered and identified in next phases. All output

3.8. Experimental Results and Discussion 56

Figure 3.16: Experimental environment for network level proposed method.

Table 3.6: Experimental Data Statistic

No Item Values
1 Number of log data 70
2 Total number of requests 16,211,257
3 Max requests in a log data 3,030,216
4 Min requests in a log data 2,110
5 Min access time in a log data 150 minutes
6 Max access time in a log data 5 days

7 Requests after pre-processing phase.
(58.85% of total requests remaining)

9,540,608
(58.85%)

8 Number of Unique URLs after
pre-processing phase 10,942

results are manually check with the support of VirusTotal online system [84] and

McAfee Web Gateway [85] which is installed in experiment network.

After pre-processing phase, remaining 10,942 unique URLs are as input of

clustering phase. Results of this phase are summarized in Table 3.7. In that,

92.30% URLs (10,100 URLs) are clustered in group. These results indicate that

mostly autoware communicate to their servers with the similar behavior since just

about 7.70% URLs are unclustered which are requests with specified behavior.

As analysis in section 3.2.3, these unclustered URLs are considered as malicious

communication. As can be seen in Figure 3.17, it depends on the characteristics

3.8. Experimental Results and Discussion 57

Figure 3.17: Proportion of clustered and unclustered URLs of clustering phase

3.8. Experimental Results and Discussion 58

Table 3.7: Clustering Phase Results

No Item Values Percent
1 Unique URLs after pre-processing 10,942 100%

2 Clustered Groups (| URLs| ≥ 2) 1,591
Number of URLs 10,100 92.30%

3 Unclustred Number of URLs 842 7.70%

Table 3.8: Group Identifying Results

No Group
Type Groups Detect Results True False

URLs Percent URLs Percent URLs Percent
1 Normal 627 2,476 24.51% 2,325 93.90% 151 6.10%
2 Suspicious 964 7,624 75.49% 7,021 92.09% 603 7.91%
3 Total 1,591 10,100 100% 9,346 92.53% 754 7.47%

Table 3.9: URL Identifying Results

No URL Type Detect Results True False
URLs Percent URLs Percent URLs Percent

1 Normal 399 47.39% 316 79.20% 83 20.80%
2 Suspicious 389 46.20% 264 67.87% 125 32.13%
3 Malicious 54 6.41% 51 94.44% 3 5.56%
4 Total 842 100% 631 74.94% 211 25.06%

Table 3.10: Overall Experimental Results

No Result Number of URLs Percent
1 True 9,977 91.18%
2 False 965 8.82%
3 Total 10,942 100%

of each client, the clustered proportion between clustered and unclustered URLs

are different. Most of log data contain suspect automated access which having

burst requests since the proportion around 50% and above (black bar in Figure

3.17), and 11 log data own the access to separate URLs with difference behavior.

As in Table 3.7, 1,591 groups of 10,100 clustered URLs are as input data

for group identifying phase which is described in Figure 3.14. The identified re-

sults are details in Table 3.8. There are two kind of groups are detected, normal

and suspicious and evaluated. Normal groups mostly include all URLs which are

requested for news or analytic updates. Vice versa, suspicious groups contain

URLs which accessed for unwanted action such as advertised purposes or suspi-

3.8. Experimental Results and Discussion 59

cious download. Even still exist some false detection rate, accuracy in this step

is 93.90% and 92.09% for normal and suspicious group identifying respectively,

and total accuracy reach 92.53% since the total of false detection rate is 7.47%.

In the final step, 842 unclustered URLs (Table 3.7) will be identified as de-

scribed in Figure 3.15. In this step, three kinds of URLs normal, suspicious and

malicious are identified. The results are summary in Table 3.9. In that, malicious

URLs are detected with highest accuracy at 94.44% in that 11 URLs are recog-

nized as accessed at very high speed, one of the access graph is as in Figure 3.5.

Based on the characters of malicious autoware which infected into client IP, the

access speed and also communication behavior to these URLs are determined.

For example, as can be seen in Figure 3.5(b), just in only 0.6 hour, this URL

is requested 80,903 times so it owns highest access speed at 32.98 requests per

second. Vise versa, with URL in Figure 3.5(a), it is requested with lowest speed

at 0.82 request per second, 71,004 times in 24 hours, however it is still higher

than access speed to other URLs in experimental data. The next highest true

identifying rate is for normal URLs detection with 79.20% and lowest is of sus-

picious since it reaches 67.87%. The false negative rate of normal identifying are

20.80% because detected normal URLs are suspicious and vi-versa, the false neg-

ative rate of suspicious identifying are 32.13% because detected suspicious URLs

are normal. These results show that identifying between normal and suspicious

unclustered URLs is really tougher since behavior of the communication to them

are similar with each other. This challenge needs to be solved to increase the

effectiveness of current achievement. For that, in the future work, an additional

features need to be considered in order to reduce these false negative.

The overall results for whole phases are concluded in Table 3.10. In that

100% URLs are clustering and identifying with the accuracy reaches at 91.18%

and error rate constitutes 8.82%. In that, there are malicious communication to

5 URLs which are not detected or updated by [85] but they are identified by our

method. Comparing to [57–63], the proposed method can detect and identify not

3.9. Conclusions 60

just malicious but also suspicious traffic with very minor features at application

level.

3.9 Conclusions

In this chapter, a new novelty method in clustering and identifying HTTP auto-

mated communication is proposed. The method is improved from result [90, 91],

accordingly, URLs are not just classified into group but also identified and de-

tected by their access purposes. This findings assist network and system admin-

istrator clarify the HTTP automated traffic which are almost unknown to users,

from there the internal threats caused by HTTP autoware might be inspected

early. The huge benefit of the method is being independent from payload signa-

tures which enables the identification of many kinds of automated communication

with obfuscated and encrypted message contents.

The method works well on any network which just allow HTTP in outbound

traffic to prevent threats from TCP/IP direct connection. The accuracy of the

approach is equally high, and achieve 91.18% for overall and 94.44% for malicious

URLs detection by using only a few features at application level. In that some

URLs which are detected by our method in while they are bypassed in [85]. The

evaluation also proved that the results are not dependency period of captured

data.

Chapter 4

Application Model Proposal

In this chapter two application models are introduced for applied the research

into the real life. They are proposed as in Fig.4.1 and Fig.4.2. In which, HASCD

is abbreviation of “HTTP Automated Software Classification and Detection”.

4.1 Host based application model proposal

In host based app, in each client computer will installed a tiny software running

the method in chapter 2. The software will detect and sent results to a database.

The report should include client ip, traffic, detection results. From there, an

application will extract and support existed network defense system.

The results from clients will be unstructured and huge each day, so Mark-

Logic NoSQL (Not only Structure Query Language) database is recommended.

As describled in [77, 78, 83], MarkLogic is an enterprise NoSQL database which

supports a very flexible and convenient XQuery when working with structured

and also unstructured data. In addition, it also has had ACID transactions

(ACID stands for Atomicity, Consistency, Isolation, and Durability). In a trans-

actional application ACID’s properties are necessary so that reads and writes are

durably logged to disk and strongly isolated from other transactions. Without

61

4.2. Network level application model proposal 62

Figure 4.1: Proposal application model of host based method

this feature, users run the risk of encountering data corruption, stale reads, and

inconsistent data. In addition, MarkLogc is really easy for setting of replication,

backing up data and it supports loading and indexing data ”as is”. That means

format of data can be stored with its original format.

4.2 Network level application model proposal

In network based app, network based HASCD will executed the method proposed

in chapter 3. The network based HASCD will detect and extract suitable results

to support existed network defense system.

The network based method in chapter 3 includes three phase: preprocessing,

clustering and identifying phases. Difference with host based app, all HTTP

traffic will be centralized processed. As consequently, the processed data will be

huge, especially the clustering phase since the number of traffic and groups are

increasingly everyday. Therefore, a big data application which it is combination

of MarkLogic data base and MapReduce of Hadoop and summarized in Figure

4.3

Hadoop is a great tool to help database application developers and organiza-

4.2. Network level application model proposal 63

Figure 4.2: Proposal application model of network based method

tions to store and analyze massive amounts of structured and unstructured data

from disparate data sources, which data are too massive to manage effectively

with traditional relational databases. Hadoop has become popular because it is

designed to cheaply store data in the Hadoop Distributed File System (HDFS)

and run large-scale MapReduce jobs for batch analysis. MapReduce is a process-

ing framework that uses a divide-and-conquer paradigm that takes a huge task

and breaks it into small parts (Map) and then aggregates the resulting outputs

from each part (Reduce). Any large task that can be broken into smaller pieces

is a candidate for use with Hadoop [87].

The combination between MarkLogic database and MapReduce of Hadoop in

this framework is described in Figure 4.3. Whereby, a cluster of MarkLogic is set,

and due to optimizing performance in query to database, three XML Database

Connector (XDBC) application servers, Data Collection, Clustering and Data

Analysis, are configured along with a number of forests. There are three modules

are working independently for each phase, details are expressed as bellow:

• Data Manipulation Module (DMM) which will read raw log files, convert to

XML and text format, and do the preprocessing before stored into Mark-

Logic database via Data Collection Application Server. Pre-processing

4.2. Network level application model proposal 64

Figure 4.3: Big data application for observation, clustering and identifying frame-
work. Phase 1, 2, 3 are pre-processing, clustering and identifying phase respectively

phase (phase 1) is included as a part in this module. Details of this phase

is presented in section 3.5 of Chapter 3.

• Core and heavy functions are deployed in the middle part between Mark-

Logic database and MapReduce of Hadoop, Clustering Module (CM). This

module will archive results from Pre-processing phase, and URLs are clus-

tered in MapReduce by the distributed processing paradigm. This is clus-

tering phase (phase 2). Algorithm of this phase is presented in section 3.6

4.2. Network level application model proposal 65

Figure 4.4: Process flow of Clustering phase on MapReduce of Hadoop

of Chapter 3. Finally, results of Phase 2 will be returned to MarkLogic

database through Clustering XDBC application server. The data exchange

between MarkLogic and MapReduce of Hadoop will be undertaken by a

connector [88]. Detail process flow of this phase is described in Figure 4.4.

• Detection and Identification Module (DIM) is implemented for identifying

phase (phase 3). This phase process is described in section 3.7 of Chapter

3. It will process the result which archived from Phase 2, and work with

database through Data Analysis Application Server, after that give out

processed results.

Each modules DMM, CM and DIM in framework are implemented as each

pre-processing, clustering, and identifying phase respectively. Phases’ logic or

algorithm will be described detail in chapter 3. In the experimental environment,

a free developer licenses of MarkLogic version 8.0.1 and Hadoop 2.6.0 are used

4.2. Network level application model proposal 66

Figure 4.5: Number of requests in each log data of one IP. X axis shows the number
of requets and Y axis show the client’s log data index from 1 to 70.

4.2. Network level application model proposal 67

Figure 4.6: Access time from client IP to the Internet. X axis shows the access time
in Hours and Y axis show the client’s log data index from 1 to 70.

4.2. Network level application model proposal 68

Figure 4.7: Processing time of experimental implementation

Table 4.1: Experimental System Specification

No Items Description

1 MarkLogic

A Cluster is installed in two PCs,
PC1 is exchange data to
Mapreduce of Hadoop (phase 2),
PC2 is implemented as phase 1 and phase 3
PC1 specification
- CPU: Intel Core 2 Quad CPU Q6600
- CPU Cores: 4
- Processor base operating frequency: 2.4 GHz
- RAM: 4GB
PC2 specification
- CPU: Intel Core i7 965
- CPU Cores: 4
- Processor base operating frequency: 3.2 GHz
- RAM: 8GB

2 Mapreduce
of Hadoop

Execution on a sever with below Specification
- CPU: Intel Xeon Processor
E5-2430 v2 (15M Cache, 2.50 GHz)
- CPUs: 2
- CPU Cores: 6
- Threads number: 12
- Processor base operating frequency: 2.5 GHz
- RAM: 128GB

3 Experiment
System Programming

Programming Language are C# on Microsoft
Dotnet Framework and Java.

4.2. Network level application model proposal 69

[89]. Outbound HTTP traffic from a university network is captured through a

proxy server in separated files and stored in a proxy storage.

Three phases in Figure 4.3 are implemented in experiment environment as

described in Table 4.1. In order to have balance input data to evaluate the

processing time, experimental data of clients Internet access are captured in one

day, around 24 hours. Details of access time and request number are expressed

in Figure 4.5 and 4.6. In that, number of requests in each log are from 58,606 to

479,751 times. Processing time of application (excluding processing time of phase

1) is shown in Figure 4.7. In that, data of clients will be grouped into 5 clients

and executed increasingly from 1, 5, 10 and so on until 70 clients. As can be

seen that, the processing time fast increased since process data of 1 to 25 clients,

after that, the processing time is stable around 18 seconds since the number of

clients are in the range from 30 to 70. The processing time takes logarithmic

complexity. Overall, minimum and maximum of processing time are respectively

8.56 and 19.18 seconds, average processing time is 15.58 seconds.

Chapter 5

Conclusion and Future work

5.1 Research Results Summary

HTTP autoware is very diverse and sophisticated. Beside the good one, suspicious

and malicious application are widely deployed on the public network. The traffic

from these application are almost unknown and unnoticed to users. Detecting

and Identifying these unknown HTTP automated traffic are really great challenge

because they are merge transparently with normal and users’requests. Uncon-

sciously, there are high risks of PCs in any network are not strictly controlled

by users. These exposed to be infected by unwanted autoware and become inter-

nal threat. In this research, host and also network based methods are proposed

in classification and detection of autoware based on their access communication

behavior. In that, access behavior of multiple autoware is analyzed with minor

features.

In the host base, the behavior of autoware is observed and analyzed through

two parameters periodic access and access rate. The observation shows that these

two features of suspicious autoware are stable than others normal autoware. In

another word, almost no variation in the graph of periodic access and access

rate in a period of time. The advantage of host-based application is that the

70

5.1. Research Results Summary 71

application can be applied for single PC (without interconnected network) with

limitation of memory and resource. In addition, the design in host space within

interconnected network will help to reduce the risk the whole network since the

traffic are possible generated from malware infection can be ban from the source.

It is self-surveillance for users. The application will help users monitor or watch

their traffic to identify suspicious one and do the filtering before they are allowed

joining the network from their PC.

In the network level, multiple traffic from many clients are observed and

behavior of each kind of autoware are recognized. In that, malicious HTTP-

based bots always connect to their command and control server periodically in

order to get the commands and updates. The number of requests from malicious

bots are not high as normal autoware (e.g. updater and downloader) which just

generate requests with a long interval than unusual malicious bots. Malicious

access is recognized by scoring the its access speed. Malicious bots often connect

to one control domain and to a specific server resource during a given period of

time. Difference with that, unwanted HTTP applications, or grayware, such as

annoying adware or spyware, often report back to or request new information from

many external resources. Therefore, they keep communicating to their numerous

advertising sites or URLs to update pop-up or advertisement and commercial

content areas. Autoware will behave the same communication pattern to its

difference URLs. if they are requested at the same or approximately equivalent

timing, so access graph of URLs from a specified autoware are presented similar.

In addition, autoware requested to many URLs with the same timing, so the

access duration to these URLs is approximately equal. It means that the first

and the last requests timing to these URLs are almost the same with others.

Suspicious autoware, for instance adware, since they update contents, like other

autoware they access to many URLs however they will collect data from many

URLs of multiple sites which own various domain names. This is not alike with

normal autoware, such as a electronic newspaper, since it self-refresh the contents

5.2. Future Work 72

of presenting page by accessing to many URLs but with only one domain name.

A suspicious autoware starts with the time of human computer start. Therefore,

it expected that the access duration of a suspicious autoware might be similar

with user computer interaction.

The results in network level are not focused for a specific URLs but for

group of URLs for a specific purpose. The findings assist network and system

administrator clarify the HTTP automated traffic which are almost unknown

to users, from there the internal threats caused by HTTP autoware might be

inspected early. Besides that, a framework using combination of MarkLogic NoSql

and Map Reduce Hadoop database is implemented to help dealing with huge

captured traffic.

All methods are experimented by using real traffic and give a good results

since mixture traffic of all kind autoware are still identified and detected. The

proposed methods are just based on analysis of access graph and other minor

features which can be simply captured at application level, therefore, they are

also easily implemented in real environment. Network level proposed method is

able to processed distributed, these will help reducing the processing time. In

that, the experimental implementation for network level method in a big data

system, which are combined MarkLogic NoSQL Database with Map Reduce of

Hadoop, proves that it shows good performance since it has to process with huge

traffic.

5.2 Future Work

All experiments show good results, however false alarm still contributes, espe-

cially in network level method. In that, the result shows that the false detection

between normal and suspicious unclustered are slightly high. The main neces-

sary improvement in the future work is to reduce these false alarm. In that,

5.2. Future Work 73

new features are considered to be added, that are related to the URLs proper-

ties to improve the accuracy in suspicious and normal identifying for unclustered

URLs in network based method. In host based method, a mechanism need to be

considered to calculate adaptive thresholds all feature scores.

Along with that, deep machine learning method is also considered in order

to improve the achievement of current result. In addition, suspicious and mali-

cious software always effort to spread out them-self on other clients in the same

network. A proposal method in order to cluster of clients based on their auto-

mated communication is considered, in which, system or network administrator

can score the activity of malware and also early detect the threats from inter-

nal. In addition, malicious HTTPS detection need to be considered since all the

communication has trend to establish in secure channel.

Acknowledgements

The contents in this thesis were made possible by many people. Firstly, I would

like to express my sincere gratitude to my advisor Professor Yasuhiro Nakamura

for being excellent mentor and for his guidance, feedback, motivation, immense

knowledge and patience throughout my PhD study. I could not have imagined

having a better advisor and mentor for my PhD study. Besides my advisor, special

thanks to my PhD Assessment Committee members, Professor Hiroshi Yoshiura

of The University of Electro-Communications and Associate Professor Hidema

Tanaka of National Defense Academy for their insightful comments, valuable

discussions and encouragement, but also for the hard questions which invented

me to widen my research from various perspectives.

I would like to thank Associate Professor Munetoshi Iwakiri and my fellow lab

mates of Software Engineering Laboratory for the stimulating discussions, for the

wonderful time we were working together, and for all the fun we have had in the

last three years. I am grateful to all the staff members in the Software Laboratory,

Electronics and Information Engineering Computer and also the support staffs

at National Defense Academy for encouraging and supporting my study through

grants and course planning.

Last, but not least, I would like to thank my family and friends for their

support. Special thanks to my parents, my parents-in-law, my brothers, my wife

(Trang) and my children (Minh and Nam) for supporting me spiritually, allowing

me to concentrate throughout producing this thesis and my life in general.

74

Bibliography 75

Bibliography

[1] Sarah Gordon, “Fighting Spyware and Adware in the Enterprise,”in Infor-

mation Security Journal: A Global Perspective, vol. 14, no. 3, pp. 14–17,

2005.

[2] Bartlett, G.; Heidemann, J.; Papadopoulos, C., “Low-rate, flow-level period-

icity detection,” in Computer Communications Workshops (INFOCOM WK-

SHPS), 2011 IEEE Conference on, pp.804–809, April 2011.

[3] G. Macia-Fernandez, J. E. Dıaz-Verdejo, P. Garcıa-Teodoro, and F. de Toro-

Negro, “LoRDAS: A low-rate DoS attack against application servers,”in Crit-

ical Information Infrastructures Security: Second International Workshop,

CRITIS 2007, ser. Lecture Notes in Computer Science, J. Lopez and B. M.

Hammerli, Eds. Berlin/Heidelberg, Germany: Springer-Verlag, vol. 5141, pp.

197–209, 2008.

[4] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi,

and L. Wang, “On the Analysis of the Zeus Botnet Crimeware Toolkit,” in

Proc. of International Conference on Privacy, Security and Trust, pp. 31–38,

August 17-19, 2010.

[5] Nicolas Falliere and Eric Chien, “Zeus: King of the

bots,” Symantec Security Response, 2009 Retrived from

https://www.symantec.com/content/en/us/enterprise/media/security

response/whitepapers/zeus_king_of_bots.pdf, last accessed: November

2016.

[6] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee. Polyunpack, “Au-

tomating the hidden-code extraction of unpack-executing malware,” In Com-

puter Security Applications Conference, 2006. ACSAC’06. 22nd Annual,

pages 289–300. IEEE, 2006.

Bibliography 76

[7] J. Oberheide, E. Cooke, and F. Jahanian., “Cloudav: N-version Antivirus

in the Network Cloud,” In Proceedings of the 17th conference on Security

symposium, pages 91–106. USENIX Association, 2008.

[8] M. A. Rajab, L. Ballard, N. Lutz, P. Mavrommatis, and N. Provos, “CAMP:

Content-agnostic malware protection,” in Network and Distributed Systems

Security Symposium (NDSS), Internet Society, 2013.

[9] Silvio Valenti, Dario Rossi, Alberto Dainotti, Antonio Pescapè, Alessandro

Finamore, Marco Mellia, “Reviewing Traffic Classification,” in Chapter Data

Traffic Monitoring and Analysis, Lecture Notes in Computer Science, Springer

Berlin Heidelberg, vol. 7754, pp. 123–147, 2013.

[10] Bermolen, P., Mellia, M., Meo, M., Rossi, D., Valenti, S., “Abacus: Accurate

behavioral classification of P2P-TV traffic,” Elsevier Computer Networks, vol.

55, issue 6, pp. 1394-–1411, 25 April 2011.

[11] Laurent Bernaille, Renata Teixeira, and Kave Salamatian, “Early application

identification,” in Proceedings of the ACM CoNEXT conference (CoNEXT

’06). ACM, New York, NY, USA, article 6, 12 pages, 2006.

[12] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli,

“Traffic classification through simple statistical fingerprinting,” in ACM SIG-

COMM Computer Communication Review, vol. 37, issue 1, pp. 5-16, January

2007.

[13] Alberto Dainotti, Antonio Pescapé and Carlo Sansone, “Early Classification

of Network Traffic through Multi-classification,” in Chapter Traffic Monitor-

ing and Analysis, Lecture Notes in Computer Science, Springer Berlin Hei-

delberg, vol. 6613, pp. 122–135, 2011.

[14] Alessandro Finamore, Marco Mellia, Michela Meo and Dario Rossi, “KISS:

Stochastic Packet Inspection Classifier for UDP Traffic,” in IEEE/ACM

Transactions on Networking, vol. 18, no. 5, pp. 1505–1515, Oct. 2010.

Bibliography 77

[15] Tom Z. J. Fu, Yan Hu, Xingang Shi, Dah Ming Chiu and John C. S. Lui,

“PBS: Periodic Behavioral Spectrum of P2P Applications”, in Chapter Pas-

sive and Active Network Measurement, Lecture Notes in Computer Science,

Springer Berlin Heidelberg, vol. 5448, pp. 155–164, 2009.

[16] Patrick Haffner, Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang,

“ACAS: automated construction of application signatures,” in Proceedings of

the 2005 ACM SIGCOMM workshop on Mining network data (MineNet ’05).

ACM, New York, NY, USA, pp. 197–202, 2005.

[17] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and Kc claffy.

“Transport layer identification of P2P traffic,” in Proceedings of the 4th ACM

SIGCOMM conference on Internet measurement (IMC ’04). ACM, New York,

NY, USA, pp. 121-134, 2004.

[18] Amir R. Khakpour and Alex X. Liu, “High-Speed Flow Nature Identifica-

tion,” Distributed Computing Systems, 2009. ICDCS ’09. 29th IEEE Inter-

national Conference on, Montreal, QC, pp. 510–517, 2009.

[19] Hyunchul Kim, KC Claffy, Marina Fomenkov, Dhiman Barman, Michalis

Faloutsos, and KiYoung Lee, “Internet traffic classification demystified:

myths, caveats, and the best practices,” In Proceedings of the 2008 ACM

CoNEXT Conference (CoNEXT ’08). ACM, New York, NY, USA, , Article

11 , 12 pages, 2008.

[20] Justin Ma, Kirill Levchenko, Christian Kreibich, Stefan Savage, and Geoffrey

M. Voelker, “Unexpected means of protocol inference,” in Proceedings of the

6th ACM SIGCOMM conference on Internet measurement (IMC ’06). ACM,

New York, NY, USA, pp.313–326, 2006.

[21] Anthony McGregor, Mark Hall, Perry Lorier and James Brunskill, “Flow

Clustering Using Machine Learning Techniques,” in Chapter Passive and Ac-

Bibliography 78

tive Network Measurement, Lecture Notes in Computer Science, Springer

Berlin Heidelberg, vol. 3015, pp. 205–214, 2004.

[22] David Moore, Ken Keys, Ryan Koga, Edouard Lagache, and K. C. Claffy,

“The CoralReef Software Suite as a Tool for System and Network Adminis-

trators,” in Proceedings of the 15th USENIX conference on System adminis-

tration (LISA ’01). USENIX Association, Berkeley, CA, USA, pp. 133–144,

2001.

[23] Andrew W. Moore and Konstantina Papagiannaki, “Toward the accurate

identification of network applications,” in Proceedings of the 6th interna-

tional conference on Passive and Active Network Measurement (PAM’05),

Constantinos Dovrolis (Ed.). Springer-Verlag, Berlin, Heidelberg, pp. 41–54,

2005.

[24] Thuy T.T. Nguyen and Grenville Armitage, “A survey of techniques for in-

ternet traffic classification using machine learning,” in IEEE Communications

Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, Fourth Quarter 2008.

[25] Vern Paxson, “Bro: a system for detecting network intruders in real-time,”

Computer Networks: The International Journal of Computer and Telecom-

munications Networking, vol. 31, issue 23-24, pp. 2435–2463, December 1999.

[26] Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and Nick Duffield,

“Class-of-service mapping for QoS: a statistical signature-based approach to

IP traffic classification,” in Proceedings of the 4th ACM SIGCOMM confer-

ence on Internet measurement (IMC ’04). ACM, New York, NY, USA, pp.

135–148, 2004.

[27] Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang, “Accurate, scalable

in-network identification of p2p traffic using application signatures,” in Pro-

ceedings of the 13th international conference on World Wide Web (WWW

’04). ACM, New York, NY, USA, pp. 512–521, 2004.

Bibliography 79

[28] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya, “Profiling internet

backbone traffic: behavior models and applications,” in Proceedings of the

2005 conference on Applications, technologies, architectures, and protocols

for computer communications (SIGCOMM ’05). ACM, New York, NY, USA,

pp. 169–180, 2005.

[29] IANA, List of assigned port numbers.

http://www.iana.org/assignments/port-numbers, last accessed: Novem-

ber 2016.

[30] T. Karagiannis, A. Broido, N. Brownlee, K. C. Claffy and M. Faloutsos,

“Is P2P dying or just hiding? [P2P traffic measurement],” in Proceedings of

Global Telecommunications Conference, 2004. GLOBECOM ’04. IEEE, vol.

3, pp. 1532–1538, 2004.

[31] Tstat, http://tstat.tlc.polito.it, last accessed: November 2016.

[32] l7filter, Application layer packet classifier for Linux, http://l7-

filter.clearfoundation.com/, last accessed: November 2016.

[33] G. Aceto, A. Dainotti, W. de Donato and A. Pescape, “PortLoad: Taking the

Best of Two Worlds in Traffic Classification,” in Proceedings of INFOCOM

IEEE Conference on Computer Communications Workshops, San Diego, CA,

pp. 1–5, 2010.

[34] F. Risso, M. Baldi, O. Morandi, A. Baldini and P. Monclus, “Lightweight,

Payload-Based Traffic Classification: An Experimental Evaluation,” in Pro-

ceedings of IEEE International Conference on Communications, Beijing, pp.

5869–5875, 2008.

[35] Wm. A. Wulf and Sally A. McKee, “Hitting the memory wall: implications

of the obvious,” ACM SIGARCH Computer Architecture News, vol. 23, issue.

1, pp. 20–24, March 1995.

Bibliography 80

[36] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and

Jonathan Turner, “Algorithms to accelerate multiple regular expressions

matching for deep packet inspection,” in Proceedings of the 2006 conference

on Applications, technologies, architectures, and protocols for computer com-

munications (SIGCOMM ’06). ACM, New York, NY, USA, pp. 339–350, 2006.

[37] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto, “iN-

FAnt: NFA pattern matching on GPGPU devices,” ACM SIGCOMM Com-

puter Communication Review, vol. 40, issue. 5, pp. 20–26, October 2010.

[38] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin

Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park, “Kargus: a highly-

scalable software-based intrusion detection system,” in Proceedings of the

2012 ACM conference on Computer and communications security (CCS ’12).

ACM, New York, NY, USA, pp. 317–328, 2012.

[39] Y. Liu, D. Xu, L. Sun and D. Liu, “Accurate Traffic Classification with Multi-

threaded Processors,” in Proceedings of Knowledge Acquisition and Modeling

Workshop, 2008. KAM Workshop 2008. IEEE International Symposium on,

Wuhan, pp. 478–481, 2008.

[40] G. Szabó, I. Gödor, A. Veres, S. Malomsoky, and S. Molnar, “Traffic classifi-

cation over gbit speed with commodity hardware,” IEEE J. Communications

Software and Systems, vol. 5, 2010.

[41] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis, “MIDeA:

a multi-parallel intrusion detection architecture,” in Proceedings of the 18th

ACM conference on Computer and communications security (CCS ’11). ACM,

New York, NY, USA, pp. 297–308, 2011.

[42] Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng,

and Qunfeng Dong, “GPU-based NFA implementation for memory efficient

high speed regular expression matching. In Proceedings of the 17th ACM

Bibliography 81

SIGPLAN symposium on Principles and Practice of Parallel Programming

(PPoPP ’12). ACM, New York, NY, USA, pp. 129–140, 2012.

[43] A. R. Khakpour and A. X. Liu, “High-Speed Flow Nature Identification,”

Distributed Computing Systems, 2009. ICDCS ’09. 29th IEEE International

Conference on, Montreal, QC, pp. 510–517, 2009.

[44] Valentín Carela-Español, Pere Barlet-Ros, Marc Solé-Simó, Alberto Dain-

otti, Walter de Donato, Antonio Pescapé, “K-Dimensional Trees for Continu-

ous Traffic Classification,” in Traffic Monitoring and Analysis, Lecture Notes

in Computer Science, vol. 6003, pp. 141–154, 2010.

[45] A. Dainotti, W. de Donato, A. Pescape and P. Salvo Rossi, “Classification

of Network Traffic via Packet-Level Hidden Markov Models,” IEEE GLOBE-

COM 2008 - 2008 IEEE Global Telecommunications Conference, New Orleans,

LO, pp. 1–5, 2008.

[46] A. Dainotti, A. Pescape and H. c. Kim, “Traffic Classification through Joint

Distributions of Packet-Level Statistics,” in Proceedings of Global Telecom-

munications Conference (GLOBECOM 2011), 2011 IEEE, Houston, TX,

USA, 2011, pp. 1–6, 2011.

[47] Andrew Moore and Denis Zuev, “Internet traffic classification using bayesian

analysis techniques,” in Proceedings of the ACM SIGMETRICS international

conference on Measurement and modeling of computer systems (SIGMET-

RICS ’05). ACM, New York, NY, USA, pp. 50–60, 2005.

[48] Nigel Williams, Sebastian Zander, and Grenville Armitage, “A preliminary

performance comparison of five machine learning algorithms for practical IP

traffic flow classification,” ACM SIGCOMM Computer Communication Re-

view, vol. 36, issue. 5, pp. 5–16, October 2006.

Bibliography 82

[49] Andrew Moore , Michael Crogan , Queen Mary , Denis Zuev , and Michael

L. Crogan, “Discriminators for use in flow-based classification,” in Technical

report RR-05-13, University of Cambridge, 2005.

[50] Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954

(Informational), https://tools.ietf.org/html/rfc3954, October 2004, last ac-

cessed: November 2016.

[51] Thomas Karagiannis, Konstantina Papagiannaki, Nina Taft, and Michalis

Faloutsos, “Profiling the end host,” in Proceedings of the 8th international

conference on Passive and active network measurement (PAM’07), Steve Uh-

lig, Konstantina Papagiannaki, and Olivier Bonaventure (Eds.). Springer-

Verlag, Berlin, Heidelberg, pp. 186–196, 2007.

[52] Marios Iliofotou, Prashanth Pappu, Michalis Faloutsos, Michael Mitzen-

macher, Sumeet Singh, and George Varghese, “Network monitoring using

traffic dispersion graphs (tdgs),” in Proceedings of the 7th ACM SIGCOMM

conference on Internet measurement (IMC ’07). ACM, New York, NY, USA,

pp. 315–320, 2007.

[53] Yu Jin, Nick Duffield, Patrick Haffner, Subhabrata Sen, and Zhi-Li Zhang,

“Inferring applications at the network layer using collective traffic statistics,”

in ACM SIGMETRICS Performance Evaluation Review, vol. 38, issue. 1, pp.

351–352, June 2010.

[54] A. Moser, C. Kruegel and E. Kirda, “Exploring Multiple Execution Paths

for Malware Analysis,” 2007 IEEE Symposium on Security and Privacy (SP

’07), Berkeley, CA, pp. 231–245, 2007.

[55] Probst, Christian W.and Hansen, René Rydhof and Nielson, Flemming,

“Where Can an Insider Attack?,” Formal Aspects in Security and Trust:

Fourth International Workshop, FAST 2006, Hamilton, Ontario, Canada,

Springer Berlin Heidelberg, pp 127–142, August 26–27, 2006.

Bibliography 83

[56] A. Averbuch, M. Kiperberg, and N. Zaidenberg. “An efficient vm-based soft-

ware protection,” In Network and System Security (NSS), 2011 5th Interna-

tional Conference on, pages 121–128. IEEE, 2011.

[57] Daryl Ashley, “An algorithm for http bot detection,” University of Texas at

Austin - Information Security Office, 2011.

[58] J. S. Lee, H. Jeong, J. H. Park, M. Kim and B. N. Noh, “The Activity Anal-

ysis of Malicious HTTP-Based Botnets Using Degree of Periodic Repeatabil-

ity,” Security Technology, 2008. SECTECH ’08. International Conference on,

Hainan Island, pp. 83–86, 2008.

[59] Meisam Eslahi, Habibah Hashim and Noorita Tahir, “An Efficient False

Alarm Reduction Approach in HTTP-based Botnet Detection,” in Proc. IEEE

Symposium on Computers & Informatics, pp. 201–205, April 2013.

[60] Wei Lu, Mahbod Tavallaee, and Ali Akbar Ghorbani, “Automatic discovery

of botnet communities on large-scale communication networks,” in Proc.

the 4th International Symposium on Information, Computer, and Communi-

cations Security, Sydney: Australia, pp. 1–10, 2009.

[61] Basil AsSadhan, Jose M.F. Moura, “An efficient method to detect periodic

behavior in botnet traffic by analyzing control plane traffic”, Journal of Ad-

vanced Research, vol. 5, issue. 4, pp. 435–448, 2014.

[62] Christian J. Dietrich, Christian Rossow, Norbert Pohlmann, “CoCoSpot:

Clustering and recognizing botnet command and control channels using traffic

analysis,” Computer Networks, vol 57, issue 2, pp. 475–486, 4 February 2013.

[63] Sung-Jin Kim, Sungryoul Lee and Byungchul Bae, “HAS-Analyzer: Detect-

ing HTTP-based C&C based on the Analysis of HTTP Activity Sets,” KSII

Transactions on Internet and Information Systems, vol. 8, no. 5, May, 2014.

Bibliography 84

[64] Seungwon Shin, Zhaoyan Xu, and Guofei Gu, “EFFORT: A new host-

network cooperated framework for efficient and effective bot malware de-

tection”, Computer Networks: The International Journal of Computer and

Telecommunications Networking, vol 57 issue 13, pp. 2628–2642, September,

2013.

[65] A. Blum, B. Wardman, T. Solorio, and G. Warner., “Lexical feature based

phishing url detection using online learning,” InAISec ’10 Proceedings of the

3rd ACM workshop on Artificial intelligence and security, pp 54–-60, 2010.

[66] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker., “Beyond blacklists: learning

to detect malicious web sites from suspicious urls,” InProceedings of the 15th

ACM SIGKDD international conference on Knowledge discovery and data

mining, pp 1245-–1254. ACM, 2009.

[67] Teh-Chung Chen, Scott Dick, and James Miller, “Detecting visually similar

Web pages: Application to phishing detection,” ACM Transaction on Internet

Technology, vol. 10, issue 2, article 5, pp. 5:1–5:38, June 2010.

[68] Dilip Singh Sisodia and Shrish Verma, “Web Usage Pattern Analysis

Through Web Logs: A Review,” in Proc. of the International Joint Con-

ference on Computer Science and Software Engineering (JCSSE), pp.49–53,

2012.

[69] Sung-Hyuk Cha, “Comprehensive Survey on Distance/Similarity Measures

between Probability Density Functions,”International Journal of Mathemat-

ical Models and Methods in Applied Sciences, Vol. 1, no. 4, pp.300–307, 2007.

[70] Rui Xu and Donald Wunsch II, “Survey of Clustering Algorithms,” IEEE

Transactions on Neural Networks, Vol.16, No.3, pp. 645–678, 2005.

[71] Chris Biemann, “Chinese whispers: an efficient graph clustering algorithm

and its application to natural language processing problems,” in Proc. of the

Bibliography 85

First Workshop on Graph Based Methods for Natural Language Processing,

Stroudsburg, PA, USA, Association for Computational Linguistics, pp.73–80,

2006.

[72] Amblard, “Which ties to choose? A survey of social networks models for

agent-based social simulations,” In Proc. of the SCS International Confer-

ence On Artificial Intelligence, Simulation and Planning in High Autonomy

Systems, Lisbon, Portugal, pp.253–258, 2002.

[73] G. Gu, R. Perdisci, J. Zhang and W.Lee, “BotMiner: Clustering Analysis of

Network Traffic for Protocol and Structure Independent Botnet Detection,”

in Proc. the 17th Conference on Security Symposium, San Jose: USA, pp.

139-154, 2008.

[74] K. Tung-Ming, C. Hung-Chang and W. Guo-Quan, “Construction P2P fire-

wall HTTP-Botnet defense mechanism,” in Proc. the IEEE International Con-

ference on Computer Science and Automation Engineering (CSAE), Zhangji-

ajie: China, pp. 33-39, 2011.

[75] W. T. Strayer, R. Walsh, C. Livadas and D. Lapsley, “Detecting Botnets

with Tight Command and Control,” in Proc. the 31st IEEE Conference on

Local Computer Networks, Tampa, Florida: USA, pp. 195-202, 2006.

[76] Erwin Kreyszig, “Advanced Engineering Mathematics,” in E-book, 10th ed,

Shannon Corliss, Ed. John Wiley & Sons, Inc, ch. 24, pp. 1011–1015, 2011.

[77] MarkLogic database, “What is Marklogic”, Retrieved online from

“http://www.marklogic.com/what-is-marklogic/”, last accessed: November

2015.

[78] MarkLogic 8 Product Documentation, Retrieved online from

“https://docs.mark logic.com/”, last accessed: October 2015.

Bibliography 86

[79] Dubuisson, M.-P.; Jain, A.K., “A modified Hausdorff distance for object

matching,” in Proc. of the 12th IAPR International Conference, vol.1, pp.566-

568, 9–13 Oct 1994.

[80] D. P. Huttenlocher, G. A. Klanderman, and W. J.Rucklidge, “Comparing

images using the Hausdorff distance”, IEEE Transaction PAMI, vol. 15, pp.

850–863, 1993.

[81] Yi-Shin Chen; Yi-Hsuan Yu; Huei-Sin Liu; Pang-Chieh Wang, “Detect phish-

ing by checking content consistency,” in Information Reuse and Integration

(IRI), 2014 IEEE 15th International Conference on, pp.109-119, Aug. 2014.

[82] The PhishTank website, Retrieved online from

“https://www.phishtank.com/”, last accessed: June 2016.

[83] Charlie Brooks, “Enterprise NoSQL for Dummies,” in John Wiley & Sons,

Inc, Hoboken, 2014.

[84] VirusTotal, Retrieved online from “http://virustotal.com/”, last accessed:

October 2016.

[85] McAfee Web Gateway, Retrieved online from

“http://www.mcafee.com/us/products/web-gateway.aspx”, last accessed:

October 2016.

[86] Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu, “A Density-

Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise,” in Proc. of the Second International Conference on Knowledge Dis-

covery and Data Mining (KDD-96), pp. 226–231, 1996.

[87] MapReduce Tutorial, Apache Hadoop, Retrieved online from

“https://hadoop.apache.org/docs/current/hadoop-mapreduce-

client/hadoop-mapreduce-client-core/MapReduceTutorial.html”, last ac-

cessed: November 2016.

Bibliography 87

[88] MarkLogic Connector for Hadoop, Retrieved online from

“https://docs.marklogic.com/guide/mapreduce/quickstart”, last accessed:

November 2016.

[89] MarkLogic Developer License, “Enterprise NoSQL Power for Developers”,

2008 Retrived online from “https://developer.marklogic.com/free-developer”,

last accessed: October 2015.

[90] Manh Cong Tran and Yasuhiro Nakamura, ”Communication Behaviour-

based Big Data Application to Classify and Detect HTTP Automated Soft-

ware,” Journal of Electrical and Computer Engineering (Emerging Sources

Citation Index), volume 2016, issue: Innovations in Communications Secu-

rity, Article ID 2017373, pp.1–11, 2016.

[91] Manh Cong Tran and Yasuhiro Nakamura, “Classification of HTTP Auto-

mated Software Communication Behavior Using a NoSQL Database,”IEIE

Transactions on Smart Processing & Computing, vol. 5, no. 2, pp. 94–99,

April 2016.

[92] Manh Cong Tran and Yasuhiro Nakamura, “In-Host Communication Pattern

Observed for Suspicious HTTP-Based Auto-Ware Detection,” International

Journal of Computer and Communication Engineering vol. 4, no. 6, pp. 379–

389, 2015.

List of Publications

Journal

[1] Manh Cong Tran and Yasuhiro Nakamura, ”Communication Behaviour-

based Big Data Application to Classify and Detect HTTP Automated Soft-

ware,” Journal of Electrical and Computer Engineering (Emerging Sources

Citation Index), volume 2016, issue: Innovations in Communications Secu-

rity, Article ID 2017373, pp.1–11, 2016.

[2] Manh Cong Tran and Yasuhiro Nakamura, “Classification of HTTP Auto-

mated Software Communication Behavior Using a NoSQL Database,”IEIE

Transactions on Smart Processing & Computing, vol. 5, no. 2, pp. 94–99,

April 2016.

[3] Manh Cong Tran and Yasuhiro Nakamura, “In-Host Communication Pat-

tern Observed for Suspicious HTTP-Based Auto-Ware Detection,” Interna-

tional Journal of Computer and Communication Engineering vol. 4, no. 6,

pp. 379–389, 2015.

[4] Manh Cong Tran and Yasuhiro Nakamura, “A Supplementary Method for

Malicious Detection Based on HTTP-Activity Similarity Features,” Journal

of Communications, vol. 9, no. 12, pp. 923–929, 2014.

88

International Conferences 89

International Conferences

[1] Manh Cong Tran, Hai Nam Nguyen, Minh Hieu Nguyen, and Yasuhiro

Nakamura, “A Method for Clustering and Identifying HTTP Automated Soft-

ware Communication,” International Conference on Advances in Information

and Communication Technology, Thai Nguyen, Vietnam, December 12–13,

2016, volume 538 of the series Advances in Intelligent Systems and Comput-

ing, pp. 53–62, 2016.

[2] Hung Dao Tuan, Hieu Minh Nguyen, Cong Manh Tran, Hai Nam Nguyen,

Minh Hieu Nguyen, and Moldovyan Nikolay Adreevich, “Integrating Multisig-

nature Scheme into the Group Signature Protocol,” International Conference

on Advances in Information and Communication Technology, Thai Nguyen,

Vietnam, December 12–13, 2016, volume 538 of the series Advances in Intel-

ligent Systems and Computing, pp. 294–301, 2016.

[3] Sei Kudo, Manh Cong Tran and Yasuhiro Nakamura, “Traffic Visualization

for Specific Behavior Detection,” The 13th IEEE Transdisciplinary-Oriented

Workshop for Emerging Researchers(TOWERS) International Conference on

Computing and Communication Technologies, Tokyo, Japan, December 03,

2016.

[4] Manh Cong Tran, Sei Kudo and Yasuhiro Nakamura, “Malicious HTTP

Communication Detection Based on Access Graph Analysis,” The 12th IEEE-

RIVF International Conference on Computing and Communication Technolo-

gies, Hanoi, Vietnam, November 07–09, 2016.

[5] Manh Cong Tran and Yasuhiro Nakamura, “Non-Human Traffic in HTTP

Communication Environment,” The 21th International Defense Seminar, Na-

tional Defense Academy, Japan, July 04–07, 2016.

[6] Manh Cong Tran and Yasuhiro Nakamura, “Behaviour Similarity Based

to Cluster Automated HTTP Communication,” The 6th IEEE International

International Conferences 90

Conference on Communications and Electronics, Halong, Vietnam, pp. 19–24,

July 27-29, 2016.

[7] Manh Cong Tran and Yasuhiro Nakamura, “Classification of HTTP Au-

tomated Software Communication Behaviour Using NoSql Database,”The

15th International Conference on Electronics, Information and Communica-

tion (ICEIC2016), IEIE&IEEE, Da Nang, Vietnam, pp. 1–4, January 27-30,

2016.

[8] Manh Cong Tran and Yasuhiro Nakamura, “Web Access Behaviour Model

for Filtering Out HTTP Automated Software Accessed Domain”, The 10th

ACM International Conference on Ubiquitous Information Management and

Communication (ACM IMCOM 2016), Da Nang, Vietnam, January 04-06,

2016.

[9] Manh Cong Tran and Yasuhiro Nakamura, “An Approach in Suspicious

Domain Mining Based on HTTP Auto-ware Communication Behavior”, The

Fourth International Conference on Cyber Security, Cyber Warfare, and Dig-

ital Forensic, and Digital Forensic (CyberSec 2015), Jakarta, Indonesia, Sam-

poerna University, pp.1–5, October 29-31, 2015.

[10] Manh Cong Tran and Yasuhiro Nakamura, “Suspicious Domain Filter-

ing Based on Auto-ware Communication Features,” The 30th International

Technical Conference on Circuits/Systems, Computers and Communications,

IEIE&IEICE, pp. 620-622, Seoul, Korea, June 29-July 02, 2015.

[11] Manh Cong Tran and Yasuhiro Nakamura, “In-Host Communication Pat-

tern Observed for Suspicious HTTP-Based Auto-Ware Detection,” The 7th

International Conference on Computer Research and Development, Ho Chi

Minh city, Vietnam, February 6-7, 2015.

[12] Manh Cong Tran and Yasuhiro Nakamura, “A Supplementary Method for

Malicious Detection Based on HTTP-Activity Similarity Features,”, The 5th

Domestic Conferences 91

International Conference on Networking and Information Technology ICNIT

2014, Singapore, November 21-23, 2014.

[13] Manh Cong Tran and Yasuhiro Nakamura, “Abnormal Web Traffic Detec-

tion Using Connection Graph,” The First International Symposium on Com-

puting and Networking, IPSJ&IEICE, NCSS Workshop Poster, Matsuyama,

Ehime, Japan, December 4-6, 2013, BNCSS vol. 3, no. 1, pp. 57–62, January

2014.

Domestic Conferences

[1] 工藤　聖，マン・トラン・コン，中村康弘，“HTTP リクエストシーケン

スに注目した Drive-By Download 検知手法,” 情報処理学会第 78 回全国大

会 2016, 慶應義塾大学矢上キャンパス２０１６年０３月１０日～１２日．

[2] Manh Cong Tran and Yasuhiro Nakamura, “A HTTP Auto-ware Commu-

nication Behavior Based Approach to Mine Suspicious Domains,” コンピュ

ータセキュリティシンポジウム 2015, IWSEC of IPSJ&IEICE , ポスター,

長崎ブリックホール２０１５年１０月２１日～２３日．

[3] 工藤　聖, 　マン・トラン・コン, 中村　康弘, “HTTP リクエストシーケ

ンスに注目した不正リダイレクトの検出,” 　コンピュータセキュリティ

シンポジウム 2015, pp. 221-225, 長崎ブリックホール２０１５年１０月２

１日～２３日．

[4] Manh Cong Tran and Yasuhiro Nakamura, “A Study of Malicious HTTP-

based Auto-ware Identification Using Traffic Features,” 情報処理学会第 77

回全国大会, 5E-01, pp.3-445-3-446, 京都大学　吉田キャンパス, ２０１５

年３月１７日～１９日．

[5] Manh Cong Tran, Chan Sambathratanak and Yasuhiro Nakamura, “Access

Similarity in Analyzing Non-Human HTTP Traffic,”日本セキュリティ・マ

Others 92

ネジメント学会 (JSSM), 第２８回全国大会発表要旨, 東京工科大学　八王

子キャンパス, pp. 135-138, ２０１４年６月２１日．

[6] Chan Sambathratanak, Manh Cong Tran and Yasuhiro Nakamura, “Ex-

ploring Cross-Site Scripting Attacks and Possible Defense Methods,” 日本セ

キュリティ・マネジメント学会 (JSSM), 第２８回全国大会発表要旨, 東京

工科大学　八王子キャンパス, pp. 129-133, ２０１４年０６月２１日．

[7] 後藤　洋一, マン・トラン・コン, 　中村　康弘, “ダークネット観測結果

に基づく攻撃元アドレスの傾向分析手法の提案,” 2014 年　暗号と情報セ

キュリティシンポジウム, 2C2-1, 鹿児島県鹿児島市, ２０１４年０１月２

１日～２４日．

Others

[1] Manh Cong Tran and Yasuhiro Nakamura, “A Study of Application Layer

Slow-rate Denial of Service Attacks,” A commentary on 日本セキュリティ・

マネジメント学会誌 (JSSM), ISSN 134-6619, vol. 29, no1, pp. 33-37, ２０

１５年０５月.

Adward

[1] Best Oral Presentation, the 7th International Conference on Computer Re-

search and Development, Ho Chi Minh city, Vietnam, February 6-7, 2015.

