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Abstract

In this thesis we study the two different descriptions of BPS vortex loops in 3D N = 2 supersym-
metric (SUSY) non-abelian gauge theories and present their equivalence. First, we calculate the
expectation value of BPS vortex loops on an ellipsoid using a definition that involves performing
a path integral over the field with a prescribed singular behavior. By using the obtained result,
we revisit the known equivalence between Wilson and vortex loops in pure Chern-Simons theory.
This implies an alternative definition of BPS vortex loops, where a quantum mechanics on a loop
interacts with the 3D field theory. However, straightforward computations of expectation values
in the A/ = 2 SUSY theory lead to an undesired shift in the correspondence rule for parameters.
To address this issue, we propose a relation between the parameter shift and the global anomaly
of N' = 2 SUSY quantum mechanics. Additionally, for theories with U(N) gauge group, we
also develop an alternative description of vortex loops in terms of 1D N = 2 SUSY gauged
linear sigma models (GLSMs) on their worldline. Our construction reproduces certain GLSMs

for vortex loops in A/ = 4 theories studied by Assel and Gomis.
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Introduction

Quantum field theory is the most standard way to formulate particle physics and is currently
being studied in various direction. One of the subjects that has attracted the attention of many
physicists and mathematicians is the theory with supersymmetry(SUSY), which is symmetry
with respect to the exchange of bosons and fermions. SUSY provides powerful tools to analyze
problems in quantum field theories. A significant progress is the Localization techniques that
allows us to compute SUSY-preserving observables exactly.

The localization technique was applied to 3D SUSY gauge theories on S in [1], where a
formula for partition function and Wilson loop [2] was obtained for a class of ' > 2 supercon-
formal Chern-Simons(CS) matter theories. The papers [3,4] generalized the result to the N' = 2
supersymmetric theories, in which R-charge of the matter fields is no longer constrained by their
Weyl weight. Further generalization was found by [5] that studied theories on the so-called 3D
ellipsoid or squashed S3.

The essential idea of localization is that contributions of a supersymmetric path integral are
only from the configuration of bosonic fields known as saddle points. The infinite-dimensional
path integral is then reduced to a finite-dimensional integral over the saddle points. The first
purpose of this thesis is to review the localization techniques on three-dimensional manifolds
and derive the exact formula for the partition function via a supersymmetric path integral. Our

main interest is N’ = 2 SUSY gauge theories on 3D ellipsoid, for which the formula is given by

1 .
ng) = W /dTO'e o . AY—loop ' A(lj—loop‘

This is a finite-dimensional integral over the saddle point parameter 6 which takes values in a
Cartan subalgebra h C g = Lie(G). The integrand, a function of & and squashing parameter
b, comprises a classical action and one-loop determinants which are obtained by evaluating
Gaussian integrals over vector and chiral multiplets around each saddle point.

The main purpose of this thesis is to give a detailed description of supersymmetric vortex
loops based on the paper [6]. Vortex loops play an important role in the study of 3D gauge
theories like Wilson loops. They are one-dimensional defects in 3D gauge theories typically

defined by a singular behavior of the gauge field A:
A~ ,Bd(p,

where ¢ is the angle coordinate that goes around the vortex worldline and the parameter 3, called

vorticity, can be gauge-rotated to be in a Cartan subalgebra h C g. Based on this definition,



supersymmetric vortex loops were first studied in [7] for ABJM model [8]. Exact computation
of their expectation values was performed by [9,10], but so far it has been mostly restricted
to abelian gauge theories. Moreover, the results seem to indicate that vortex loops in abelian
N = 2 gauge theories are trivial; namely, as far as supersymmetric observables are concerned,
they are equivalent to the identity operator.

There is another definition for the vortex loops based on the idea that the loop supports a
quantum mechanics interacting with the 3D fields. A systematic identification in 3D N = 4
theories was given in [11] using mirror symmetry [12] and type IIB brane construction [13-15].
However, generalization of their result to theories with less SUSY does not seem straightforward.
Also, the correspondence between this definition and the previous definition based on singular
gauge field is not fully clear yet.

The analysis of vortex loops in this thesis can be divided into two main parts. First, based
on the definition in terms of singular gauge field, we give an exact formula for the path integral
in the presence of vortex loops: the expectation value of a vortex loop on an ellipsoid is given
by

1 TA — v A
<V,3> = ’m/d ge 5. A1-loop : (i-loop ’ VB(O-)

Comparing the integrand above with that of Z 535 We determine the function Vg(6) which encodes
the effect due to the presence of a vortex loop.
As consistency check of our definition, we test this result against the known equivalence of

Wilson and vortex loops in pure CS theory. In [16], Moore and Seiberg claimed that
Va(C) ~ Wy(C) for A= —

where W, (C) is a Wilson loop operator in a representation of the gauge group with the highest
weight A and k is the Chern-Simons level. The original proof of the equivalence [16] used the
coadjoint orbit quantization for representing Wilson loops. It can actually be thought of as a
prototypical example of a quantum mechanics on a loop interacting with the field theory in 3D
space. By understanding the equivalence of the Wilson and vortex loops, we have made in [6]
the first precise correspondence between the two definitions of vortex loops explained above.
In fact, by a naive comparison in N/ = 2 CS theory we find there is an unwanted shift p of

parameters in the equivalence relation:

) ok
Vs(3) = Wy(5) for A+p:7ﬁ.

This was already pointed out in [17]. At the end of Chapter 3 we propose a resolution which
relates the shift to the global anomaly in A/ = 2 SUSY quantum mechanics [18].

Second, we extend the correspondence of the two definitions of vortex loops to a wider class
of N' = 2 theories. For this purpose we will focus on vortex loops in U(N) gauge theories.
We begin in Chapter 4 by developing the description of coadjoint orbit quantum mechanics as
quiver gauged linear sigma models (GLSMs) of the kind studied in [19,20]. The index I(¢) of

the GLSM is computed by JK residue prescription [18] and we can confirm the correspondence



of the two description through the check of the relation I() = Vz(c). We also identify the
extensions of these GLSMs that account for the addition of various matter chiral multiplets
on the vortex background. This will be done for the matters in the adjoint, fundamental and
anti-fundamental representations of U(N).

As another extension, we study 1/2 BPS! vortex loops in A/ = 4 theories. We present all
the possible boundary conditions for N' = 4 multiplets in order for the vortex loop to preserve
1/2 SUSY. We also identify the corresponding worldline quantum mechanics with 1D N = 4

supersymmetry.

Organization of this thesis

This thesis starts with a review of N/ = 2 SUSY gauge theories in Chapter 1. Some preparations
necessary for dealing with curved manifolds are also introduced there. In Chapter 2, exact
formulae for the partition function and the expectation value of vortex the loop are derived using
localization techniques. In Chapter 3, we then test this result against the known equivalence of
Wilson and vortex loops in pure CS theory. GLSM descriptions are introduced in Chapter 4.
The second half of this chapter, we extend the GLSMs to describe vortex loops in 3D theories
with various matter chiral multiples. Vortex loops in A/ = 4 theories are studied in Chapter 5
where our construction reproduces some of the GLSMs for vortex loops that are identified in [11].

We conclude in Chapter 6 with the summary and discussions.

'The Bogomolny-Prasad-Sommerfield (BPS) bound, named after Evgeny B. Bogomolny [21], M. K. Prasad,
and Charles M. Sommerfield [22], is originally a lower bound for the mass of a monopole that is set by its charge.
When the bound is satisfied, the field equation simplifies, and this state is referred to as “saturated”. In theories
with supersymmetry, states or objects that satisfy similar bounds often preserve a portion of SUSY. Therefore,

the terms “BPS” and “SUSY-preserving” refer to the same concept.



Chapter 1
Supersymmetric gauge theories

In this chapter, we consider how to realize supersymmetric field theories on certain three-
dimensional manifolds. Our main interest in this thesis will be N/ = 2 supersymmetric field
theory on 3D ellipsoid, which is a squashed S3. For this purpose, we first construct the theory
on flat three-dimensional space. After some preparations to describe quantities on the curved
geometry, namely basic formulation of general relativity, we generalize our construction to Rie-
mannian manifolds. The naive general covariantization of the flat space theories does not possess
supersymmetry, but adding appropriate non-minimal couplings can keep the theories supersym-
metric. The condition that the theory admits one or several supersymmetries translates into
an equation that the supersymmetric transformation parameters must satisfy, called the Killing
spinor equation [23,24]. In the first part of this chapter, we will explain this construction and
present supersymmetric Lagrangians.

In the latter part of this chapter, we will introduce supersymmetric vortex operators, which
are one-dimensional defect operators in three-manifolds. Naive volume integrals of Lagrangians
may be divergent if such operators are inserted, because of a singular behavior of the gauge field.
The divergence is regularized by removing a tubular neighborhood of the operator and adding

specific boundary terms to the action [9,10].

1.1 3D N =2 field theories on R?

In this paper we will consider three-dimensional N' = 2 supersymmetric field theories. The
three-dimensional N' = 2 supersymmetry algebra(superalgebra) has four real supercharges,
Qo> Qa(a = 1,2). This is the same amount of supersymmetry as in four-dimensional N' = 1
field theories, and many properties of the three-dimensional superalgebra can be deduced by
reduction from four dimensions. Let us first describe some basic properties of these theories
in flat three-dimensional space with Euclidean signature, in preparation for studying them on
curved backgrounds later. For more detail, see, e.g., [25-27].

The N = 2 SUSY algebra consists of the supercharges, satisfying the algebra:

{Qa, Qs} ={Q%,Q°} =0, {Qu,Q"}=(1")SPu+is, 2 (1.1.1)



Here P, is the momentum, Z is a real central charge. We choose the three-dimensional y-matrices

to be the Pauli matrices:

(va)f:{ol,a2,o3}:{<(1) é)(? _(;)<(1) _01>}. (1.1.2)

where a = 1,2, 3 is flat index. They satisfy

1
{’Ya,’)/b} — 25ab7 ,Yab = 5 ['VCL,’Yb} — ,L-gabc,yc7 (113)

where £ is the totally anti-symmetric symbol with 23 = 1.

For a Lie group G with Lie algebra g = Lie(G), an N/ = 2 supersymmetric field theory with
gauge group G is made of a vectormultiplet V = (A, o, A\, A\, D) in the adjoint representation
of g, and by a chiral multiplet ® = (¢,, F) and an anti-chiral multiplet ® = (4,4, F') in some
representation R and R of g, respectively.

Given such supermultiplets, one can write the supersymmetric transformation rules and
SUSY-invariant Lagrangians at least on flat space. In fact, most of the formulae of 3D N = 2
supersymmetric field theory can be obtained by a dimensional reduction of 4D N = 1 theory for
which all the basic formula are given in the textbook by Wess-Bagger [28]. Note that whereas
the [28] is written in superfield notation, we prefer to use component fields since it is more

convenient to deal with the theory on curved space.

1.1.1 Chiral multiplets

A chiral multiplet ® consists of a complex scalar ¢, a complex spinor %, and an auxiliary complex

scalar F'. We denote the generator of supersymmetric transformation as

Q=£Q+80Q, (1.14)

where £, € are constant spinors called supersymmetric parameters. In many papers, including
the references cited above, SUSY operators are defined as Grassmann-even operators. But we
define it to be Grassmann-odd: supersymmetric parameters &, £ are regarded as Grassmann-even

spinors®. We denote the bilinears of spinors by

§ = &aC%Phg, 4" = LCP () Ly, (1.1.5)

where C*? is an anti-symmetric matrix with C'2 = —C?' = 1. From now on, the indices for
2-component spinors are always suppressed except needed.
The supersymmetric transformation rule on flat space for a chiral multiplet ® (not having

gauge charges) is given by

Qo =&Y, QY =iV"0.06 + FE, QF =1i&y" 0. (1.1.6)

2Qur notation and spinor conventions will mostly follow [6,29].




The CPT conjugate of ® is an anti-chiral multiplet ® = (¢,%, F), valued in the conjugate

representation R of g, with the supersymmetric transformations:

Qb =&Y, QU =iv"0u0¢ + FE, QF =iy 0a. (1.1.7)
One can compute the square of @, for example, by acting @ on ¢ twice:
Q¢ =Q(¢)
=€ (17 0a€ + F)
=iy €0, 0. (1.1.8)
Here, the second term in the second line is zero due to the spinor multiplication rule ££' = —¢’¢.

Similarly, the action of Q2 on the other fields yields
Q¢ = 00,9, Q) = 0,0, Q2F = iv"d,F, (1.1.9)
Q?*¢ = 9,9, Q?) = 0., Q’F = v, F, (1.1.10)

where v® = £y2¢. Therefore the square of Q acts as
Q? = v, (1.1.11)

on all the fields. In fact, as we will see later, the square of @ acts as a sum of bosonic symme-
tries. In the present case, the right-hand side of (1.1.11) contains only the spacetime symmetry.
In terms of supersymmetric algebra (1.1.1), it corresponds to Z = 0. The SUSY invariant

Lagrangian consisting only of ®, ® is given by

Linat = 0,0 0%¢ — ith Jop + FF. (1.1.12)

1.1.2 Vectormultiplets

A vectormultiplet corresponds to a real superfield V' which is subject to a kind of gauge trans-
formation. In the so-called Wess-Zumino (WZ) gauge, the vectormultiplet consists of a vector
A, a real scalar o, a pair of complex fermions \, \, and an auxiliary real scalar D which are

all g = Lie(G) valued. They transform under supersymmetry as

QAo = — 3 (Evah + &),
Qo = 5(Eh— &),
QN = %'y“beab —¢D —ilo - €, (1.1.13)
QA= LyEFuy +ED + i €,
QD = S(EPA~ EDX) + (€lor 3] + o ),
where
Fup = 0uAp — pAa — i[Aa, Ay, Do = 8o — i[Ag, 0. (1.1.14)



This also modifies the supersymmetry transformations of the chiral multiplet by terms involving

the vectormultiplet fields, which includes the replacements 0, — D,:

Qo =&Y, Qo = &,
Q= i(Pg + o) + FE, QY = i(Pg + ¢o)& + FE, (1.1.15)
QF =iy — o) —i€r¢,  QF =i&(DPyp — o) + ilpA
where ~ ~ ~
Do = 0qp — i Ago, Daqf = 8a¢i+ iq{Aa, (11.16)
Dy = 040 — 1Ay, Do = 00 + ip A,.

As in the previous section, one can compute the square of Q by acting Q twice on ¢. The results
is
Q*¢ = Q(&y)

= 00,0 + T, (1.1.17)

where ¥ = v,A4, — i€¢o. Similarly, acting on the other fields, which are components of a

(anti-)chiral multiplet, one obtains

Q2¢ = ad) + 2¢7 Q2(Z7 =" a(;s - nga
Q*) = " dat) + X, Q*) = v dat) — Y%, (1.1.18)
Q*F = iv*9,F + X F, Q*F = iv*9,F — F¥,

and for the fields in a vectormultiplet one obtains
Q*A, = v’y A, — iD, X,
Q%0 = 9,0 + [, 0],
Q*)\ = i 9\ + [X, N, (1.1.19)
Q) = i\ + [B, )],
QD = w"9,D + %, D).
As noted before, the square of @ generates a sum of bosonic symmetry transformations
Q? = "0, + Gaugey, (1.1.20)
where, for example,

Gaugezq) = ER(I), Gaugezé = —(i)ZR, GaugeZCPadj = [E, q)adj]a (1.1.21)

for ® in R, ® in R, and V in the adjoint representation. It corresponds to Z = ¥ in terms of

the supersymmetric algebra (1.1.1).



1.1.3 Lagrangians

Let us list the building blocks of supersymmetric Lagrangians. First, we consider a chiral
multiplet ® coupled to a vectormultiplet V. The standard kinetic term for the chiral multiplet
fields reads:

Lot =DabDad + 5026 — i6D6 — S47" Dty + 3 Dt + it

B ) (1.1.22)
+ FF +iAp — ip\p.
This Lagrangian is also expressed as follows by using the superspace formalism.
Loat = /d94IC(<I>,<I>,V), K(®,8,V)=de V. (1.1.23)

We can also consider the so-called F-term or the superpotential term for chiral multiplets:

oW W
_ 2 (. _ . s
Lot = /d9 W (®;) + c.c. 05, F; + 55,05, Yip; + c.c., (1.1.24)

with a holomorphic function W (®;) called the super potential.
For the vectormultiplet, there are two choices for the kinetic term. One is a supersymmetric

extension of the Chern-Simons (CS) term?:
ik [ s 2i :
Log = o Tr |e A O Ae — §AaAbAc — A+ 2D0|, (1.1.27)
T

where k is called the CS level and “Tr” stands for the standard trace*. These kinetic terms
Lmat, L£cs preserve scale invariance classically’. The other choice of kinetic term for the vec-

tormultiplet fields is the Yang-Mills Lagrangian

a

) . - )
L= 5 Tr [ F2 + (Dyo)? + D* + %MGDGA - %Dawu — i), A]] . (1.1.28)

3The bosonic CS theory is defined by

/DAexp {%/TY (AdA+ %Ai‘)} = /DAexp{ /TY <AdA— = )} (1.1.25)
E/DAeXp(—Scs[A]) (1.1.26)

with A anti-Hermite and A = —iA Hermite.
4For a simple group G, the trace in any representation R of a Lie group G gives an invariant bilinear form

Tr(XY) for the Lie algebra elements X,Y. Here “Ir” stands for the standard trace which is defined by

Tr(XY) = — trr(XY),

1
2Tr
where 2Tk is knows as the Dynkin index. For example, Tr = %, 1,% for the representation R = C",R", C?" of
SU(n), SO(n), Sp(n).

5Tn fact, N’ = 2 field theory defined by Lmat with the CS term Lcs preserve scale invariance at the quantum
level [30].



1.1.4 Real mass and FI parameters

When we consider the theory that has a non-trivial continuous global symmetry group Gp, it
is useful to turn on a background vectormultiplet Vp. We should think of this background field
as classical, and it takes fixed values that appear as the parameters in Lagrangians. In order to
preserve the supersymmetry, a background gauge field Vip = (AEIF), o ANE) NE) pF )) takes
values such that the supersymmetric transformation of gaugino vanishes: QA() = QA() = 0.

In flat space, one should take
A((zF) =D =0, o) =mp € gp. (1.1.29)

For a chiral multiplet with charge ¢ under a global U(1) symmetry, after turning on the back-

ground vectormultiplet field, one finds additional terms in the action:

Liat = -+ + d(gmp)*¢ + ipgmpp. (1.1.30)

The real parameter mp is called real mass in 3D, since gm in (1.1.30) corresponds to a mass for

both ¢ and 1. This also modifies the supersymmetric transformation (1.1.15), for example,

QY = -+ igmpot, QF = --- —igmp&. (1.1.31)

If a theory has a U(1) gauge symmetry, one can define a current:
- 1
Jiop = F* = 5™ P, (1.1.32)

which is conserved due to Bianchi identity. The corresponding global symmetry, U(1)p, is called
a “topological symmetry”. The charged objects of this symmetry are monopole operators. To
gauge this symmetry with a vectormultiplet V= (fla, o, 5\, A, [7), one adds the supersymmetric
extension of coupling term flaJt‘gp:

i

5= (e AadpAc + DG + 0D — M+ AN, (1.1.33)
T

which is a mixed Chern-Simons term. If one regards V as the background vectormultiplet and

turns on a constant value for the scalar ¢ = (, one obtains a Fayet-Iliopoulos (FI) term:

¢
= —=D. 1.1.34
Lrr o (1.1.34)

1.1.5 R-symmetry
The N = 2 algebra has a U(1) symmetry rotating the supercharges
Q — €°Q, Q — e7Q, (1.1.35)

which is called U(1)r symmetry or simply R-symmetry. The supersymmetric parameters &, &

have R-charge +1, —1 respectively, so they are rotated as:

E—e ¢ e (1.1.36)



One can assign the R-charges to the component fields in a single supermultiplet so that the
SUSY transformation (1.1.13), (1.1.15) preserves the R-charge.

¢ N e—irong’ CZ) N eiraq_57
W = e=i=Day, b — eir=Dag, (1.1.37)
F — e tr=2ap F — er=2ep,

If the U(1) g symmetry is gauged by V,,,, the derivatives acting on the fields with charge r should
be covariantized as follows.
Om — Om — Vi, (1.1.38)

1.2 3D N =2 field theories on curved manifold

We have reviewed the SUSY field theory on flat space so far. This section aims to realize the
SUSY field theory on a certain class of Riemannian three-manifolds Ms.

In general, the background metric breaks supersymmetry completely. Indeed, supersymme-
try is an extension of the Poincaré symmetry group, the isometry group of flat space, which is
also completely broken on an arbitrary manifold with a generic metric. On the other hand, some
M3 admit Killing vector fields v which generate non-trivial isometries. Similarly, some may
also admit (generalized) Killing spinors, denoted by ¢, €, which generate curved-space supersym-
metries. The Killing vectors and spinors then generate a “rigid supersymmetric algebra” in
curved space.

Whether the SUSY theories are realized on M3 translates into the question whether the
Killing spinors can be defined on Ms3. On Riemannian manifold, the SUSY parameters &, &
which have been constant spinors on flat space are no longer constants, but are the Killing spinors
which are understood as solutions to the Killing spinor equation on the manifold, possibly with
additional background fields. According to Festuccia and Seiberg [23], this equation for curved-
space supersymmetry arises from the rigid limit of supergravity. In this paper, we are mainly
interested in 3D N = 2 field theories with an U(1) symmetry. Such theories can be coupled to
the 3D /=2 “new-minimal” supergravity.

To have a rigid supersymmetry, one assumes all the fields in supergravity to take some
classical values, and in particular all the fermionic fields, such as gravitinos, are set to zero. In
addition, the bosonic fields are determined from that the Q-variation of fermions are zero. The
requirement of the vanishing is nothing but the Killing spinor equation. Although one could
find the suitable background fields on each three-manifold as have been done on S® [1,3,4] and
generalized to ellipsoid [5,31,32], we will follow the systematic way [24] based on the Festuccia-
Seiberg approach [23] to determine the background fields. See also review [25,26, 33].

In the first half of this section, we make some preparations for dealing with curved manifolds.
In particular, we describe how the various quantities on M3 behave under the general coordinate

and the local Lorentz transformations. After that we will discuss the Killing spinor equation, and

10



then explicitly derive the Killing spinor and the background fields on some specific Riemannian
three-manifolds Ms.

1.2.1 The general coordinate transformation

Here we summarize some standard facts about general relativity. First, consider a three-

dimensional Riemannian manifold M3 with metric g,nn:
ds® = gy (x)dz™daz". (1.2.1)

An object A = A, (z)dz™ on M3 which transforms under general coordinate transformation as

Ap(z)da™ = A,y ()di™, (1.2.2)

is called a 1-form. The metric g, or its inverse ¢ are used to lower or raise vector indices, for

instance A,,¢"™" = A" and A" g, = A,. For an infinitesimal general coordinate transformation
2" =" =™ — o™ (), (1.2.3)

the difference between a tilded and a non-tilded vector fields(1.2.2) defines the Lie derivative
£y: .
LyAm = A (Z) — A (2)

= V"0 Ap + 0" - Ay (1.2.4)
= 0"V Ay + Vo™ - A,

Here the covariant derivative V,, is defined with the affine connection T, as follows.

VA = 0 A, —TL A,

(1.2.5)
VA" = 9, A" + 17, AL,

The covariant derivatives of the vector fields V,, A,,, Vi, A" behave as tensor fields, whereas the
partial derivatives of vectors 0,,A,, OmA™ do not. The affine connection is determined from

that it is symmetric and metric compatible:
T =Thm Vg =0. (1.2.6)

In general relativity, these properties come as a consequence of the Einstein’s principle of equiv-

alence. It is easy to show that (1.2.6) imply

1
Finn = §glq (amgqn + OnGmqg — qgmn) . (1.2.7)

The Riemann tensor R” gmn is defined by

[VWH V”] AP = qumnAq7
(Vons V] Ap = —R9 Ay,

pmn

(1.2.8)
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where

qumn = amrlflq - anrifnq + Pgnsrfzq - F?Lsrinq (129)

It is easy to see that Rygmn = gpsI? is antisymmetric in the indices p, ¢ and likewise in m, n,

S
qgmn
while it is symmetric under the exchange of the pairs (p,q) and (m,n). The Ricci tensor Ry,

and the Ricci scalar R are defined as follows.

Rmn = Rpmpn = gqupmqn7

(1.2.10)
R = ¢ Run.

If a vector v satisfies the condition:
0= £vgmn = Vpup + Vpup, (1.2.11)

the vector v is called a Killing vector on Ms. Thus, the tensor V,,v, is antisymmetric in the
indices m, n if v is a Killing vector.
Note that the definition of the Lie derivative above is compatible with the usual mathematical

definition of that for a differential form:
£y =1p(d-) +d (1), (1.2.12)

where d and 1 stand for the external derivative and the interior product. For example, for a
1-form A = A,,dz™,

£,A =d(1A) +1,(dA)
= O (V" Ap)da™ + 00 Apdaz™ — v 0, A dz™ (1.2.13)
= (0™ Ay + 0O Ay da™.
1.2.2 The local Lorentz transformation

For an arbitrary given point P on a Riemannian manifold Mg with g,,,, it is possible to find a
locally flat coordinate system near P. Such a coordinate system is called a local Lorentz frame.

One can introduce an orthonormal set of 1-forms e?, such that
e = gmned b = b (1.2.14)

where n?% = diag(+1, +1,+1) is the (inverse of) Euclidean metric, m,n are curved indices and

a,b=1,2,3 are flat indices®. Alteratively, one can write the metric as an inner product of €2 :

Gmn = €2 ap- (1.2.15)

A set of vectors e, are called a vielbein that means “many legs” in German. In the present case,

they are also called a dreibein since e, are a tripod. Given a metric g,,, on M3 , one can always

5In what follows, the upper and lower flat indices might not always be placed in accordance with the Einstein’s
rule. But it will not cause as we work on Euclidean signature. On the other hand, for curved indices the distinction

of that is important.
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construct a dreibein e?, satisfying (1.2.15). In fact, the dreibein is not uniquely determined, but

is transformed under local Lorentz transformations:

el (x) — &% (z) = A% (z)el, (z). (1.2.16)

m

The metric g, is invariant under this transformation.

Imn — gmn = nabé%ég
= nabAacAbdefneZ
— eaciue (1.2.17)

where an argument z was suppressed. The third equality 74,A%. A" 4 = Tea means that 7y, is a
local Lorentz invariant tensor. A vector field with a flat index such as A,, A% is in a vector
representation of the local Lorentz group. Likewise, a spinor field W is in a spinor representation
of that.” The covariant derivatives of these fields are defined with the spin connection Q22

Vi A® = 0 A" + Q0 AY
(1.2.18)

m

1
V¥ =9, + Zm’wab\y.

To determine Q2 one uses the fact that 2 is covariantly constant like gy, namely V,,e? = 0.
In fact, all we need is its antisymmetric part, which can be expressed in terms of differential
forms as

0= Ve =de® + Q® A€, (1.2.19)

where we used e = e2,dz™, Q% = Q%®dz™. The Riemann tenser with local Lorentz indices is

defined by
(Vin, V] A% = RIP AP

1 b ab (1.2.20)
[vma vn] )= ZR%WVG ¥,
where R is expressed as
Rab =9 Qab ) Qab + Q(ZCQCb o QaCch (1 ) 21)
mn — YMSEn n=tm m*°°n n “"m: e
One can also show R% = R,,mneP%e® via
Il e = Opet + el (1.2.22)

Next, let us consider how a Lie derivative £, acts on the fields with flat indices. We define
£, so that it satisfy
£Lyen =0, (1.2.23)

if and only if the vector v is a Killing vector. This, indeed, satisfies the condition(1.2.11):

Ly(erel) = Lyen - et +en - £yen = 0. (1.2.24)

7A spinor is not a representation of general coordinate transformation.
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We suppose that, in addition to ordinary terms (1.2.4), the Lie derivatives can be modified

by the local Lorentz transformation with a parameter @‘(15). This parameter is determined by

solving (1.2.23):

0= Lyey, =v"Vyen, + Vv e + @((15)821. (1.2.25)
One thus obtain the Lie derivative of the fields in various representation of the local Lorentz
group [34]:
Lyer = v"0pem, + O™ - e + (U"Qflb + @‘(15)) e,
£,V = 0™, VO (v"Qbe n @g}j)) Ve, (1.2.26)
£0 =00, + 1 (0 1 o) 1w
v - m 4 n (v) vy )
where

@?5) = Vi Un e e (1.2.27)

1.2.3 Killing spinors

As was noted at the beginning of this section, when we realize supersymmetric theories on a
curved manifold, the SUSY parameters are no longer constant spinors, but must be the Killing
spinors, the solutions of the Killing spinor equation. The idea is based on the fact that a given
configuration of the supergravity background fields preserves rigid supersymmetry if and only
if gravitino variations vanish for some choice of SUSY parameter [23]. Since our interest is
in N' = 2 supersymmetric field theories on M3, the most general form of the Killing spinor
equation [24] is ‘

i

Dpé= (Vi —iVp) €= ifymn,

D€ = (Vi + Vi) € = %%n,rg? (1.2.28)
k= (H—-iK)¢, r=(H+iK)E,

where K = y™K,, and K,, is a smooth, conserved vector field V,, K™ = 0. Note that the fields

Vi, H, Ky, are the background fields, which could also be interpreted as component fields of a

supergravity multiplet®. In particular, V;, is the gauge field for the U(1) R-symmetry and &, &
have R-charge +1, —1, respectively.

If there exists a pair of £, £ spinors satisfying the Killing spinor equation (1.2.28), the spinors

£, € give rise to a Killing vector v = v™3,, with v™ = £y%¢. It generates an isometry of M3

with the Riemann metric g,,,, in other words it satisfies
£ygmn = Vinvn + Vv, = 0. (1.2.29)

In the following, we will present the explicit form of the Killing spinors and the suitable back-
ground supergravity fields on an ellipsoid which are used throughout this thesis. The Killing

spinors on some other manifolds are derived in Appendix A.

®Note that our notation (Vim, H, K) corresponds to (A, — 2V,,iH,iV,) in [24,26], and to (AfLR),iH,iVH)
in [25,33)].
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An ellipsoid is a squashed three-sphere(S?), which is embedded in R* as follows [5]:

2., .2 2, .2
at l:sz s ; %1 _ 1, ds? = dz? 4 da3 + da? + da?. (1.2.30)

Here b = W is called the squashing parameter which represents a measure of squashing. In
particular, the ellipsoid goes back to (round) S3 for | = [, namely b = 1. The supersymmetric
partition function on this ellipsoid with the embedding will be shown to depend on b in a
nontrivial manner [5].

Note that this squashing preserves only a U(1) x U(1) subgroup of the SU(2) x SU(2)
isometry of S3. Another squashing that preserves SU(2) x U(1) symmetry was also discussed
in [5], where it was shown that the partition function with this deformation dose not depend
on b. However, the paper [32] found that a squashing with the SU(2) x U(1) symmetry also
gives a b dependent partition function if the set of background fields is appropriately chosen. In
that paper, they showed that the 3D theory on such a background can be obtained by a specific
compactification of the 4D A = 1 theory on S3 x ST,

By moving from cartesian coordinates to polar coordinates by substituting (z1,z2, z3, z4)

with (cos @ cos @, cos @ sin @, sin 6 cos 7, sinfsin 7), a set of dreibein is expressed as follows.

el = f(0)ds, €2 =Isinfdp, e =Ilcosfdr, f(0)= \/Z2 sin 0 + [2cos26.  (1.2.31)

The coordinates o, T correspond to rotations within (x!, z2) and (23, 2*)-planes, whereas 0 takes

values 0 < 6 < /2. The Killing spinor equation has the following solutions:

[4 _ ain @
§ = e%(¢+"') €082 , g: efé(éoJrT) 1Sy , (1‘2_32)
ising cosg
if the background fields V,,,, H, K, take the following form.
1 [ 1 l 1
V==-(1—-=]d —(1—-=]d H=-, K,=0. 1.2.33

The R-charges +1 and —1 are assigned to ¢ and &, respectively. And they are normalized to
satisfy €€ = —1. Then the Killing vector field v = v™3,, with v = £y%¢ is as follows.
1 1

£y%¢ = (0, —sin 6, — cosf), v = 58@ — 787. (1.2.34)

Note that another pair of Killing spinors, which is referred to as &', € in Appendix A exists.

They are associated with another set of background fields Vy,, H, Kpn:
- 1 ] 1 ! - 1

V=—I|1-=]d —(1—=)d H=—— K;,=0. 1.2.35

Therefore, once one chooses a set of background fields, the pair of Killing spinors associated
with another set of background fields dose not correspond to SUSY of that background. Since
Vi = Vi = 0, H= H=1 /¢ on S3, it is easy to see that both pairs do generate supersymmetry
before the ellipsoidal deformation. In what follows, we take the background fields (1.2.33) and

use &, € as our Killing spinors unless otherwise noted.

15



1.3 Supersymmetric transformation rules and Lagrangians

Given a supersymmetric background, one can derive the curved-space supersymmetric varia-
tion and Lagrangians by modifying the previous law(1.1.13), (1.1.15). First, one redefines the

covariant derivative:

Dy, = (Vi —reVim —iAn), (1.3.1)
with R-charge r¢ = R[®], that is, rg = (r,r — 1,7 — 2) for the chiral multiplet ® = (¢, ¢, F') and
Vo is defined in Section 1.2.2. For example, for the chiral spinor ¢ and the anti-chiral spinor
b, )

Dy = (am + 2™ = (1= 1)V — z’Am> ¥,

1 (1.3.2)
Dip = <8m + Zﬂﬁi’v“b + (r— 1)Vm> U+ i Ay,
Then, the supersymmetric transformation for chiral multiplet (1.1.15) is modified to
Q¢ = &y,
Qo = &Y,
QY =i (Po+0¢) & — ok + F¢,
Q=i (Do + ¢o) € — ror + FE, (1.3.3)
_ - 1
QF = i€ (P — o) — i€Ao + (r - 2) R,
_ _ _ 1 _
QF =i¢ (Ew — 1/10) + iEdA + (T - 2) K.
The square of @ acts on the chiral multiplet as
Q*¢ = "0 + X¢ + rBo
Q%6 = WO — ¢¥ — rB¢
1
Q*Y = iv™ 0t + X0 + (r — 1) By + 1 (va;‘f,f - @%) %4
(1.3.4)
7 - m 7 7 7 1 mya a ab j,
Q) = " Omth — U — (r — 1)BY + 7 (v + o ) 4
Q*F = iv™0,, F + XF + (r — 2)BF
Q*F = iv™0,,F — FY. — (r — 2)BF.
where _ _
v = EAE, Y =v"A,, —i&€ - o,
g,}/mg & ab amgglm (135)
B = (v"Vi +&¢-H), O) = Vimvpe®e™.
Note that in order to derive the above result for Q2F, one needs the formula
- ~ 1 mne 2T —
3 (lDlD¢ E+ §an¢’)’ £+ 3¢]D1p§> =0. (1.3.6)
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This is automatically satisfied if ¢ and £ couple to V;, according to their R-charge, namely the

commutators of the covariant derivative act on those fields as follows.

[Dm ; Dm] ¢ = _ianQb - ZT(amVn - 8nvm)¢a
~ 1 0 oo ~ (1.3.7)
[ D, Dy ] € = ZRmn7 £+ 1(0mVi — OnVin)€.

Likewise, the supersymmetric transformation for vectormultiplet is

1

5 (EvmA + ErmA) ,
(Ex—¢&N),

V" o — €D — Do - € + ok, (1.3.8)

QAm

o
=
Il

angan +5D +7le0- : 5_— O'R,

>l
Il
N~ N RN

oD % (€A — €13) + % (€0, A + €0, A)) + %(nx _ RN

The square of @ acts on them as follows.

QA = " 0p Ay, + 100" - Ay —iD Y,
Q%0 = v o + (2, 0],
1

Q*)\ = v O\ + [Z,\] + B\ + (Umggf + 6?5)) YA, (1.3.9)

(UWQ%) + @‘(13)) X,

W

_ - - 1
Q’\ = v O\ + [S,N] — BA+ =

W

Q°’D = iv™d,,D + [%, D]
Q7D takes the above form thanks to

EDR + Dk =0, (1.3.10)

which can be shown using only (1.2.28). The square of @, which is a sum of bosonic symmetry

as noted, is modified to
Q° = i£, + Gaugey, + BRy 1), (1.3.11)

where the Lie derivatives for the fields are defined by (1.2.26).

Some Q-invariant quantities, namely candidates of Lagrangian, are listed below. It is easy to
check the Q-invariance for Lcg and Lpr. Those for Ly and L, are shown in next Subsection
1.3.1.
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s - ka‘ - [Smnp( Ay — %AmAnAp) — 3\ —20D|, (1.3.12)
7

Lrr = % (D+Ho—K™Ap), (1.3.13)
1.1 2 5 2
Lyy = ?Tr i(an — Emnpo KP)* + (Dipo)? + (D — Ho)
i< ios 5 1s ,
+ 52" DA = 5 Dm Ay A — iXo, A — 5A(H - ZK)/\} : (1.3.14)

Lonat = DindD™¢ + ¢o +i(2r — 1) Hood + %Rq’sgb —i6D¢ + FF

D K k™64 2 KT 0D — Do)
— SOV Do+ £ D™ — TS G(H — iKY
+ iporh + i A — ipA). (1.3.15)

1.3.1 Exactness of Lyy and Loa

Here we would like to show the SUSY exactness of Lywm, Lmat by finding F which satisfies
QF = L up to total derivatives.

Consider first the F-term of gauge-invariant chiral multiplet with R-charge r = 2,

Qo =&y, QY =ip¢ — 20k + FE,  QF =iDp(69™),

- - - ; (1.3.16)
Qo =¢&y, QY =ilDog — 20k + FE, QF = iDp (™).
One can show that the gauge-invariant F-term is Q-exact up to total derivatives,
Q1)) = F + Dy (i), Q) = F + Dy (iny™E9) (1.3.17)
if there are spinor fields 7,7 of R-charge +1, —1 satisfying
=1, nE=1, (1.3.18)
and . .
P+ %Rﬁ -0, P+ %my —0. (1.3.19)
Note that the above equations imply that 7,7 are Q%-invariant:
2 . 1 m N .E {
Q*n =ifun+an+ gwn = —iy"E- Dm(n€) +i€- ( EPn+ 5rn )
(1.3.20)

Q°n = iL£yi — af + %wﬁ = —iy"E - D (7€) + 1€ - (512)77 + ;'“7> :

For the moment, we are unable to prove that every 3D background with Killing spinors &, &
has spinor fields 7, 77 satisfying the above property. So we present the explicit forms of 7,7 in

interesting cases.
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B R?xR, S} Since we chose the Killing spinor (1.2.32) and (A.1.5) for Sp and R? x R,
respectively, so that £ = —1, one finds that
n==¢ = -¢, (1.3.21)

satisfy né = 7€ = 1. As k = & = 0 on R x R, it is obvious that (1.3.19) is satisfied. While on S},
since the background fields are K,,, = 0, H = %, and k, & are proportional to &, &, respectively.
Thus, each term in (1.3.19) is zero due to £ = €€ = 0.

B 5% x S! Since we chose the Killing spinor (A.3.13) so that £ = — cos 6, the situation is
slightly different from the above example. However, the fact that the third component of the
Killing vector v3 = £y3¢ = —1 indicates that

n=7"€ =% (1.3.22)
satisfy né = ¢ = 1. Since the background fields are K, = %5m3, H =0, we can write &, k:

1

k=23, R= 423 (1.3.23)

/ ¢
Thus, each term in (1.3.19) is zero as well.
Assuming that 7,7 satisfying (1.3.18),(1.3.19) exist, let us use the above argument to show

the exactness of Lyyi. The field &y = %Tr A2 is the bottom component of a gauge-invariant
chiral multiplet with » = 2. If we define the higher component U~y by

QPvy = Uy, (1.3.24)
its explicit form reads
1
Uy = Tr [{—27mnfmn —~ D +ilPo+o(H + zK)} /\} i (1.3.25)

Asin (1.3.17), F-term is thus calculated as follows.
Q(7¥yy) = Tr [(D —oH)* 4 (Fp — 0Ky — Dypo)?
_ - 1 _
— DXy A — iAo, N] — SA(H + iK))\:| + Dy (iy™E®yw),  (1.3.26)

where we used the notation Fm = %Eman - Tikewise, starting from an anti-chiral field ®yy =

%Tr A2, one can derive
QPvm ={Wywm,

Uy =Tr H;’Ymn mn+DilDUU(HiK)}5\] ,

i _ (1.3.27)
Q(n¥ym) =Tr [(D —oH)? + (F,, — 0K, + Dpo)?

MDA — iX[o, A] — %/_\(H + ZK))\] + Do (iny™ Py
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The sum of (1.3.25) and (1.3.27) is exactly the Yang-Mills Lagrangian (1.3.14) up to total

derivatives,
1
Lyvv = TgQQ(ﬁ\PYM + U\I/YM). (1.3.28)

Next we turn to show the exactness of Lai. We take @0 = F'¢ as the lowest component

of a gauge-invariant chiral multiplet of R-charge 2.
QPmat = Wmat,
W =F + D56 + 06+ oAb + (1 — 5) (H + K6,
Q(1Wuat) = — DuD" 66 + 0% +i(2r — 1)Hoo + L Ré6 — i6Dé + FF

_ (1.3.29)
- T(%Q V(12 — K K™)36 — (2r — 1)K Dot
_ o0 —1_
Dy — 5 B(H — K
+ ihoth + i — i A 4 Dy (i€7 1P mat)
Likewise, taking anti-chiral field ®,,,c = ¢F, one can derive
Qci)mat :E\I/mata
W =0F + 16D — ibo —i6dé + (1 — 2) (H — iK)v.
QUrnat) = — $DWD™ ¢ + ¢o2p +i(2r — 1) Hod + £R<E¢ —i¢D¢ + FF
r@r—1) o N ) (1.3.30)
- S (H — K K™ — (2 — )K" D
_ 0 —1 -
— iy Dytp — = (H — i)
+ o) + i AG — i@AY + Dy (167" 1P rmat )-
Thus, the sum of these F-terms is L, up to total derivatives,
Liaty = 162(77\I’rrla'c + U\Ilmat)- (1331)

2
In this section, we showed the Q-exactness of Ly and Ly, Throughout the calculations,
we kept track of total derivative terms even though they were dropped in the final results
(1.3.28),(1.3.31). They will become important in Section 1.5.

1.4 Vortex operators

Vortex operators are one-dimensional defects in 3D gauge theories characterized by a singular
behavior of the gauge field. For simplicity, let us suppose that there is a vortex line along the

3

x3-axis of R3. It is the simplest to describe it using cylindrical coordinate, i.e. 7, ¢ are the

polar coordinates for the transverse (z1, z2)-plane, and the xs-axis is the cylindrical axis ¢ as in

Appendix A.1. We require that the gauge field behaves near it as

A~ Bde. (1.4.1)
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If the gauge field A precisely takes the above value, the gauge field strength is F1o = 2w 362 (21, 232).
The 1-form dy = (z1dwy — zedw1)/((21)? + (22)?) gets larger and larger as it approaches r =
xo = 0 and finally diverges at that point. Hence, the requirement (1.4.1) introduces a defect
operator in the shape of a vortex along ¢. The parameter 3, the coefficient of dyp, is called the
vorticity as it represents its magnitude. [ is a constant that takes values in g = Lie(G), but it
can be gauge-rotated to be in a Cartan subalgebra hh C g. Upon the vortex line the gauge group
G is broken to a subgroup K of G which is the centralizer of 8, namely the group of elements
of G which commute with 3

K ={heGhsh ' =p}. (1.4.2)

K is U(1)" (r = rank(G)) for a generic /5. If one takes a special 3, it can be non-abelian.

What are the conditions for the supersymmetry to be preserved after inserting the above
vortex operator? Since the square of @ involves a Lie derivative in the direction of the Killing
vector v = £Y%€0,, for a vortex operator to be supersymmetric, it must extend along v. Now,
in the case v = —9; = —03, Q*(fields) = 0 implies

Dso = D3D = F3, = 0. (1.4.3)
Also &, € must be eigenspinors of 73
3¢ _ 3g_ _F
vE=4E,  vE=-¢, (1.4.4)
which follow from the identities:
vl =€ 0y = 4L (1.4.5)
Indeed, the Killing spinors we chose (A.1.5) satisfy the above equations. The SUSY transfor-
mations Q of A,,,o, D are trivial as the classical configuration of gaugino A, A is zero. Then,
non-trivial equations are as follows:

0=Q\= %’y“bﬁFab —&D —ilo - €,

R ) ) (1.4.6)
0=Q)=57"EFuy +ED +ilo €,
which are rewritten in the following form
- iFls—D  —i(Dyo —iDy0) e3¢
B ’i(DlU + iDQO’) —iFlg —D 0 ’
(1.4.7)
0= tFo+ D i(Dyo — iDy0o) 0
-\ —i(Dioc+iDyos) —iFi3+ D e 2% |’
Therefore one obtains, in addition to (1.4.3), the following conditions.
D= iFm, D10 = DQO’ = 0. (148)

If these BPS conditions are satisfied, the SUSY (1.4.4) is preserved even after inserting the
vortex operator [21,22,35]. Especially, when only two of four SUSY are preserved as in the
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present case”, it is called a half-BPS. Note that this condition is compatible with the saddle
point condition, which will be described in detail later. This fact is helpful for later calculation

using localization techniques.

1.5 SUSY with boundary

Naive volume integral of Lagrangians may be divergent in the presence of a vortex line. As
in the previous section, we assume there is a single vortex line along z3-axis, and we use the
standard cylindrical coordinate (7, ¢,t). The flat metric and vielbein on the R? are expressed as

follows.
ds? = dr? 4 r2de? + di?, et =dr, e?=rdp, € =dt. (1.5.1)

As in [9], we regularize the volume integral by removing a tubular neighborhood of the line r < €
from the integration domain and adding appropriate boundary terms at r = ¢, so that the sum

of bulk and boundary terms
S+ Sg = / dV L + / dSLp (dV = 616263, ds = 6263)
r>e r=€

is SUSY invariant. On the boundary, all fields of the theory must be provided with some
boundary conditions. This will be discussed in Section 2.3. Here we suppose that, in addition
to Ay|r— = B3, some boundary conditions are given for all other fields.

For some of the Lagrangians, the boundary terms can be found by using the argument given
in Section 1.3.1: the F-component of a gauge-invariant chiral multiplet (®, ¥, Fg) with r» = 2 is
Q-exact up to a total derivative. More explicitly, the following holds:

Q(71¥) = Fo + Dy, (iy™6®),  Q(n¥) = Fo + Dy (iny™ED). (1.5.2)

As an example, Ly could be expressed as Fp + Fgp for a gauge invariant chiral field ®yy =
#Tr/\)\ and its conjugate ®yy = ﬁTrj\/_\. The exactness of Ly (1.3.28) is rewritten including

total derivatives as follows.

1

272(@(77‘113(1\/1) +Q(¥ym)) = Lym +

7

2 D, (ﬁfymé Tr AN + ny™€ Tr ;\5\> (1.5.3)

The boundary term for Ly is thus given by

i _ —_
Lymp = 22 (ﬁvlf TrAX + ny'e Tr/\)\> . (1.5.4)

Similarly, by setting ®pat = %F¢, Dt = %(ﬁF one obtains L.t as their F-components up to

total derivatives. This allows us to determine the boundary term for Ly, as follows:

LiatB = %(iﬁvlﬁ_' Fo+iny'€- 6F — D'(40)) (1.5.5)

9¢, € satisfy Eq. (1.4.4), but &,& do not. So & and ¢ are associated to the preserved SUSY.
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The boundary terms for Lr; and Lcg can be constructed using the following argument.
Generally, supersymmetric bulk Lagrangian £ satisfies QL = D,,V™ for some V™. If V! is
Q-exact, the boundary term can be determined from V' = —Q~Lgp. By applying this to Ly,

first we find

C cm mYy
E(&v A=&YTN).

After some manipulations we can write V}l«“l in a Q-exact form:

mo__
VFI_

Vhi= (6 - &)
_ _£ cFom 1 m. 1Y
= = um(E"A )
_ E Imn , 3\
= 47‘(‘5 Um(i’Yn)\ + f’Yn)‘)
- *%Q(wmn), w" = elmny,,. (1.5.6)

Here we used $¢ = —¢, $€ = £ at the second equality and v! = 0 at the third equality. Similar
analysis can be performed also for Lcg. Acting Q on L¢s, one finds
ik 1

Vos™ = 1~ Tr | 5An (€A + &™) — o (€A — 67@)} :

One thus finds the following boundary terms:

ik

T [0 A (20 + v An)] (1.5.7)

Ly = 2£wmAm7 Losp =
T

The derivation of both requires v! = 0, which means that the Killing vector v has to lie along

the boundary in order for SUSY-preserving boundary terms to exist.
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Chapter 2

Partition functions and vortex loop
VEVs

If a theory has at least one supersymmetry realized off-shell, SUSY-invariant quantities defined
by path integration can be evaluated by the localization technique. Localization principle allows
one to reduce an infinite-dimensional SUSY path integral to a finite-dimensional integral over
the configurations called saddle points. It was first applied to 3D SUSY gauge theories on S3
in [1], then generalized to the theory with arbitrary R-charge assignment [3] and squashed S [5].

In the first half of this chapter we will review this technique and derive the formulae for the
partition function on ellipsoid, where we introduce a powerful prescription that was developed
in [29]. This clarifies the computation process, and one finds that the set of eigenvalues of Q? is
the only things we need. It is a powerful method to compute not only the partition functions,
but also the vacuum expectation value (VEV) of the vortex operator defined in Section 1.4. In
the second half of this chapter, our goal is to derive the exact formulae for the VEV, and we will

see that these results depend on the vorticity 5 as well as the choices of boundary conditions.

2.1 Path integration with localization technique

Supersymmetric path integrals localize to Q-invariant field configurations or saddle points, so
that the sum of Gaussian path-integrals (one-loop determinants) on each saddle point gives an
exact answer. See [36]for a review of localization techniques in SUSY gauge theories. Saddle
point configurations are the solutions of Q¥ = 0 for all the fermions ¥ of the theory.

First, let us consider the saddle point configurations without vortex loop operators. Taking
Uy, Uy in (1.3.25),(1.3.27) as the fermion fields, the saddle point condition Q¥ = 0 becomes

1
0="Tr |5 (Fun — Emnpo KP)?> + (Do) + (D —cH)? +--- |, (2.1.1)

where the ellipses represent the terms including fermion fields that are usually set to zero on

saddle points. Assuming suitable reality condition on bosonic fields, the values of the vector-
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multiplet fields at the saddle points are thus given by
Frn = emnpo K?, o(constant), D =cH. (2.1.2)

Note that a Lie(G) = g valued constant o can be gauge-rotated to take values in a Cartan

subalgebra h. Likewise, the requirement that the Q-variation of Wya¢, Uinat in (1.3.29),(1.3.30)

vanishes gives the saddle point configurations for chiral multiplets as follows.
6=F=0, é=F=0. (2.1.3)

The conditions Q¥ = 0 for the other fermion fields are automatically satisfied by (2.1.2), (2.1.3).
In the next section, we review an explicit computation of exact partition functions and VEVs

of the vortex loop operator introduced in previous chapter.

2.2 The partition function on ellipsoid

On an ellipsoid preserving supersymmetry &, € (A.2.13), the background fields are given by

1
Km — 0, H - ?,

. i . , (2.2.1)

. 1——)d 7(1——>d .

V=3 ( 7)Ao+ 5 (1-5)dr
According to the argument in Section 2.1, supersymmetric path integrals localize to the saddle

points:

A, =0, o(constant) € b, D= %, ¢o=F=0. (2.2.2)

In other words, the saddle points are labeled by constant values of o. The FI (1.3.13) and CS

(1.3.12) actions take the following classical values on these saddle points.
Spr = 2milllo, Scg = —imktl Tr o (2.2.3)

The YM (1.3.14) and matter (1.3.15) actions vanish on the saddle points since they are Q-
exact. The other contributions to the path integral are one-loop determinants Ajj,op Which
are Gaussian integrals of the field fluctuations around these saddle points. In the following we

present explicit calculations of that for both chiral and vectormultiplets.

2.2.1 One-loop determinants: chiral multiplet

One-loop determinants can be computed most easily by a suitable change of path-integration
variables. Let us first explain this procedure for the theory of a chiral multiplet of unit U(1)
charge, with the U(1) vectormultiplet fields fixed at a saddle point (2.2.2). The problem is
already Gaussian, but it can be simplified further by rewriting in terms of the so-called coho-

mological variables
V=Qop=¢y, V=i, F=QV=F+7J¢; J=iiy"{Dp. (2.2.4)
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The change of path integration variables from (¢, v, F) to (¢, U, ¥’ F’) is invertible and the
Jacobian is trivial. ¢ is Grassmann-even and its superpartner ¥ is odd, and they are both
scalars of R-charge r. Likewise, ¥’ (odd) and its superpartner F’ (even) are both scalars of

R-charge » — 2. We denote the Hilbert spaces of their wavefunctions as
6,V € H, U F eH.

Physically this means that the fields ¢ and ¥ are to be mode-expanded using the same set of
basis wavefunctions of H, and similarly for ¥’ and F” in H'.

The one-loop determinant Ajj,ep can be computed by path integrating over the fields
(¢, U, W' F') and their conjugates with a suitable choice of localizing Lagrangian £. Any L

will do as long as it is Q-exact and its bosonic part is bounded from below. Let us take!'®
£=Q(6-QU+VF)=U-Q+6-QQ%+ F'F - VQ*W,
Then the Gaussian integration gives the ratio of determinants

Det(Q)y - Det(—Q%)zy  Det(Q%)y
Det(Q2Q2)y ~ Det(Q¥)n

Aioop = (2.2.5)
The last equality holds up to a sign factor Det(—1) which we have just dropped. So Aj_joep can
be computed from the spectrum of Q2 on H and H’. Furthermore, one can check that the map
J : H — H' commutes with Q?, which is as expected because it is made only of Q*-invariant
background fields. The Q?-eigenmodes in H and H' paired by 7 make no net contribution to
Ajoop. Hence we only need the spectrum of Q? on the kernel and cokernel of J. In other

words,
Det(Q?)coker(7)

Det(Q2)ker(J)
To work out the basis wavefunctions of ker(.7) and coker(J) = ker(7), we need the explicit

A1—loop = . (226)

form of 7 and its conjugate J.

‘ 1 ) .
T = —ie~ @+ | 29, + 360759(6@ —irV,) — isinb s vl
/ /sinf lcos® (227)
- < 1 icosf isiné o
— gjetiletr) | _ L g  PEOSY i b W 1O
T =+t |20y = 0, i = DV + g (0, — il =2V
In fact J can be expressed as J = —iny"™E Dy, where
e = P (1 icos 0, —isin0), 7€ = e P (1, —icos, —sin ). (2.2.8)

The zeromode equations J® = 0, J® = 0 can be reduced to ordinary differential equations

(ODEs) for functions of § by assuming that ®, ®' have definite ¢ and 7-momenta. The resulting

00ne can check that Q? and Q2 commute. Note also that there is no issue of boundary terms for this £ since

Q? and Q2 contain no #-derivatives.
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ODEs actually need not be solved explicitly, but the behavior of the solutions at # = 0 and /2

(0 ~ (sinf) "™ (cos )™,
(2.2.9)

—
&'(0) ~ (sin )™ (cos 6",

—

are important. They are summarized as follows.
d = @(H)eim“"”’” € ker(J)

A

P'(9)e™ e+ ¢ ker(T)

(b/
with integers m,n,m’,n’. One should require m,n < 0 and m’,n’ > 0 so that the zeromodes

are regular. On the ellipsoid and for scalar fields, Q? acts as
(2.2.10)

Q*=if, + Gauge(vam+,~g) + (v""Vi — H)Ry 1)
1/1 1
) Ru1)s

=—=0p—-0r+1 “Ap+-Ar | — = =+-
7 $~ 7 T+z<a+€ ¢+l T> 2<£+€
where Ay = A, = 0 on the saddle point. By multiplying all the eigenvalues of (2.2.10) we obtain
IL. ,>Om—~'+"7'+z'a—@(l+%)
Altoop = ——t 2 1 ¢ 1 (2.2.11)
nn<o 7+ 7 +i0—3 (?JFZ)
Now we introduce the notations,
b=(0/0)3, Q=b+bl, &=\t (2.2.12)
where the parameter b is referred to as the squashing parameter, and & has mass dimension zero.
Thus the formula (2.2.11) can be expressed as follows:
mb+nb~ +i6— L(r—2 i(r—2 .
Avioop = ] e ):8b<( 2)Q_J>’
s mb+nbTt —io + 3
"= (2.2.13)
mb +nb~! + iz + %
sp(z) = H 1. Q -
s Mb+nb~t —ir 4+ 3
Here sp(x) is the double sine function which satisfies the following relations.
sp(w) = s1/(7) = sp(—x) ",
ib ib _
sb(E — x)sb(§ + 2) = 2cosh™ ! (wbz), (2.2.14)
+ib ' 1
seLd) _, <2sinh7rb (1‘ + ?)) .

sp()

For more detail on this function, we refer to [37,38], [39, appendix A.2].
The above result can be easily generalized to the theory of chiral multiplet in a representation

R of the gauge group G. The one-loop determinant of a chiral multiplet with R-charge r is given
(2.2.15)

by a product over weights p of R.
il-rnNQ .
i-loop - Hsb <2 i U> .
o
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2.2.2 One-loop determinants: vector multiplet

Let us next study the integration over fluctuations of vectormultiplet fields around a saddle point
(2.2.2). In what follows we denote the saddle-point value of a field ® by (®) and its fluctuation
by 0& = & — (P). As in [29], we first introduce the Faddeev-Popov ghost ¢, antighost ¢ and an
auxiliary field B and then move to cohomological variables.

The system of physical fields and ghosts has a nilpotent BRST symmetry Qp. It acts on all

the physical fields as gauge transformation with parameter c:

QBAm = Dy,c, QBU:’i[C,U],

_ _ (2.2.16)
Qo = ico, Qo = —igc,
whereas the ghost fields transform as
Qpc=ic®>, Qpé=DB, QpB=0. (2.2.17)
It is also known from [40] that if we set
Qc=1i6%, Qc=0, QB=iv"d,c+ [(T),¢], (2.2.18)
then the combined supercharge Q = @ + Qg acts on all the fields as
Q> = if,+ Gauge s — ;(} + %)RU(I) : (2.2.19)

One may use @ as the localizing supercharge. We now move from (A,,,0,\,\, D; ¢, ¢, B)
to cohomological variables with respect to Q They are given by 3 Grassmann-even plus 3

Grassmann-odd adjoint scalars

A+ = anfAm - 2.7750-7 Cy
Ay = ™A, + ifno, A =n)—n), (2.2.20)
A- = "EAp + inéo, ,
and their @ = (Q + Qp)-superpartners:
QA =ik, Qc =id%,
QAy =i(nh+1n)), QA =2(D - Ho)+T, (2.2.21)
QA, == 1,7’75\, QE — 07
QA = 1y"E0me —i[A,, c] Qpc =ic®,
QpAy = 1Y"NOmec — i[Ay, ] QpA =ilc, A, (2.2.22)
QBA_ = iy E0me —i[A_, ¢] Q¢ = B,
where
T =iy — i) (Fin — Kmo) +i(my™€ + iy™€) Do (2.2.23)
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It is straightforward to check that the change of variables is invertible and the Jacobian is
trivial. Since we will add an appropriate localizing term to the action so that the Gaussian
approximation is exact, it is enough to study @—transformation of the fields to the linear order
in the fluctuations around the saddle points. And the problem becomes essentially the same
as that of path-integral over matter fields coupled to a fixed vectormultiplet field. Under this

approximation, the cohomological variables on the ellipsoid transform under @ as

QSA, ~ itx+iJe, Q¢ = B,

2

@(514, ~ Q€N —iJc, Qc ~ —do +1idAo,

N g \ -r..m A o 43
QéAy ~ 5(5)\—5)\)—1—5@6—2[1) (Am), c], 25(1)_?) 4_751407
+iJ6A, —iJ0A_

Q
>
12

where ~ stands for the equality up to linear order in the fluctuation. This implies the relations

among Hilbert spaces.

J J
H(A) T H(Age,A) —— H(A) (2.2.24)
J J

The one-loop determinant for a vectormultiplet is thus given by

R 1
A B ( Det(Q2>H(E)EBH(c)EBH(A) ) i (2.2.25)
11 = A ' -

oop Det(Qz)H(A”@H(Af)EBH(Ao)

Since A, have R-charge +2 and Ay, ¢, ¢, A have R-charge 0, this actually equals the one-loop

determinant for an adjoint chiral multiplet with r» = 2.

v iQ )
1-loop — H Sb(_7 —a J)
ach (2.2.26)
= H 2sinh(wba - ) 2sinh(7b o - 5),
acAT

where A is the set of roots of G and A™ is the set of positive roots.

2.3 The vortex operator on ellipsoid

Let us introduce the vortex loop operator introduced in Section 1.4 and evaluate its VEV by
localization techniques.

If ¢,7 are incommensurable, there are only two circles on which closed loops of finite length
along v can be wrapped. One is S(IT) (the circle parametrized by 7) at § = 0, and the other is
S! . at @ = 7/2. we will focus on a single loop operator wrapped on S(IT) at 0 =0.

()
The vortex loop wrapped on S(lT) is defined by the gauge field behaving as

A ~ Bdep. (2.3.1)
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Solving QA = Q) = 0, one finds that the BPS condition is satisfied by setting the auxiliary field
to be

D =iF, — % (2.3.2)

where Fio = 27362(6 = 0). This requires modifications of the saddle point configuration (2.1.2)
on Sl. Apparently it seems that the naive localization argument based on the vanishing of each

term in the YM Lagrangian
Lo 2 2
0="Tr §an + (Do) + (D —Ho)*+--- |, (2.3.3)

does not work. This is because the values of some fields are complex at the new saddle points.
The supersymmetry preserved by (2.3.2) allows us to evaluate the VEV by applying the usual
localization techniques without worry.

Now we move on the calculation of VEV of the vortex loop. The classical action, if defined
as a naive volume integral, diverges due to the singular gauge field behavior. We thus should
regularize the actions as discussed in Section 1.5. The regularized FI and CS actions on our
saddle points are evaluated as

s i s iB\>
Sr1 + Sk, = 2miCll <(T + £~> , Scs + Scs, = —imkll (U + Z) . (2.3.4)
Note that the boundary at # = € is oriented in such a way that fe:e dodr = —4n?. Similarly to
the case without vortex loops, the regularized YM and matter kinetic actions vanish since they
are Q-exact.

From the above simple result for S, one may guess that just replacing o by o+ B in A1l00p

i
14
(2.2.15),(2.2.26) leads to the one-loop determinants in the presence of the vortex operator, but

it is not so simple. In what follows we will explain it in detail.

One-loop determinants. As in the previous subsection, let us first consider the theory of a
chiral multiplet of unit U(1) charge, with the U (1) vectormultiplet fields fixed at the saddle point,
now in the presence of the vortex loop. Aj_j,0p can be easily computed by moving from (¢, 9, F)
to the cohomological variables (®, ¥, W’  F”), and choosing a suitable localizing Lagrangian. The

problem is thus reduced to finding the Q?-eigenmodes in the spaces kerJ and coker.7.

» 1 i cos / sin
J = —ie #F7) [—fag + %(Qa —iB —irV,) — %(@ - irVT)] :
- , 1 icosf isind
— qioti(etr) | _ g9 _ YMPV iR il _ it il —
J = +ie [ fag Zsine(aw i —i(r—2)V,) + Ecose(aT i(r 2)1/})} . (2.3.5)

Considering the behavior of the zeromode equation J® = 0, J®' =0at =0 and /2, we find

® =30 ™ cker(J) = D(0) ~ (sin)P " (cosh) ",
' = &' (0)™ T cker(J) = D'(0) ~ (sinf)™ P (cos )", (2.3.6)
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where m,n, m’,n’ are integers.

In fact, in the presence of a vortex loop with non-integer 3, not only the zeromodes (2.3.6)
but all the eigenfunctions of JJ or JJ, which are the natural basis wavefunctions of H or H/,
behave as fractional power of § near § = 0 [29]. In this case, the simplest boundary condition
requiring the wavefunctions of both H and H’ to vanish at 6 = 0 is inconsistent for the following
reason. In order for the Q-transformation to be well-defined, the Hilbert spaces H, H' need to
satisfy

JHCH, JH CH. (2.3.7)

Also, the operators J,J contain §-derivatives which generically lower the power of 6 by 1.
Suppose a wavefunction ® € H vanishes as 07 (0 < v < 1) near § = 0. Then J®, if nonzero,
would have to be in H’ and diverge as #~(1=7) at § = 0. Similar argument holds with the role
of H and H’ exchanged.

As was proposed in [29] for a similar problem in two dimensions, there are two consistent

boundary conditions for chiral multiplet fields at § = 0.

BC1. & c H is finite. ® € H' may diverge mildly but J®' is finite.

BC2. &' € H is finite. ® € H may diverge mildly but J® is finite.
The mild divergence here means the behavior 677 (0 < v < 1), which is not forbidden by
the normalizability of wavefunctions. Note that “is finite” can be replaced by “vanishes” for
non-integer 5.

Let us compute Aq.jo0p for the chiral multiplet in the presence of a vortex loop. First, under

the boundary condition BC1, the physical zeromodes of 7, J are those in (2.3.6) with

B—m>0, —n>0; m—B>-1, n>0.

The first and the third inequalities are equivalent to m < [3] and m’ > |3]. These zeromodes
all have definite Q?-eigenvalues which are now [-dependent. By multiplying all of them one

obtains the one-loop determinant of a chiral multiplet on a vortex background:

Hm/Z\ﬁj ’>D ﬁ + + 10 — % (% + %)
r (1 1
Tz ip)nz0 ™77 + % +io =5 (z + z) (2.3.8)

:Sb(i(l—QT)Q .

BCl1 — Al—loop:

—wﬂ+me.

The computation is similar for the boundary condition BC2. In this case, the integers m,m’ in
(2.2.9) are bounded as § —m > —1 and m’ — 8 > 0, or equivalently m < [§] and m' > [f].

‘)

+ﬂ (2.3.9)

_l_

2
w161, w20 =7 Ziy +W—T<%
Mcistnso 27+ +io =

:Sb(i(l—;")@ .

BC2 — Al—loop:

=

—wﬁ+wmw.
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Note that Aq_je0p is a periodic function of 3 for both boundary conditions. This is a consequence
of large gauge invariance.

The above result can be easily generalized to the theory of chiral multiplet in a representation
R of the gauge group G. The one-loop determinant is then given by a product over weights p
of R.

‘i—loop(ﬁ) - H3b<i(1_27‘)Q - N(é' + b - B) + Zb[ﬂ/@]) (2310)
I

Here [---] is the floor or ceiling functions depending on the choice of boundary condition.

Now let us move on to vectormultiplet. We already know that, as far as the one-loop
determinant is concerned, a vectormultiplet is equivalent to an adjoint chiral multiplet with
R-charge » = 2. The remaining question is which boundary condition should be chosen for that
chiral multiplet, BC1 or BC2.

In the presence of a vortex loop at § = 0, the Cartan part of A, = ny"{A,, and A_ =

" EAm:

: 1 3 cos b 3sin 6
meA i(p+T1) A ~ - AT
M eAm = e (f 0T s ¢ Teoso )
etle+7) ‘ )
i (A9+Z,39_),

_ ) 1 1cos 6 7sin 0
EA,,, = —i(p+T) Ay — — A,
" EAm, = e (f Al ¢t Teost )

~

(2.3.11)

—i(p+T)
~ QT (Ag—iBO71Y),

diverge as 0! but A, = 77™nA,, is finite. It is therefore natural to allow mild divergence for
A, but require A, to be finite at # = 0. Note that A, are the lowest components of the adjoint
chiral multiplet with » = 2. In addition, the relation (2.2.24) says that ¢, A and ¢ are finite.
We thus conclude that the one-loop determinant of a vectormultiplet is equivalent to an adjoint

chiral multiplet with R-charge r = 2 obeying BC2.

\l/-loop = H Sp <_Z2Q - 04(5' + Zbﬁ) + ’LbLOéﬁJ) (2312)

aEA

2.4 Partition function and vortex loop VEVs

Now we are ready to present exact formulae for the supersymmetric observables of our interest

on an ellipsoid. First, the partition function can be expressed as [5]

1 ~ =S v
ZSS = W/dro-e 'Al—loop'A(lj—loow (2'4‘1)

where r = rk(G) and W is the Weyl group of G. S is the sum of the classical FI and CS actions

evaluated at saddle points,

Spr = 2miC6,  Scs = —inkTr(6?), (2.4.2)
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where C = VY C is the dimensionless FI coupling. The one-loop determinants Al loop in the
absence of vortex loop take the form (2.3.10), (2.3.12).
The expectation value of a vortex loop can be expressed in a similar way,
A —S-§
<V/5> |WK’ /dr b A1 loop(ﬂ) A1 loop(ﬁ) A1 loop(ﬁ) (243)

where Wy is the Weyl group of K (the centralizer of 8) or equivalently the subgroup of W which
leaves [ invariant. We also separate the one-loop determinant of chiral multiplets according to
the type of boundary conditions. We notice that the classical actions (2.3.4) remain the same as
(2.4.2) if one redefines 6 +ibf as . Under the same redefinition of &, the one-loop determinants

for vector and chiral multiplets become

Toop(®) = T (-2~ a6+ ibfa-51),

acEA

A1 loop(ﬁ) = H3b<m_;)cg_ﬂ&+lbLM6J)a (244)
Al loop(ﬁ) = H8b< 1_7' —u&~|—zb[u5]>

Here we used the property of the double sine function (2.2.14). The one-loop determinants
(2.4.4) essentially differ from those at § = 0 only by a product of sinh functions. Thus the

expectation value of a vortex loop can be expressed as
1 . _S .
<VB> = W /dro- € ’ A\1,-loop ’ (i-loop : V,B(U)a (245)

where S and A1 loop

function which encodes the effects of insertion of a vortex loop.

w
Va(o) = Vi) ViHa) - Vi)
|W| A\ll 100];)(5) Ailloop(ﬁ) A(izloop(ﬁ)

= . 2.4.6
|WK| A1-loop(0) A<l:1100p(0) A(i2loop (0) ( )

are the same as those for the partition function (2.4.1), and Vj(6) is the

Note that, since we have redefined &, the contour of integration is now & € h + ib5. In the
following we will assume that it can be brought back to h without problem. This is the case

for pure YM-CS theories since AY

11oop(B) has no poles. For theories with chiral multiplets this

would lead to constraints on their R-charges r, representation R as well as 8 which we will not
go into details.

Using Weyl group, generic # can be brought into a Weyl chamber so that o8 > 0 for all
positive roots «. For non-generic 8 one has -3 > 0 for all positive roots a but a-3 = 0 for
some «, corresponding to the enhanced unbroken symmetry K. In what follows we make further

simplifying assumption that 3 is small:

—1l<a-f<1 forallroots «, —1l<p-B<1 forall weights p. (2.4.7)
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Then V3(6) is the product of the following functions.

Vi) = H <28inh7rboz-6’> ,

a+B>0
Vﬂd(&) = H 2smh7rb(,u a—{—@)

weB<0
V5§2(6) = 2sinh b u-&—w 71. (2.4.8)
o) = T (e 2579)

Here we neglected all the signs and powers of i’s which can be absorbed into redefinition of the
loop operator.
In the following sections we test the above formulae against some well-known facts. In fact,

we will find that all these formulae need to be corrected.
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Chapter 3

Pure Chern-Simons theories

The (bosonic) CS theory is a topological field theory which provides a physical description of a
wide class of topological invariants associated to knots or links in 3-manifolds or the manifolds
themselves. The theory was exactly solved in [41] by using non-perturbative methods and its
relation to 2D conformal field theory with G symmetry.

N = 2 pure CS theories are essentially the same as the bosonic CS theories, because all
the vectormultiplet fields except for the gauge field A,, are auxiliary fields. Some of the known
formulae for observables in the bosonic CS theory can be reproduced using the results of the
previous section. For example, the ellipsoid partition function of N/ = 2 CS theories is given by

the following integral

1 ~ =S v
o W/drae - Bltoop

1 . .
= — / d"Ge™ @) TT 2sinh(nba-6) - 2sinh(xba-5). (3.0.1)
|W| aEAT
The result of [41] for the sphere partition function can be reproduced up to overall coefficients by

setting b = 1 and performing explicit 6-integration with the help of Weyl’s denominator formula

H 2sinh(ra.6) = Z e(w)e2™P)a (3.0.2)

acAt weWw
where p = )" ca+ @ is the Weyl vector and e(w) = %1 is the parity of w € W. Likewise,
the expectation value of an unknot can be reproduced as that of a BPS Wilson loop in N = 2

theory,
Wa(C) = TrpP expi%c(Amvm +io)adt, (3.0.3)

where a is an arbitrary real constant and C' is an integral curve of %xm = av™(z). As an

example, take C' = S(lT) oriented in the increasing direction of 7 (which is opposite to the
direction of v™). The Wilson loop expectation value is then given by an integral of the form
(3.0.1) with an additional insertion of

S ()2 o

[loca+ 2sinhma-c

Wy (5) = Trae®™ = (3.0.4)
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Here M is the highest weight of the representation A. Also, hereafter we will use a new dimen-
sionless field &
o =0bc =lo, (3.0.5)

which is more suitable than & for the discussion of circular vortex loops of radius /.

An important remark is in order. Many exact formulae for observables in bosonic CS theory
depends on the CS coupling through the combination k + hY, where h" is the dual Coxeter
number of G. This can be understood as a perturbative correction at one-loop. But such shift
of k does not occur in N/ = 2 CS theories due to the presence of auxiliary fields [42]. Later we
will encounter a similar difference between bosonic and N = 2 theories concerning the shift of
the label A of Wilson loops [17].

3.1 Equivalence of Wilson and vortex loops

An interesting fact known in bosonic CS theories is that vortex loops are equivalent to Wilson
loops in the representation with the highest weight A = k3/2. We will first review how the equiv-
alence works in bosonic CS theories, and then attempt to reproduce it in N' = 2 supersymmetric

setting.

3.1.1 Quantization of (co)adjoint orbits

It is known that, for every irreducible representation A of a compact group G, there is a sym-
plectic manifold (M,w) which gives A as the Hilbert space of its geometric quantization. Using
this, one can express a Wilson loop for arbitrary G and A by a suitable quantum mechanics
on the loop interacting with the bulk gauge field. We summarize the basic idea here by going
through one simple example. For more details of geometric quantization, see [43,44].

Let us take G = SU(2) and A = spin-s representation. The symplectic manifold for this
case is M = S? and the symplectic form w = hssinfdfdy, where 0, ¢ are the usual polar
coordinates. We will keep the h-dependence of various formulae for the next few paragraphs.
The Hamiltonian functions (moment maps) and corresponding vector fields generating SU(2)

symmetry are given by

Plz—hs Sinﬂcoscp X(Pl):—singpaae_cotgc()s@aacp’

P? = —hs sinfsin o, X (P?) = 4+ cos 4,0869 — cot #sin @51, (3.1.1)
P3 = —hs cos¥, X(P?) = i
dp

They are related to each other by dP® +1x(payw = 0. The Poisson bracket on this M is defined
by { f, g} = (w™H)™ 0, f Ong. It satisfies
1

pPe Pb — abcPc‘
hssinf’ (P, Py =e

{90? 9} =
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In geometric quantization, Hilbert space is constructed in two steps. The first step, called
prequantization, defines a map from functions f,g,--- on M to operators f, g, -+ acting on

certain Hilbert space H of wave functions by the formula

f= —ihX(f) —ux(pd + f. (3.1.2)

Here 9 is a one-form satisfying d = w, which is necessary in order that {fi, fo} = f3 lead to
[ fl, fg] = ih fgll. But such a 9 exists in general only locally. This makes the wave functions
not ordinary functions on M but sections of a line bundle B, called prequantum bundle, with

connection V =d —ih~ 19 = da™V,,. f is rewritten in term of the covariant derivative V,, as
f=—ihX(f)"Vy + f. (3.1.3)
The symplectic form w is then subject to the quantization condition

c1(B) = [%} e H2(M.,Z).

In the present case it gives f g2 5op = 25 € L.

The second step is to choose an integrable Lagrangian subbundle P of TMC called polar-
ization and require the quantum wave functions to be covariantly constant along P. This is
the generalization of the familiar fact that wave functions depend only on half of the phase
space coordinates, and the complexification is to accommodate generalizations of coherent state
quantization of harmonic oscillator. Various choices of P are possible for a given (M,w), but
for a Kéahler manifold M a particularly convenient one is in which the quantum wave functions
depend only on holomorphic coordinates. For the present example, M = S? can be covered by
two coordinate patches z = tan gew and w = cot ge_w = 2~ L. In the gauge

— )

1+ ww

quantum wave functions ¥ are holomorphic functions in the respective coordinate patches.

V[, = —2ihs VD[] = —2ihs

1422’

Moreover, V(,; and ¥y, are related by W) = 2*23\11[4, so they are both polynomials of degree
< 2s. Quantum Hilbert space thus becomes (2s + 1)-dimensional as required for the spin-s
representation.

The above simple problem can also be studied using path integral formalism [45]. The
appropriate Lagrangian for the quantum mechanics of # and ¢ is (hereafter we are back in i = 1
units)

L = —scosfp+vp, (3.1.4)

where 7 is a constant satisfying the quantization condition s £ v € Z.
Note that the first term in (3.1.4) gives the correct Poisson bracket of 6 and ¢ in the same
way that {g,p} = 1 follows from L = pq. In other words, one has

oL
{ome} =1, m,= 95 (3.1.5)

H1n Appendix B.1 we demonstrate this fact in detail.
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and one can go to the quantum theory by replacing the above by the usual commutation relation
[, 7] =i (in h = 1 units). In addition, the commutation relation of angular momenta [.J¢, J?] =

igb J¢ is reproduced by setting J*:
J' =ssinfcosg, J?=ssinfsingp, J°=scosb, (3.1.6)

which satisfy {J®, J?} = £ J¢ as desired.

The second term in (3.1.4) and quantization condition for v are necessary for exp(i [ dtL)
to be a continuous functional of the path {6(t),¢(¢)}. It can be understood by thinking of
continuous deformations of a path such that its winding number around the points 6§ = 0 or 7
jumps.

For v = —s the above L and P? can be expressed as
L=2iTr(\g"tg), P*=Tr(\g lo%), (3.1.7)
where ¢% are Pauli’s matrices and )\, g are the following 2 x 2 matrices.

. . i 0 —1 0
A= f0'3 = €eX _27@0_3 ex —@0'2 = S 2 ¢ cos 2 (3 1 8)
27 ¢ P 2 P 2 —e'% cos & sinf ) o
2

2

Using these quantities, one can express the Wilson loop as a path integral of a quantum me-

chanical system coupled to the 3D gauge field.
Wi(C) = TrpPexp <z?{ da™ A% T“)
C
= /Dgexp/dtTr(—ZAg_l(g—ix'mAmg)>- (3.1.9)

The S? in the above discussion is the simplest example of adjoint orbit'?. The adjoint orbit
of a Lie algebra element A € g = Lie(G) is defined by

Adg(\) = {grg t|ge G} (3.1.10)

The irreducible representation of a Lie group with highest weight A can be obtained from geo-
metric quantization of the adjoint orbit Adg(\), where the weight A € h* and the Lie algebra

element \ € h are identified via
Ao =2Tr(Ao). (Vo €b) (3.1.11)

The formula (3.1.9) works for arbitrary gauge groups and representations. General properties

of adjoint orbits will be discussed in more detail later.

2Throughout this paper we work with the natural identification of adjoint and coadjoint orbits.
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3.1.2 Boundary terms in CS theories revisited

In Chapter 1 we determined the boundary term for the CS action (1.5.7) from SUSY invariance.
We are now in a position to argue this was not enough, and explain what needs to be added. Our
argument is based on [16,46] which carefully studied the canonical quantization of CS theories.

For simplicity, let us first consider the theory on R3 with a BPS vortex line satisfying (1.4.1),
(1.4.4) lying along the x3-axis. So M is an R? with the tubular neighborhood of the vortex line
removed. As is the previous chapter, we use t for the coordinate along the vortex line and the
polar coordinate 7, for the transverse two dimensions, so that OM is the cylinder at r = €
parameterized by ¢, t. Our formula (1.5.7) for the boundary term for N’ = 2 CS theory becomes
in this case

ScsB = —ﬁ dedt Tr [A(p(At — 2@'0)} ) (3.1.12)
Am Jom

Let us examine if the variational problem is well-defined under this choice of boundary term.

Recall that the variation of the bosonic CS action gives

[k % 4
5Scs = 5{“ /MTr<AdA— = )}

ik ik
= o MTr(éA/\F)—kﬂ/aMTr(éA/\A). (3.1.13)

The first term in the RHS vanishes due to the equation of motion /' = 0. The second term can
be rewritten as "
2 dpdrTe(54,4, - Ag54;).
A Jom

The variational problem becomes well-defined by requiring that one of the two gauge field
components A, A; vanish on M. Alternatively, one can specify nonzero boundary value for
A; by adding a boundary term

ik

Scsp = — — dedt Tr(AwAt), (3.1.14)
4 OM

which is in fact a part of (3.1.12). Somewhat confusingly, the boundary term for specifying A,
is different from this Scgp by minus sign. One can indeed check 6(Scs + Scgp) vanishes if
F =0 holds in the bulk and §A; = 0 on the boundary.

ik

ik
d(Scs + SCS,B) = 27r/ Tr(JANF)
M

™

/ dpdr Tr(Ay04;) (3.1.15)
oM

Also, the addition of (3.1.14) has an effect of changing the bulk Lagrangian
ik

ETr(ASOAt — AAy+ ) L= —%T&“@A@At +. )

Lcs = —

where the dots above A, A, stand for r-derivatives. Therefore, if the theory is radially quantized
with the Lagrangian Li.g, A plays the role of canonical coordinate and A, the momentum. The
wave functions describing states on equal-r surfaces are functionals of A;. This is in accord with

the fact that one can set the value of A; on the boundary at will.
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Suppose that, instead of vortex singularity, a quantum mechanics with G symmetry is intro-
duced along the 23-axis. Let Sqm be the action describing the quantum mechanics interacting
with the G-gauge field A; in the bulk R3. Then one can define a 1D-3D coupled system by the
path integral of e~Scs—Scs.B=SQM with respect to the quantum mechanical variables and the 3D
gauge field. The boundary term which is appropriate for this construction is again (3.1.14).

Now that we have already chosen (3.1.14) as the boundary term, what can we do to impose

the boundary condition on A,? The answer is simply to set

Som = —ik/dtTr(BAt). (3.1.16)

Then the variation of the whole action

ik

(Scs + Scsp + Squ) = o /M Tr(SA A F) /a At TH (A6 — ik / dt Tr (85 4,)

™

gives A = [ as an equation of motion. Furthermore, according to [16] one should average the

14 ‘ oM

boundary condition over the orbit of 3, namely to modify the boundary condition as A@| o =
gBg~! for a t-dependent element g € G and integrate over g(t). This can be done by modifying

Squm as follows:

dt

Here the kinetic term for g(t) has been added to make Sqm gauge-invariant. We thus arrived

Somlg] = k/dtTr(,Bgl<dg—iAtg>). (3.1.17)

at a description of vortex loops in terms of a quantum mechanics of g(¢) coupled to 3D gauge
field. Moreover, the quantum mechanics is the same as the one for the Wilson loops (3.1.9) if

their parameters A, 8 are related as

_ kB
=5
So, in bosonic CS theory with coupling k, a vortex loop with vorticity § is equivalent to a
Wilson loop for the representation with the highest weight A = k3/2. Note that this leads to a

quantization of 8 in CS theories.

A (3.1.18)

Let us come back to the N/ = 2 CS theories on an ellipsoid with a BPS vortex loop along
S(lT) at & = 0. The supersymmetric boundary term is (1.5.7) instead of (3.1.12). The role of

Ay, Ay in the previous discussion is now played by
1 1 ~ ~
—v™A,, = ZAg, + ZAT , 00sinf cosO - w™A,, = { cos> 0A, — /sin? 6 A, .

where w™ is defined in (1.5.6). To describe a vortex loop with vorticity 3, one needs to introduce

Son = k / drTr [Bé(z'vam - 0)], (3.1.19)

or the averaged version

Squmlg] = k / drTr [Bg“%g + Bg (i Ay — cr)g]. (3.1.20)

Note that we included o in these formulae to make Squ supersymmetric.
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We believe that both of the above boundary terms lead to consistent descriptions of vortex
loops. The boundary term Squ (3.1.19) sets the boundary condition A, = § and leads to the
definition of a vortex loop by a singular behavior of the gauge field. On the other hand, the
averaged version Squm[g] describes a vortex loop in terms of a quantum mechanics coupled to the
bulk gauge field. In the latter description of vortex loops, one usually does not assume singular
behavior for the gauge field before integrating out the quantum mechanical degrees of freedom.
These may sound somewhat empirical, but we would like to show in the following that the above

two definitions indeed lead to the same result for the expectation value of a vortex loop.

3.1.3 Path integral over fields with singularity

Here we compute the expectation value of a BPS vortex loop on an ellipsoid using the boundary
term without averaging, i.e. Squm (3.1.19). Its value on the saddle point (2.2.2) and the boundary
condition (2.3.1) is
ip ~ .

Soum = —k‘/dT Tr [,86(0 n 7)} — 27k Tr(85) = —7kB-5.
Note that we shifted o as explained after (2.4.5) and then used (3.1.11). This corrects our
previous formula for V() (2.4.6) and Vj(6) (2.4.8) as follows:

B |W‘ ewkﬁ-&

Vi(o) = — V(o Vi(o) = . 3.1.21
p() (Wi | 58 5(0) Ha,5>02sinh7ra.3 ( )

Recall that § was gauge-rotated so that a-8 > 0 for all the positive roots. Those which are
orthogonal to 3, if any, are the positive roots of the subgroup K C G left unbroken by the vortex
loop.

We would like to compare this with the function W) (o) (3.0.4) for a Wilson loop in the

representation A. We decompose the Weyl vector as p = px + p, where

1 1 AY ={aec At|a-A=0}
P =35 Z a, p=s; Z a. ( (3.1.22)

went acllt O ={aeAt|a-A>0}
Then
(10)e(w )2 P+ 0 G)

ZweW/WK Zw'ew;( €
[locas 2sinhma-o

Do wewi e(w)e2m (W' (pr)+5+X) - w (@)

Wi(o) =

- >

[loea+ 2sinhma-w(o)

weW /Wi
— Z 627T(,5+A) -w(b.\) HQEA_‘I} 2 Slnh TO . w(o_)
’wEW/WK Ha€A+ QSlnh ﬂ-a'w((j)

27 (FN) (@)

- Z [Locr+ 2sinh ma-w(o)

weEW /Wi

, (3.1.23)
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where Wy was defined at (2.4.3).

The expectation values of a Wilson loop in a representation with highest weight A\ and a
vortex loop with vorticity 5 are given respectively by integrals of W) (o) and V(@) over h with a
measure (2.4.5). Inside such an integral, the summation over the images of W/Wk is the same
as the multiplication by [W|/|Wk|. So the above result implies an equivalence between Wilson

and vortex loops

V(o) ~ W)y (o) for A+p= - (3.1.24)

Note that there is a correction to the rule of correspondence compared to that for bosonic theory
(3.1.18). This looks problematic because the trivial Wilson loop (A = 0) does not correspond to
the trivial vortex loop (8 = 0).

3.2 1D-3D coupled system

Next we study the description of a vortex loop using the averaged version (3.1.20) of the boundary
term. The quantization of (3.1.20) itself would give the representation with the highest weight
A = kB/2, because it is identical to the action (3.1.9) for the adjoint orbit quantization. We
would like to do something slightly different here. As the bulk CS theory was promoted to a
3D N = 2 theory, one can also promote the quantum mechanics on the vortex worldline to a
1D N = 2 SUSY theory. The interaction between 1D and 3D fields can be chosen in such a
way that the whole system is invariant under a SUSY that acts on both 1D and 3D fields at the

same time. The path integral of the combined system can be performed exactly.

3.2.1 Adjoint orbits

We begin by summarizing basic properties of general adjoint orbits!'®. The adjoint orbit M =
Adg(N) for A € g is defined by

Adg(\) = {grg~ g € G}. (3.2.1)

M admits a transitive action, which means any two points on M are related by an element of
G. For g1, g2 € G, one point gl)\gfl € M maps to the other point gg)\ggl € M by the action of
element gog; lea.

gz_lgl : gl)\gl_l — gg)\gg_l. (3.2.2)

A manifold with a transitive action of Lie group is called a homogeneous manifold, which is
identified with the coset space G/K. The group K is the stabilizer of a point. In the case
M = Adg()), the stabilizer of a point A is the centralizer of A, namely the group K is the

subgroup of G which consists of elements that commute with .

K ={hecGhh~t =)} (3.2.3)

3For more detailed reviews of the mathematical properties of adjoint orbits, see [47].
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To describe mathematical properties of M, it is convenient to think of a map g(x) (x €
M, g € G) such as the SU(2)-valued function g(6, ) (3.1.8). The action of a Lie group element

go € G on M translates into a coordinate transformation ™ — 2™ according to the relation

go - g(x) = g(x) - h(z, go) (h(ac,gg) € K) , (3.2.4)

since h(z, go) commutes with A and therefore

(909(2))Mgog(x)) " = g(a")Ag(a") ™. (3.2.5)

As an infinitesimal version'® of this, multiplication of Lie algebra generators T® € g translates
into the action of vector fields X* = X% ()0,

X%(z) = —iT%(x) +ig(x)H(x), (H*(z) € t) (3.2.6)

where £ C g is the Lie algebra of K. The corresponding moment map function P? is determined
from dP?% + 1xew = 0, where w is the G-invariant symplectic form on M called the Kirillov-
Kostant-Souriau(KKS) 2-form.

w = —2i Tr[A(g 'dg)?]. (3.2.7)
From dP® = —1xaw, we have
1xa 2iTr[Adg ™ dg] = 2i Tr[N(—iH g™ +ig ' T*)dg + Adg ™ (—iT"g + igH")]
=2d (Tr[Ag 'T"%]),

thus
P* =2Tr[\g~'T"g]. (3.2.8)
One can easily check dw = 0, and the G-invariance can be shown as follows.
) : —1y-1 —1\12] _ 9 -1 -1 —142
go:  wr—> 2iTr[M(gogh™ ") "d(gogh™ ") }*] = 2i Tr[A(hg™ "dg-h™" + hdh™")7]
=w
In the above computation, after expanding the squared binomial inside the trace, one finds the
(hdh=1)? term is zero because of the fact that the 1-form hdh~! takes values in €, the cross term

is zero, and the remaining term is exactly w. The G-invariance of w can also be expressed as

£ xaw = 0, which can be shown as follows.

£xaw = diyaw = —d?P* = 0. (3.2.9)

"Expanding (3.2.4) for an infinitesimal transformation with small parameter ¢,, one finds

gog()h ™" = (1 +ieaT)g(x)(1 — ica H ()
=g(z) +ieaTg(x) —i€ag(x) H* (z) + 0(62).
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Next we turn to complex structures on M. Let n be the orthogonal complement of ¢ with
respect to the Killing form. We are interested in the cases where G/ K is reductive, that is when
the decomposition g = € @ n is such that [¢,n] C n. Note that n is identified with the tangent
space at A € M. To define a complex structure J on M, one first needs a decomposition of n®
into two subspaces ns of definite eigenvalues of J. By transporting this decomposition of Ty M®
to all other points on M by the action of G (3.2.4) one obtains an almost complex structure on
M. Tt is integrable if the set of holomorphic (or antiholomorphic) vector fields on M is closed
under Lie bracket, which simply amounts to [ny,ng] C ny.

Recall that X\ was chosen to be in a Cartan subalgebra b, and a-A > 0 for all the positive
roots o € AT. This leads to a decomposition g© = ¢© @ n, @ n_, where

“=p°e > (CE,+CE.,), n.=)» CE, n_=)Y CE, (3.2.10)

aeAt acllt a€cll+

and ITT was defined in (3.1.22). The symplectic form (3.2.7) is of type (1,1) under the complex
structure thus defined, so M is a Kéhler manifold. Note that there are in general multiple

complex structures for a single coset space G/K. For example,
A1 = diag(1,1,0,0,0,—1,—1), Ao = diag(3,3,0,0, -2, -2, —2)

both break G = SU(7) to K = SU(3) x SU(2)? x U(1)? but lead to different complex structures
on G/K.

A useful fact is that G/ K can be thought of as the flag manifold G/ P, where P is a parabolic
subgroup of G corresponding to the Lie algebra €€ @ n_. (When K equals a maximal torus of
G, P is called Borel subgroup.) This implies that any complex coordinate on N, the Lie group
corresponding to ny, can be used as a complex coordinate on M. Moreover, under such a choice
of coordinate on M, the vector fields X* (3.2.6) become holomorphic Killing vector fields which

preserve the Kahler metric on M.

3.2.2 N =2 SUSY quantum mechanics on M

Let us now turn to the 1D N = 2 supersymmetric quantum mechanics with the target space
M = Adg()M) and its quantization. As M is Kdhler and we are gauging its isometry, we need
chiral and vectormultiplets.

Take a complex coordinate z’ on M such that its metric and Kéhler form are given in terms
of the Kéhler potential K(z,z) as follows.

92K (2, %)

SToT (3.2.11)

ds® = gri(z, E)dzldéj, w = 1gr5(z, Z)dzl/\déj; g9157(2,2) =

The isometry of M is generated by holomorphic Killing vectors

0 oo 0
a __ al al(z
X0 = X¥(2) 55+ XV(2) 5
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satisfying [X¢, X?] = — feb¢X¢. To each X there is a corresponding moment map P® satisfying

dP® +1xaw = 0, or in components
O P =ig; X%, 5P = —ig; XY, (3.2.12)

Using ¢;7 = 0,;0;K and the holomorphicity of Killing vector one can integrate these equalities
to determine P® up to constant shifts, which in turn can be fixed by requiring P* to transform

in the adjoint representation. For a suitable K, P® can be written as
P = —i XY, K =iXV9;K . (3.2.13)

A (1D) vectormultiplet consists of a gauge field A, bosons o, D and fermions A, A transform-
ing as

QAL = S(A+aN), Q\ = e(—iDyo — D),
Qo = %(65\ +EN), Q) = &(—iDo + D), (3.2.14)
QD = —%Dt(eX — &)+ %[a, X — N,

where €, € are Grassmann-even constant SUSY parameters. All the fields are Lie algebra valued,

so one can express them using the set of generators T as follows.
Ay = A9TO, o= gT%  etc. ([T“, TV = f“bCTC>

The complex coordinates z' on M are promoted to chiral multiplets. Each chiral multiplet

consists of a boson 2! and its superpartner x’. They transform as

~

Q:z
Qz

X' QX' = —iE(D! —io"XY), Dl =24 ATXY,
X, Qx'=—ie(Diz’ —io"XY), Dzl =3 + APXY. (3.2.15)

I
)

<
I
M

The SUSY-invariant kinetic Lagrangian for the chiral multiplets is given by
Liin = gDz’ Dy’ + g X XY 0% +iD P — g, XN X + g x/ XX
— g X' Dix" + 91X 0k X o X + 917X X0 X,
Dix" = X"+ AP0 X" 4+ T Dez™ X", (3.2.16)
Another invariant can be constructed using the one-form ¥ = ¥,;dz’ + 9;dz’ satisfying dv = w.

Ltop = igljxlxj — 1 (DtZI — anXaI) — iﬁj(Dth — iaaXaj)
= igX'x’ — (9,3 + 0557) — (0% + iAD) P (3.2.17)

What we actually need to do is to gauge the isometry of the adjoint orbit M by the 3D gauge

field and not by an independent 1D vector field. To do this in a supersymmetric manner, we
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recall the transformation rule of cohomological variables constructed from the 3D vectormultiplet
fields.

QU ) = 5 (A + 7). Q) = —iu™ Do D,
Qo = %(nX +7), Q(A) = —iu" Do + D, (3.2.18)
QD = —%umDm(nX —7A) + %[0’, nA — 7.

Here u™ = 7™ is equal to —v™ on the ellipsoid and D = D — %a —u™FE,,. By comparing this
with (3.2.14) one finds that the 3D fields

umAm70—777)\7775\7D

transform under the 3D SUSY in the same way that the 1D vectormultiplet transforms under
1D SUSY with ¢ = € = 1. The 1D-3D coupling is thus obtained by identifying ¢ with /7,
replacing the vectormultiplet fields in (3.2.16), (3.2.17) by the above 3D fields and regarding
QBP) + QE;D;:U as the SUSY of the total system. Recalling (3.2.8) and (3.2.7) one finds that
the bosonic part of Ly (3.2.17) agrees precisely with the action Squm|g] (3.1.20) for the quantum
mechanics on vortex loops, and the fermions appear in Ly, as auxiliary fields.

The Lagrangians Lo, and Ly, play a role similar to that of Scg and Syw for the 3D gauge
field. First, the fermions x’, ¥’ are auxiliary variables in the theory without Lii,. Second,

Liop = Q¥ but Uiy, depends on the components of
\Iltop = 79[XI + 79J>_(j7

which are defined only up to (K&hler) gauge transformations. As a consequence, Lo, takes

different nonzero values on different saddle points, whereas Ly;, vanishes at every saddle point.

Witten index. Let us compute the Witten index, i.e. the S! partition function of the quantum
mechanics on a vortex loop. It is a SUSY quantum mechanics with the target space M = Adg(A)
coupled to 3D vectormultiplet field. The 3D fields are fixed at a saddle point (2.2.2). So we only
need to study the 1D theory defined by (3.2.15), (3.2.16) and (3.2.17) with all the vectormultiplet
fields turned off except for constant o, which we may assume to be in .

According to (3.2.15), the saddle point condition for our quantum mechanics is
g’ X =0, 2 —io"X" =0.
In terms of the original coordinate g on M, these become

a -
(929 D —[o,9 g7 = 0.

If o and the periodicity of ¢t take generic values, this can only be solved by requiring the two

1

terms on the LHS vanish independently. So, gA\g™" is a constant element of h at saddle points.

Since A is also an element of b, gAg~! has to be an image of A under Weyl group.

46



Let us study the saddle point g = id (gAg~! = )) in detail. The neighborhood of this point

can be covered by a local complex coordinate system z“ such that

g =expi Z (2%Eq + 2°E_4). (3.2.19)

a€ellt

Then the Kéhler form and metric around this point are approximately given by

w~1 Z Jaadz® A dz?, Jaa = 2)\-04Tr(EaE_a). (3.2.20)
aellt
Note the positive definiteness of the metric. The moment map and the Killing vector corre-

sponding to o = 0;H; € h read

0P~ \o— Z (@-0)2%2%Gaas 0;X; = —1i Z a-a(za% - ZQ%), (3.2.21)

acllt+ aellt
where we used [H;, E,| = «;F,. Note that the expression for the Killing vector is exact. The

value of the action (the integral of L) on this saddle point is

e~ = 2nlhro _ 2mA-T (3.2.22)
The one-loop determinant Aj_joop at this saddle point can be computed using the SUSY-exact

localizing Lagrangian Ly;,, which takes the approximate form

Lin~ Y gm{z%a + (@-0)252%2% — ix®x® — i(a.a)xaxf)‘}. (3.2.23)
acllt

The Gaussian integration over z* and x® can be easily performed using det(% —i—w) = 2sinh mlw
(if t ~ t + 27l). The contribution of this saddle point finally becomes

eQﬂA~J

N _ . 3.2.24
¢ H00P | 3 g-122 [loen+ 2sinhra-o | )

Other saddle points are all characterized by the equation gAg~! = w(\) for some element
w of the Weyl group. Their contribution can be computed by repeating the above steps with
the replacement A — w(\). But once this replacement is made, the set of positive roots also
needs to be redefined so that a-w(A) > 0 for all o € A?;lew). So the contribution from other
saddle points are obtained from (3.2.24) by replacing A — w(\) and o« — w(«), or more simply
by the replacement ¢ — w~!(3). The full partition function is thus obtained by summing over

different saddle points labeled by w € W/Wy. The index finally becomes

L) = / Dz, x] exp (—Squ)
2 A w(7)

B Z [Lcr+ 2sinh ra-w(o)

weW /Wi

(3.2.25)
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Comparison of the results. The functions V3(c) (3.1.21) and I,(7) are to be integrated over
b with a W-invariant measure (2.4.5) to give the expectation value of a vortex loop defined in
two different ways. Taking account of the fact that the sum over the Weyl images is redundant
inside the integral, one finds

_ kB

V3(0) ~ I5(0) for A 5

(3.2.26)

This gives a precise correspondence between the two definitions of a BPS vortex loop, namely
the boundary condition A, = f versus an N' = 2 SUSY quantum mechanics with the target
M = Adg(N).

On the other hand, the insertion of a BPS Wilson loop in the representation with the highest
weight A is described by Trye?™ = Wy(5) (3.1.23). This function can be reproduced from a
non-supersymmetric quantum mechanics with the target M = Adg(\) and the action (3.1.9).
Our computation shows that the partition functions of the bosonic and supersymmetric quantum

mechanics with the same target M = Adg(\) are slightly different:
I\(G) = Wx_;(a) . (3.2.27)

Similar shift of parameter was noticed and studied in some earlier works [17,48]. This result
may look strange since the bosonic model was supersymmetrized by adding fermions as aux-
iliary fields. However, when computing I, we perturbed the theory further by Ly, and as a
consequence the fermions became dynamical. In fact, the problem is similar to the evaluation of
perturbative correction to the CS coupling of SUSY YM-CS theory [42]. For the simplest case
G = SU(2) it was shown by an explicit one loop analysis that the added fermions give rise to a
shift of the spin s by —1/2 [17].

3.3 Resolution of the unwanted parameter shift

As we have seen, there is a subtle difference between the bosonic and A/ = 2 theories which
appears as the shift A — A — p in the formulae for observables. Here we would like to argue that
one can (and should) nevertheless relate the Wilson and vortex loops in N' = 2 theory by the
same formula A = k£(3/2 as in bosonic theory. For this purpose, we need to explain the effect of
the added fermions in more detail.

It is worth noting that the partition function I of the N' = 2 SUSY quantum mechanics
agrees precisely with that of geometric quantization with the so-called metaplectic correction
taken into account. The importance of metaplectic correction is often skipped over, but when
applied to the system of harmonic oscillator, it gives the correct account of its zero-point energy
from the requirement of internal consistency alone. The origin of the metaplectic correction can
be understood by studying how the quantum Hilbert spaces corresponding to different polar-
izations are related to each other, and in particular how the group of canonical transformations
(the symplectic group) is represented. See for example [43] for more detail. The upshot is that,

if the quantum Hilbert spaces are constructed from the space of sections of the prequantum
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bundle B, the symplectic group will be represented only projectively. But it can be improved by
replacing B by B ® K'/2, where K is the canonical bundle of the target space M. Note that K
does not always have a well-defined square root, and K'/2 may not be unique even if it exists.

Let us calculate the metaplectic correction for the case M = Adg(A). Since the correction
should preserve the property of M as a homogeneous manifold with G-symmetry, it should
at most modify the parameter A\. Take a function o;FP; and the vector field 0;X; in (3.2.21),
and consider the action of the corresponding operator o; P, on quantum wave functions in the
holomorphic polarization. Before the metaplectic correction, o;P; is the following differential

operator near z% = 0.

. 0
b= —i Y 0iXP(5m —ia) + 0P
0, ZOCEH_‘—O' (82 1 ) g
0
= N0 — E (a-0)z"—. (3.3.1)
g = a-0)z 92

After the metaplectic correction, wave functions transform differently under infinitesimal coor-

dinate transformations. So the definition of the operator is also modified accordingly.

5 . ol O . 10(0; X%)
oiP, = —1 Z [ain (@ - zﬂa) + 28za] + 0; P;
aecllt+
—/\U—EZ(QU)—Z(QU)ZQi (3.3.2)
= A\ 5 . . T 3.
a€ellt a€ellt

This shows that the shift A = A — p can indeed be explained by metaplectic correction.
Another important effect of the fermions in A/ = 2 SUSY quantum mechanics is the global
anomaly [18]. The fact that the highest weight A receives quantum correction implies that the
G-symmetry of the quantum mechanics may be anomalous, because A — p is not always a weight
of G. The anomaly arises from quantization of the fermions. Consider a theory with fermions

X, X valued in linear spaces Vp, Vi and a Lagrangian of the form
L =4xDe¢x+---. (3.3.3)
Quantization of the fermions leads to the Hilbert space of fermionic states
Hp = det ™2 Vi @ AVk. (3.3.4)

If V& represents a symmetry, then the symmetry has an anomaly unless det%VF gives a well-
defined one-dimensional representation. For N'= 2 SUSY non-linear sigma model (NLSM) with
the target space M discussed in Section 3.2.2, the fermions y take values on the pull back of
the holomorphic tangent bundle Th; by the boson z. The Hilbert space of this model is thus
identified with the space of sections of the bundle

K'Y? @ NTy @ B. (3.3.5)

The model has an anomaly unless this is a well-defined vector bundle. Note the similarity

of (3.3.5) with the metaplectic correction. As an example, for the case M = S? with w =
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ssin #dfdp one can show by canonical quantization that the Hilbert spaces of the bosonic and
N = 2 supersymmetric NLSMs are spanned by monopole harmonics [17]. They can therefore

be decomposed into irreducible representations of SU(2):

Hpa—o = @ (spin s + n),

nGZzo
Hy=2 = [ @ (spin s — 5 + n)} ® [ @ (spin s + 5 +n) . (3.3.6)
n€lxo boson n€Z>q fermion

Note that these Hilbert spaces are for NLSMs which have a mixture of the first and second order
kinetic terms for bosons. As the second order kinetic term is turned off, only the representation
with the lowest spin remains and others are all lifted up to extremely high energy. This is
another way to see the shift s — s —1/2.

The global anomaly in N' = 2 SUSY quantum mechanics can be canceled by turning on a

suitable Wilson line [18]. This is because the introduction of a Wilson line with charge g,

exp (—/dtLWL> = exp (iq/tht> ,

has an effect to shift the charge of all the states uniformly by ¢. In fact, L, (3.2.17) can
be regarded as a Wilson line in which the pull back of 9 plays the role of A;. This can be
used to cancel the unwanted shift of A while maintaining the relation A = k3/2. We define the
BPS vortex loop with vorticity 8 by a 1D A/ = 2 SUSY quantum mechanics with the target
M = Adg(N), A = kfB/2 and the Wilson line which precisely cancels the shift A — X\ — p. As
we will see in the next chapter, this definition turns out to be more convenient when describing

the quantum mechanics on vortex loops in terms of gauged linear sigma models.

An example: CPV~!. We close this chapter with one concrete example. Take G = SU(N)
and

N-—-1 1 1 N-1 1 1

)= = * kB =m-di <7 ... _7) . (3.3.
m< ) N7 9 N) Eh 9 B m 1ag N ) NJ 9 N eb (337)

The corresponding adjoint orbit is CPV~1

with the prequantum bundle B = O(m). The quan-
tum mechanical partition function is supposed to reproduce the character for the M-th sym-
metric tensor representation of SU(N).

We start from the Euclidean action (3.1.20) for the vortex loop along 5(17) at 8 = 0:

S = k/dfﬁ[ﬁg—l(i _iA, —a)g] . (3.3.8)

We assume that the values of the 3D vectormultiplet fields A, and ¢ = fo are constant, and

they take the following diagonal form.

A, = diag(A%, ... AN G =diag(c®,---,aV ). (3.3.9)
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Let Z = (Zy, -+, Zn_1)T be the first column of g and Z = (Zo,--- , Zy_1) the first row of g~

The above action can be rewritten as
d _
S:m/dTZ<d—iAT—8>Z, Z)? = 1. (3.3.10)
T

The field Z transforms as anti-fundamental of the SU(N). One can regard it as the homogeneous

coordinate on CPV~!. In terms of 2z’ = Z,/Zy the above action can be further rewritten as
S = /dT {—i(ﬁ,DTzf +9;D,7) — A“Pa} , (3.3.11)

from which one can read off the 1-form ¢, Killing vector X and the moment map P?.

im Z'dz" — d2'Z!

9= i
2 14212
X0y = i(Th2" +Tg, — Thz'2" — Tgy2")a,,
P = %“TG)W{; + (T)02" + (T9)0s2" + (T } (3.3.12)

Here T® are N x N matrices representing the generators of SU(N), and I,J =1,--- ,N — 1.
The supersymmetrized theory has N saddle points. One of them corresponds to Z =

(1,0,---,0), and the others are all related to it by permutations of the N components. The clas-

sical value of the action on this saddle point is S = —27m(5° +iA42). The localizing Lagrangian

near 2! = z = 0 looks like
N—1 ) ) _
Liin ~m Z {{51 —i(AL — Ag)él}{él +i(AL — Ag)z} + (6" — 592z !
=1

—iV Y AL - A9 — (@ -3 (3:3.13)
So the contribution to partition function from this saddle point is

N-1  Det [% (AL — A9) — (6! — 60)} -
e = ,
=1 Det [(d% +i(AL — A2)? — (57 — 30)2} 1 2sinh (@ — @)

where u = 0 + iA,. It depends holomorphically on wu, which is as expected because we started
from the action (3.3.8). Summing up the contributions from all saddle points one obtains the

full partition function
27 - w(i) N-1 e?ﬂ'mﬁl

Dge=S — : __ = . (3.3.14)
/ weVVZ/WK Ha€H+ 2sinh ﬂa.w(u) g HJ;él QSll’lh(uI — U,J)

This is not the character for the M-th symmetric tensor representation of SU(N). One way to
fix the mismatch would be to start with the orbit of A + p instead of A, where

N-1
~ 1 Z 1 Z N-1 1 1

a€ellt I=1
In other words, replace m by m + N/2 at the beginning. Our resolution is not to shift M, but

to cancel the anomaly by turning on the Wilson line with “charge” N/2.
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Chapter 4
GLSM on vortex loops

In this chapter we develop further the description of vortex loops as 1D-3D coupled systems using
gauged linear sigma models (GLSMs). These models generally have an independent 1D gauge
symmetry in addition to the (global) G symmetry that is gauged by the 3D vectormultiplet.
We will see that the Wilson line that cancels the global anomaly for this 1D gauge symmetry
naturally resolves the problem of the unwanted shift A — A\ — g.

We begin by reviewing 1D N = 2 supersymmetric GLSMs and an exact formula for the
Witten indices.

4.1 1D N =2 SUSY GLSMs

A 1D N = 2 supersymmetric GLSM consists of a vectormultiplet (A¢, o, A\, A, D) (3.2.14) for
some gauge group G and matter chiral multiplets (¢,) and Fermi multiplets (n, F) in some

representations of G. The fields in chiral and Fermi multiplets transform under SUSY as

Q¢ = ey, QY = €(—iDip +iog),
Qo = &), QY = e(—iDyp — i¢a),
Qn =¢F + ¢k, QF = é(—iDn + ion — V),
Q7 =¢eF + ek, QF = ¢(—iDyn — ifjo — V).

(4.1.1)

Here F is a composite field made only of chiral fields of the theory and W is its superpartner.

The square of @ acts to all fields as
Q% = —i0 +i(o +iAy). (4.1.2)

There are various Q-invariants which can be used for Lagrangian. First, there are kinetic

terms for the three multiplets,

Ly = Tr[(D0)* — iADA + iX[o, A + D?],
Le = Di¢Dyd — iy Dytp + o’ — ip D — ihporh — i) — ih Ao, (4.1.3)
Ly = —inDyn + inon — FF + EE — p¥ + Uy,
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Also, supersymmetric interaction terms of chiral multiplets (¢;, ¥;) and Fermi multiplets (n;, F;; E;)
can be constructed according to the formula:
- 0J; — 9J;
Lt =) <JF — JF) +) (wjlm + wjzﬁz), (4.1.4)
i i 0%; 0¢;
where J; is a composite of chiral fields such that ), J;E; = 0. This can be regarded as the
F-term of the Fermi multiplet with the lowest component (superpotential) W = > . Jin;. In
addition, for U(1) vectormultiplets, the Fayet-Iliopoulos term (with coupling ¢) and the Wilson

line (with charge ¢) are also invariant.
Lpr = ZCD, Ly, = —q(’iAt + U). (415)

An important role of Wilson lines in 1D GLSMs is to cancel global anomaly. Sometimes
Wilson lines with fractional charges become necessary. For example, for a U(N) gauge theory
with N; fundamental chirals, N, anti-fundamental chirals, Nf fundamental Fermis and Na anti-
fundamental Fermis, the diagonal U(1) subgroup is anomaly free if the Wilson line with the
following U(1) charge ¢ is added.

1 ~ o~
g€ —5(Ni = Na+ Ny = No) + Z. (4.1.6)

4.1.1 Witten index.

A powerful formula for the Witten index of 1D N = 2 GLSMs was obtained in [18]. The deriva-
tion uses the localization of path integral that follows from the Q-exactness of the Lagrangians

(4.1.3). The saddle point configurations are can be read from
0="Tr[(Dw0)*+D*+---], (4.1.7)

which implies
Do =D =0. (4.1.8)

At these saddle points, ¢ and A; are mutually commuting constants and all other fields must
vanish. One can gauge-rotate o into a Cartan subalgebra b C Lie(G), and A; then takes values in
the corresponding maximal torus. The pair (o, A;) is further subject to the identification by the
action of Weyl group W. The space of saddle points thus becomes a real 2r-dimensional orbifold,
where r = rk(G). It is useful to define a complex coordinate v = o + iA4; on this space. At
this stage, one may also deform the theory by gauging its global symmetry Gr by a background
vectormultiplet & = o + iﬁt satisfying the saddle point condition. Also, for convenience we
rescale all the fields and the coordinate t so that the time circle has unit radius.

The index can be obtained by evaluating the one-loop determinant A(wu, ), multiplying by
the Wilson line e=WL and then integrating over u. Due to the fact that u is Q-closed but @
is not, the index I(u) is expressed as a multiple contour integral of a holomorphic function.

Similarly to the discussion in Section 2.2, the one-loop determinant can be expressed in terms
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of the determinant of Q2. For a quantum mechanics on S*, the determinant of Q? is given by

products of sinh functions.

Det Q® = Det(—id, + iu) = [ [(—id; + iw(u)) = | ] 2isinh mw(w). (4.1.9)
Thus, the index I(u) (up to an overall + sign) is given by
1
I(u) = "W /d’”u e MW A, 1),
HQsinhﬂ'(a-u) H2sinh7r(l/i-u + U;- )
Au, @) = = : . (4.1.10)

H2sinh7r(,uj-u+ﬁj-1’l)
J

Here (u;, ;) runs over the weights of the representation of G x G furnished by chiral multiplets,
and similarly (4, 7;) is for the Fermi multiplets.

The contour integral can be performed using the operation called the Jeffrey-Kirwan (JK)
residue, which means that one only has to collect residue of the poles meeting certain require-
ment [49,50]. To simplify the discussion, let us assume that all the poles of A are transverse

intersection of r singular hyperplanes. Each singular hyperplane is of the form
pi-u+fj-u =ik (ke€Z),

and is labeled by a charge vector p; € h*. Now, the evaluation of JK-residue integral begins by
choosing an arbitrary reference charge vector n € h*. Then a pole contributes to the integral
if n is contained in the cone spanned by the r charge vectors labeling the pole. Note that the
set of poles contributing to the integral depends on the choice of 77, but the final result of the
integral is independent of 7.

The function A(u,u) has poles in the interior of the space of saddle points as well as at
infinity. As was studied in detail in [18] and reviewed in Appendix C, the residue of the pole
at infinity may or may not contribute depending on the choice of 1 as well as the value of the
FI coupling ¢. In particular, they do not contribute if 7 is set equal to (, so it is customary
to set n as such when studying Witten indices of 1D GLSMs. Note that this implies that the
Witten indices do depend on ( although the FI Lagrangian is Q-exact. The GLSMs in general
are known to exhibit different behavior depending on the values of (, and accordingly the space
of FI couplings is divided into several regions or “phases”. The index may jump as ( is varied

across phase boundaries. See [18] for more detail.

An example: CPY~!. The GLSM is given by a U(1) gauge theory with N chiral multiplets

of charge +1 and a positive FI coupling. We turn on the Wilson line with charge ¢ and gauge

the flavor SU(N) symmetry by a constant background vectormultiplet 7 = diag(u®, --- , @V ~1).

The Witten index is then given by a contour integral
du e2mqu N-1 627rq171

1w = J - - . 4.1.11
(u) i 1}:—012sinh7r(u_aJ) — H#Igsmhw(uf —a’) ( )
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The JK-residue integral picks up the contribution of all the N poles u = u’. Without the Wilson
line, the integrand is mot invariant under a large gauge transformation v — u + ¢ for odd N.
This is an example of global anomaly. To obtain the character for the m-th symmetric tensor
representation of SU(N) one has to set ¢ = m + N/2. We would like to view it as the model
with ¢ = m whose anomaly is canceled by the additional Wilson line with ¢ = N/2.

4.2 GLSM for vortex worldline quantum mechanics

Let us now turn to the SUSY quantum mechanics on the worldline of vortex loops. We first
consider the case where the 3D gauge theory is made of vectormultiplet only. So we take the
3D N =2 CS theory with G = SU(N) at level k, and put a vortex loop with

B = diag(B1,---,Bn) = diag( Bay, B0y, By B2 s Bwy By ) s

ni ng np

Bay > Ba) > > By (4.2.1)
which breaks G to K = S[U(n1) x --- x U(ny,)]. For later use let us introduce
No=0, Ni=ni, Na=ni+ng, -+ Ny,=ni+---+n,=N.

The quantum mechanics on the vortex worldline is a 1D N = 2 theory with a global symmetry
G = SU(N) which is gauged by the 3D vectormultiplet fields. Also, its Witten index should

reproduce the corrected version of (3.2.25):

NE= Y W) V) = (122
3(0) = w(o)), o) = - —, 2.
el B B Hﬁpﬁj 2sinh7(o; — 05)
where W, Wy, p, ITt are defined around (3.1.22) and ), p are N-component vectors
A=A A0 = (M@ Ay s A5 Aw) ) Aoy = kB »
N————— N— ——
ni np
. . . . . . . . 1
P:(Ph"'aPN):(P(l),‘“>P(1)a"' >p(p)a"'7p(p))7 p(a)zi(N_Na_Na—l)' (423)
— —
ni np
By noticing that each w € W/Wk is in one-to-one correspondence with a division of {1,--- , N}
into subsets dy, - - - ,d, of order |d,| = ng, (4.2.2) can also be written as the sum over divisions
R e2m 22 (A+p)iT:
Va(o) = (4.2.4)

{dlgdp} o<t [lica, [Tjeq, 25inhm(3: —55)

The V3(o) in (4.2.2) or (4.2.4) equals the character for the representation of SU(N) with
the highest weight X\. The same character formulae work also for G = U(N) by relaxing the

tracelessness condition for o; and modifying the quantization condition for \;. To be more
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Figure 4.1 The quiver diagram for a GLSM on a vortex loop. It has a 1D A/ = 2 vectormultiplet
for each node and a bifundamental chiral multiplet for each solid line connecting

the neighboring nodes. The shaded node represents the 3D gauge symmetry.

explicit, recall that we have described the highest weights of SU(IN) representations as N-

component vectors A = (Ay, -+, Ay) satisfying
N
)\i_)\jEZZO (i>j), Z)\izo.
i=1

So, A; are all equal modulo Z to m/N for some integer m which gives the charge of the represen-
tation under the central subgroup Zy C SU(N). The highest weight of a U(N) representation
is obtained from that of an SU(N) representation A by a uniform shift of \; to make them all

integer.

4.2.1 A GLSM and its quiver representation

The GLSM for flag manifolds has been discussed in many places; see [19,20] for example. Here
we study the 1D N = 2 version of it. The models can be conveniently described by the quiver
diagram of Fig. 4.1. It is a U(Np—1) x - - - x U(N7) gauge theory with N chiral multiplets in the
anti-fundamental of U(NN,—1) and one bi-fundamental chiral multiplet for each neighboring pair
of unitary groups, namely N1 X N, of U(Ngy41) x U(N,) for each a € {1,---,p—2}. The FI
couplings for the diagonal U(1)P~! are chosen to be all negative. In addition, we turn on the
following Wilson line for the U(1)P~1:
p—1
Lwy = — anTl"(iAga) +0?), da = k(Ba) = Blas1)) + %(Na—i-l —N.1). (4.2.5)
a=1
The first term in the formula for ¢, is needed so that the model agrees with the adjoint orbit
quantization with A = k5/2. The second term is needed to cancel the global anomaly.

Let us denote the constant value of the U(1V,) vectormultiplet fields at saddle points as
ol iAga) = diag(uga), e ,ug\c;)).

The index is then given by the JK residue integral of the holomorphic function

p—1 N p—1 Ng
exp (Z Z 27Tqaul(-a)> : H H 2sinh W(uga) — ug-a))

—Swr(u) ~ a=11=1 a=1i#j
e A(u,0) NN N L . (4.2.6)
i=1

2sinh7(o; — ug.p*l)) H H H ZSinhﬂ(uEGH) _ u§a))
1

a=1 i=1 j=1

j=
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At each pole of A, the value of the variables uga)

are determined one by one through an
iterated residue integral. At some of the poles, they are determined according to the following
steps. First, each of u(p b (j=1,---,Np_1) is set equal to one of {71,--- ,5n}. Their values
must be all different so that the numerator of A is nonzero. Once {ug-a) }j=1,.. N, are determined,
then the values of {ug-a_l)}j:l,..‘ .N,_, are chosen in the same way as in the previous step, until
all the uga) are determined and a pole is thus specified. Each such pole corresponds to a division
of {1,---, N} into subsets di,--- ,d, of order |dy| = n,. There are Hg: N,! different poles
corresponding to the same division, and they all have the same residue. As we will explain
shortly, for negative FI couplings these are the only poles which contribute to the JK-residue
integral.
The index I(o) of the GLSM thus obtained is related to V(o) (4.2.2) as follows:

V5(6) = I(5) ¥ = [(G)- W,(5), (4.2.7)

where ¢ = kS, — IN,_1. The index reproduces Vj3(G) precisely for G = SU(N). If the 3D
gauge group is G = U(N), the GLSM has to be accompanied by a Wilson line of charge ¢ for
the diagonal U(1) subgroup of U(N).

4.2.2 Detail of JK-residue integral

Here we explain some detail of the JK-residue integral for our present problem. The basic idea
of the JK-residue prescription is presented in Appendix C. Let us denote by {e(a)} "p U the
basis vectors for the space of charges. The singular hyperplanes of A (4.2.6) are then labeled by

the charge vectors of the form

q; = —eg-p_l) or ql(J) = £a+1) (.a). (4.2.8)

The dimension of the space of chargesis r =Y 7_; ' N,.
(a)

At each pole, the values of u;’ are determined one by one through an iterated residue
integral. The process can be regarded as if the u-variables are connected together into some
trees each starting at one of the o;’s. At the same time, a set IT of r charge vectors are chosen
from (4.2.8), and all the basis vectors ega)
example, take N =4, (N3, No, N1) = (3,2,1) and consider a pole

=~ (3)

are expressed as their linear combinations. As an

01 = Uy ",
09 —ug) = u§2) = ugl),
04 :uég) = ug). (4.2.9)

(a)

Then all the basis vectors e, are expressed as linear combinations of the 6 charge vectors in

II= {q17q27 q37q;1)7q32 7q11)}

(3) _

el - _q17
ef) = —a, e =—m-af}, ef)=-a-d -ay,
e = —as, ef =—a—af. (4.2.10)
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The form of the trees can be read from (4.2.9), and the relations (4.2.10) indicate how each
(a)

u.:

,/ is connected to one of the 7;’s by a unique path along the trees. In the above example,

the elements of IT always appear in the RHS of the relations (4.2.10) with negative coefficients
because the trees have grown only in the decreasing direction of a. Since the reference charge

vector n (C.2.5) is given by
p—l Na
n= an Zeﬁ“), (Ca <0) (4.2.11)
a=1 i=1

it is a positive linear combination of the elements of II, and therefore the pole (4.2.9) contributes
to the JK-residue integral. The same argument applies to all the poles described in the paragraph
after (4.2.6): all of them contribute to the index since the corresponding trees extend only in
the decreasing direction of a.

In fact, A (4.2.6) has other poles corresponding to (i) trees with branchings or (ii) trees part
of which grow in the wrong direction. Both types of the poles have vanishing residues, but those
of type (ii) are also excluded by the rule of JK-residue. If parts of the trees grow in the wrong

direction, some elements of Il appear in the expression for n with wrong sign.

4.2.3 Another GLSM.

There is another GLSM whose Witten index reproduces V(o) (4.2.2) up to sign. It has the
gauge group U(N,_1) x --- x U(Ny), where N, = N — N,, with one bifundamental chiral for
each neighboring pair of unitary groups and N chirals in the fundamental of U(N;). The model
is described by the quiver diagram of Section 4.2.3. The p — 1 FI couplings are all chosen to be
positive. In addition, we need Wilson line with the U(1)P~! charge

1 - .

Ga = k(Ba+1) — Ba)) + i(N(H_l — Ng—1). (4.2.12)

The index for this GLSM can be computed in the same way as in the previous model. It satisfies
(4.2.7) with ¢ = kB1) + 3 V1.

Figure 4.2 The quiver diagram of another GLSM for the same flag manifold.

4.2.4 More alternatives.

In addition to the two quiver theories presented above, there are two series of alternative quiver
theory realizations for the sigma model whose target is the same flag manifold. The first is
defined by the quiver diagram of Fig. 4.3. In addition to the bifundamental chiral multiplets for
neighboring pairs of nodes, the theory has a Fermi multiplet in Ng_; x ﬁs of U(Ns—_1) X U(NS).
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The FI couplings for the U(N,) are all negative while those for U(N,) are all positive. In
addition, we need the Wilson line with U(1)P~! charge

1
Qo = k(ﬁ(a) - IB(aJrl)) + §(Na+1 — Ng-1), (a=1,--+,5-1)
~ 1 - -
Qa:k(ﬂ(aJrl) _IB(a))"’_i(Na—&-l — No-1). (a=s,---,p—1) (4.2.13)

The index of the model satisfies (4.2.7) with ¢ = kB + %(]\73 — Ng_1). This series interpolates
the previous two GLSM descriptions.

Figure 4.3 The quiver diagram describing a series of GLSMs for the same flag manifold. The

dashed line represents a bifundamental Fermi multiplet.

The second series of GLSMs is defined by the quiver diagrams of Fig. 4.4 which have one

more node than the previous ones. The FI couplings for the U(N,) are all negative while those

for U(N,) are all positive. In addition, we need the Wilson line with the following U(1)P charges:

qa = k(ﬁ(a) - B(a-ﬁ-l)) + }(Na—i-l - Na—l) (a < 5)7 qs = k(ﬁ(s) - B*) + %(N — Ns—1 — Ns)a

Ll AV

Ga = k(Blat1) = Ba)) + 5(Nar1 = No-1) (a > ), s = k(Bsrr) = Be) + 5 (N1 + N5 = N),
(4.2.14)

where 5, is a parameter which is constrained only by the anomaly cancellation condition. The
index of this model satisfies (4.2.7) with ¢ = kS, + %(Ns — N;). Note that the second series for
B (4.2.1) can be thought of as the first series for

5:dlag( 6(1)7 >B(1)a T ﬁ(s)a 7/3(5)7/8*7"' 7/8*7 B(s—l—l)?"' 7/8(5+1)a T ﬁ(p)v 76(1)) )

ni ng 0 Ns+1 np

Figure 4.4 Quivers for another series of GLSMs for the same flag manifold.

It is tempting to identify f(,)’s as some kind of position coordinates. The formulae for g4, ¢s
suggest that the a-th gauge node (white node) corresponds to branes stretching between 3 = 3,
and 8 = B(441)- One might also think that the position of the 3D gauge node (shaded node)
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should be determined according to the value of §(4)’s, but this is not the case. The bulk 3D U(N)
gauge theory has fields in the adjoint representation only, so there are no fields charged under
the diagonal U(1) subgroup of U(N). The expectation value of a vortex loop should therefore
be invariant under the uniform shift 3, — B + ¢ As we will see in the next section, the
situation changes when matters in (anti-)fundamental representation of U(N) are introduced.
Let us briefly explain how these alternatives give the same flag manifolds as the space of
classical vacua, by taking the example for the Grassmannian Gr(n, N) = U(N)/(U(n) x U(N —
n)). The usual model is the U(n) gauge theory with N fundamental chiral multiplets A;; (i =
1,---,n,I =1,--- N), as described by the quiver diagram of Fig. 4.5 left. The classical vacuum

equation is

Z AirArj = (645,
T

where ( is the FI coupling for the diagonal U(1) subgroup of U(n). For ¢ > 0, each solution
gives a set of n orthonormal N-component complex vectors. The equivalence classes of solutions

with respect to U(n) define n-dimensional hyperplanes in CV, and the space of such hyperplanes

is Gr(n, N).
O] O

Figure 4.5 The usual and alternative quivers of the GLSM for the Grassmannian Gr(n, N).

The alternative model is the U(n) x U(N —n) gauge theory with N chiral multiplets in the
fundamental of U(n), N chiral multiplets in the anti-fundamental of U(N — n) and a Fermi
multiplet in the bifundamental of U(N —n) x U(n) as described by the quiver of Fig. 4.5 right.

Let us denote the bottom components of these multiplets as
Ai[a Bljv N3 (2217 ?najzlv ,N—Tl, Izla 7N)
In the presence of the superpotential W =) G A;1Brjmsi, the classical vacuum equations are

Z Air Ay = (o4, Z BirBr; = —(65, AuBrj =0,
7 T

where ¢, ¢ are the FI couplings for U(n) and U(N —n). If ¢ > 0 and ¢ < 0, each solution of
these equations defines an n-plane and a (N —n)-plane in CV that are orthogonal to each other.
The space of such pairs is again given by Gr(n, N).

In view of the fact that many alternative GLSMs presented in this section give the same

Witten index and vacuum manifold, we suspect they are all dual to one another.
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4.3 Theories with matters

Here we study vortex loops in 3D U(N) gauge theories with various matter chiral multiplets.
The path integral with respect to the added chiral multiplets on the vortex background modifies
V(o) (4.2.2) according to the formula in Section 2.1. We would like to find the corresponding

modification of the quiver GLSMs introduced in the last section.

4.3.1 Global symmetry of the 1D theory

For a vortex loop in a theory with chiral multiplets of real mass m and R-charge r, the function
V(o) will also depend on m, r and the squashing parameter b. Since m is in a 3D vectormultiplet,
m = ¢m appears in the 1D theory on the vortex worldline according to the same rule as that
for . In fact, the other parameters r,b also appear in the 1D theory through the background
gauging of a specific global U(1) symmetry.

The 3D N = 2 theory on an ellipsoid has the translation symmetry U(1), x U(1), and
the R-symmetry U(1)gsp). The U(1); descends to the translation symmetry along the vortex
loop, whereas U(1), appears in the 1D theory as a global symmetry. The R-symmetry of the
ID N = 2 SUSY theory should be a linear combination of U(1), and U(1)gspy (and other
abelian global symmetries if there are any). However, the Witten index is independent of the
assignment of this R-charge on matters because the square of the 1D SUSY (3.2.14), (4.1.1)
does not contain the R-symmetry. But the index does depend on the charge assignments of the
other non-R linear combination of U(1), and U(1)g3p), as we now explain.

The SUSY of the 3D theory on an ellipsoid squares to

Q%) = %H + EM - % (2 + 2) Resp) + (o + A+ %Aw) +im,
where H and M are operators that act on dynamical fields as —iLs, and —iLy,, respectively.
In section 3.2.2 we have made contact of this Q3py with the 1D SUSY on the vortex worldline
using the fact that the cohomological variables transform under Q3p) like 1D N = 2 multiplets.
So, let us study the action of Q%3D) on cohomological variables on top of the vortex worldline.
As an example take ¥ = £ (2.2.4) which is the superpartner of a chiral scalar ¢. With the
understanding that H, M, R(3p) act only on a dynamical field ¢) and not &, one finds

2 _oe Sty Ly 111 : i :
Q<3D>\Ij’azo =¢ {EHJFEM AV R<3D>+Z<”+EAT)+W ¥
ib

Here we used Ly, § = Ly,§ = %5 and also that L5,V = 0 along the vortex worldline because
U is a Lorentz scalar. The above computation works for all the cohomological variables. Thus
the SUSY squared of the vortex worldline theory should take the form (here ¢ is the worldline
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coordinate of period 27):

b
Q%lD) ~ — 0+ %G + (6 4+ iA;) + m + (1D vectormultiplet fields),

Note that G is a non-R global symmetry in the sense of both 3D and 1D. The interpretation of
the second term in the RHS is that the global U(1)g symmetry of the vortex worldline theory
is gauged by the background field: .

o +iAY = ? (4.3.3)

4.3.2 Adjoint representation

Let us first consider the case with an adjoint chiral multiplet with mass m and R-charge r.
According to the result of Section 2.1, the function V3 now consists of the contribution from

vector and chiral multiplets:

Va(o) = Z Vi (w(o))Vs (w(7)). (4.3.4)
weW /Wi

Here V(o) is given in (4.2.2) and

V2@ = [ (2siohr(5;—5;+m - w>>—l

5 (4.3.5)
Bi>PB;

depending on the choice of boundary condition BC1 or BC2. Suitable 1D N = 2 SUSY theories
should reproduce these as the Witten index up to a freedom of additional Wilson lines. It is
natural to expect that such theories can be obtained by modifying the GLSMs introduced in
the previous section. We take the theory of Fig. 4.3 as the starting point.

BC1. Let us consider a GLSM corresponding to the quiver diagram of Fig. 4.6 which is ob-
tained by adding links to the quiver of Fig. 4.3. The matters corresponding to the added links
are charged under U(1)g as well as U(1)m corresponding to the 3D real mass. We denote their
generators by G and m.

The matter multiplets and their charges are as follows. Each gauge group has an adjoint
chiral multiplet with m = 1 and G = r. Each pair of neighboring nodes has a bifundamental
chiral multiplet with m = G = 0 and a bifundamental Fermi multiplet with m = 1,G =r. In
addition, there is a Fermi multiplet with m = G = 0 and a chiral multiplet withm = —1,G = —r
in the bifundamental of U (N,_1) x U(Ny). The FI couplings are negative for U(N,) and positive

for U(N,) gauge groups.
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Figure 4.6 The worldline theory for a vortex loop in 3D U(N) gauge theory with an adjoint
chiral multiplet (represented by a thick line) satisfying BC1.

The theory is free of global anomaly, so the charge of Wilson line is determined by the CS
coupling and g only.

k(Ba) = Ba+))s  (a=1,---,5-1)
k(ﬁ(a-ﬁ-l) — ,B(a)) (a =S8, ,p— 1) (4.3.6)

However, when V() was re-defined in (4.2.2), we also included the Wilson line factor 27 X Piti
which cancels the global anomaly of the quiver theory for Fig. 4.3. The added massive 1D matters
bring about another global anomaly, but it can be canceled by a Wilson line factor e =27 2 #i%i
Thus Vgl(a) needs to be corrected by this Wilson line factor.

The Witten index is the JK-residue integral of the following one-loop determinant A multi-
plied by the Wilson line with charges (4.3.6):

A = (2sinhmm)” 2 Na2a Na

s—1 N, : (@) _ (a)y p=1N, : ~(a) _ ~(a)
y H 2sinh7(u; " —u; ") HH 2sinh7(a; " —a; ")
it iy 2sinhr(ul® — ul® 4 m) o5 2 Sinhﬂ(ﬂga) a") + )
y pl_f]\ﬁl ﬁ 2sinh 7 (a (aH) (a) H H 2sinh 7 (@ 5) —0j+m)
a—s i—1 jo1 2sinh7 (aH ~(a =1 =1 2smh7r( ()—aj)
N stl : _~ (5 1) ~ S— 2Na+1 Na (a+1) (a)
2sinh 7 (0; — u; 2sinh m(u +m)
X
Z-I:[l jljll 2sinh 7 (o; u] al—Il }_[1 ]1_11 2sinh 7(u a+1) (-a))
N.-1 N, (s=1) _ ~(s )
s 2sinh(u; —u,
< 1 G Zl) pre )J )~ , (4.3.7)
i=1 j=1 2sinh(u a;” —m)

where we used m = m + szr In the limit m — —oo the one-loop determinants for the massive

multiplets turn into Wllson lines. The above A then reduces to
exp ( sz nanb) W1 (No—N,_1)(0)
a<b

times the A for the quiver GLSM of Fig. 4.3 and a Wilson line factor that shift the charges
(4.3.6) back to (4.2.13). On the other hand, we will see in Chapter 5 that the 1D theory has an
enhanced SUSY when m = 0.
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The above one-loop determinant A has more poles than the one corresponding to Fig. 4.3
due to the added chiral multiplets. However, as we explain in the next paragraph, none of those
new poles contribute to the index according to the rule of JK-residue. This is in accordance
with the fact that V(o) (4.3.4) is given by a sum over elements of WW/Wy as in pure CS theory.
Once one accepts this fact, it is straightforward to check that the index reproduces (4.3.4) for
BC1.

Detail of JK-residue integral (2). Here we discuss some detail of the JK-residue integral
with the above A in the integrand. The space of charges is of dimension r = Zz;ll Ny +

Zg;i N, and we denote its basis vectors by {ega)}?::f ’]‘i,;l, {éfa)}j_:f ’]%71. Let us first list

the charge vectors labeling the singular hyperplanes of A. The hyperplanes which are present
before introducing the 3D adjoint chiral multiplet are labeled by the charges

ar=e & g=aY,  q=-e N, g =e" el

The hyperplanes corresponding to the added chiral multiplets are labeled by

PE?) — ez(a) (s—1) _ &

(a) ~(a) _ —
—e; +m, P;; =€ + m, Lij = €, i

where we included the generator m of the U(1),, for convenience.

As in the previous example, the iterative residue integral at each pole determines the values

of the variables uga), 715.“)

together to form trees each starting from one of the ;. At the same time, the process also

one by one. The process can be viewed as if those variables are linked

picks up from the above list a set II of r charge vectors that play the role of the links. All the

Ea),éga) are then expressed as linear combinations of the elements of II. Now,

basis vectors e
to decide whether the pole contributes to the JK-residue integral, one expresses the reference

charge vector (C.2.5)

s—1 Ng p—1 Ng ~ ~
n =33 el +3 3 Ge”  (G<0, G>0)
a=1 =1 a=s =1

as a linear combination of the elements of II, and checks if the coefficients are all positive. As

we observed in the previous simpler example, the sign of the coefficient of a given element of II

is to a large extent related to the direction in which the trees grow at the corresponding link.
There are a few conditions that a pole must satisfy in order to contribute to the integral.

One can prove them step by step. First, r;; cannot participate in II. Then, all the basis vectors

—ega) must be expressed as non-negative linear combinations of {qj,qgl,?,pg?}, and similarly
(a)

all "/ must be non-negative linear combinations of {q;, flg.ll?, f)ﬁ)}. In terms of the formation

of trees these conditions can be phrased as follows: each tree consists of u-variables only or
(b)

u-variables only. A tree of u-variables can only be extended by attaching a new variable u;

according to

oj = ug-b) (for b=s—1) or u,(gbﬂ) = ug-b) or u, +m=u
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(b)

Likewise, a tree of wu-variables can only be extended by attaching u; according to

o a” =al” — .

~(b ~(b—1
Wi

=0; (for b=ys) or

For each pole satisfying the above conditions we study whether the residue is nonvanishing.

In fact, due to the determinants of vector and Fermi multiplets in the numerator of A, the
@ o p@
ij ij
start from a single 7;, or when there are trees with branchings. Thus the trees must consist only

residue vanishes if II contains p;.” or p The residue also vanishes when two or more trees
of (i) linear chains of u-variables extending in the decreasing direction of a and (ii) linear chains
of @-variables extending in the increasing direction of a. Moreover, each o; can have at most one
chain starting from it. The set of poles contributing to the JK-residue integral is therefore the
same as before introducing the adjoint chiral multiplet in 3D, and it is precisely what is needed

for the integral to reproduce (4.3.4).

BC2. For this boundary condition, the GLSM on the vortex worldline is described by the
quiver diagram of Fig. 4.7 which has extra links compared to the quiver of Fig. 4.3.

- - o
- ~
-

Figure 4.7 The quiver GLSM on the vortex worldline for 3D U(N) gauge theory with an adjoint
chiral multiplet satisfying BC2.

The matter content and the charge assignment are as follows. For each U(N,) or U(N,)
gauge node, it has a vectormultiplet as well as an adjoint Fermi multiplet with m = —1 and
G = 2—r. Each pair of neighboring nodes has a bifundamental and an anti-bifundamental chiral
multiplets, and the latter has m = +1, G = 7 —2. In addition, the pair U(Ns_1) x U(N;) has one
bifundamental and one anti-bifundamental Fermi multiplets, the latter carrying m = —1 and
G = 2 — r. The FI couplings for U(N,) are all negative while those for U(N,) are all positive.
As in the previous case of BC1, the model is free of global anomaly. The charge of the Wilson
line can be chosen the same way as (4.3.6), and the function VBC2 (0) needs to be corrected by a
Wilson line factor e~ 27 22i%i%  We will not go into the detail of the JK-residue evaluation as it
is somewhat simpler than the previous case.

In the limit m — —oo the massive matters turn into a Wilson line of appropriate U (1)P~1
charge and the model reduces to that for the quiver of Fig. 4.3. On the other hand, the 1D field
content is such that the supersymmetry enhances to N’ = 4 if m is turned off and an appropriate
superpotential interaction is turned on. The m, G-charges of the adjoint Fermi multiplets were
chosen so that the superpotential terms are invariant. However, the enhanced N' = 4 SUSY

here is qualitatively different from the one for BC1: they have different kind of multiplets and
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R-symmetries. Also, as we will see in the next section, the SUSY enhancement here does not
seem to be related to the enhancement of bulk 3D SUSY.

4.3.3 Fundamental representation

Next we consider vortex loops in 3D U(N) gauge theory with a fundamental chiral multiplet of
mass m and R-charge r. We regard that the matter is in a bifundamental of U(N) x U(1)y,.
According to the result of section 2.1, the function V(o) is given by (4.3.4) with

vit@) = ] 2sinh7r<c?i—ﬁz+ier),

Bi<0 2
V§3(6) = 2 sinh 7 ai—m—w - (4.3.8)
#0) = ]I (2innn(n-n- 2 9))

depending on the choice of boundary condition. But a simple multiplication of these products
of sinh functions will lead to a global anomaly, so we also need a suitable Wilson line. It is also
known that the introduction of (anti-)fundamental chiral multiplets shifts the effective CS and
FI couplings [51].

As in the previous subsection, we construct the vortex worldline theory as a modification of

the quiver GLSM of Fig. 4.3. Let us also assume

5(84’_1) < B(s) =0< 6(3—1)- (4.3.9)

Then it turns out that the necessary modification of the quiver is to add just one link connecting
a 1D gauge node and the flavor U(1),, node as shown in Fig. 4.8. Depending on the choice of

boundary condition, we introduce

(BC1) a Fermi multiplet in the bifundamental of U(1)y, x U(N,) with G = —r,
(BC2) a chiral multiplet in the bifundamental of U(Ny_1) X U(1)y with G =r — 2.

The added links reproduce precisely the contribution of the 3D fundamental chiral multiplet to
Vg(o) (4.3.8), but the 1D theory now has global anomaly. It can be canceled by shifting the
charge of the Wilson line g5 or gs—1 by £1/2.

Under the interpretation of 3, as position coordinates, the assumption (4.3.9) means that
the 3D gauge node is at 8 = 0. Note that this assumption is not mandatory. One may start with
a quiver realization in which the 3D gauge node is not at 8 = 0 and find necessary modifications,
though the answer will not be as simple as the one given above.

The vortex loops in 3D U(N) gauge theory with an anti-fundamental chiral multiplet can
be studied in the same way. Depending on the boundary condition, the function V(o) is given
by (4.3.4) with

VSLG) = stmhw(a—m—”w),

Bi>0 2
V2(5) — 2sinh (5 — 4+ L2V (4.3.10)
0 - T il + 259
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BC1 BC2

Figure 4.8 Quivers for the worldline theory of a vortex loop in 3D U(N) gauge theory with a
fundamental chiral multiplet satisfying BC1 or BC2. In both diagrams, the 3D
gauge and global symmetries U(NN) x U(1)y, are represented by shaded nodes and
the 3D fundamental chiral multiplet is represented by a thick link.

The corresponding vortex worldline theories are given by the two quivers of Fig. 4.9. They are

modifications of the quiver theory of Fig. 4.3 by adding
(BC1) a Fermi multiplet in the bifundamental of U(Ns_1) X U(1)y, with G = —r,

(BC2) a chiral multiplet in the bifundamental of U(1)y, x U(N,) with G =r — 2.
Also, the charge of the Wilson line needs to be modified to take care of global anomaly.

a“"~

1 1
BC1 BC2

Figure 4.9 Addition of an anti-fundamental chiral multiplet to 3D U(N) theory and the cor-

responding modification of the GLSM on vortex worldline.

Let us explain how we determined the orientation of the arrows for the 1D matter multi-
plets just added. For the cases with BC2, the added 1D chiral multiplets contribute to the
denominator of A (4.2.6) and give rise to more poles. But those new poles must not contribute
to the index. This determines the orientation of the arrow for the added chiral multiplets. For
the case with BC1, the orientation of the arrow for Fermi multiplets has been determined from
the consistency with SUSY enhancement. As we will discuss in the next section, when 3D bulk
theory has N' = 4, the vortex worldline theory also has an enhanced N'= 4 SUSY.

67



Large mass limit. Integration of massive chiral multiplets in 3D sometimes yields an effective
CS coupling [52,53]. In the presence of vortex loop, it also gives rise to an effective Wilson line
for the worldline theory. Let us study this effect in a simple example.

Consider a 3D U(N); CS theory with one fundamental and one anti-fundamental chiral
multiplets with the masses m¢, m, and R-charges r¢, 7. They contribute the following one-loop

determinant to the ellipsoid partition function (2.4.1):

N , .
Tloop = H Sb(W —0i+ Thf) Sb(l(l_;a)Q +0; — ﬁ%a) . (4.3.11)

1=

By using the asymptotics of the double sine function

i ( - b2+b_2) (Re(z) — £00)

sp(x) ~ exp -\ B

and comparing with (2.3.4), one finds that the integration of the heavy chiral multiplets in the
limit my — 400, m, — Foo shifts the CS and FI couplings by
mg + Ma N i(re —ra)Q

bh=%1, 0 =d— :

(4.3.12)

Let us introduce a vortex loop with vorticity 5 and put the boundary condition BC1 for
the fundamental, BC2 for the anti-fundamental chirals. As explained above, the 1D theory has
an additional pair of chiral and Fermi multiplets in the anti-fundamental of U(N;). The added
matters do not produce anomaly, so the U(1)P~! charge of the Wilson line may be chosen as
(4.2.13). The one-loop determinant A of the worldline theory is modified by the factor

2sinh w(0; — ms + %) R
ey — exp(F2m Y G ). (4.3.13)
2 £:<0

<0 2sinh (0 — My

This corresponds to the shift of the charge of the Wilson line ¢ by F1.

Here we recall that the charges (4.2.13) of the Wilson line was determined from the consis-
tency with the relation \; = kf; in pure CS theory. However, after the massive matters are
introduced and integrated out, the parameters k, g4, G, will get corrected and (4.2.13) will no
longer be satisfied. Taking account of this effect, perhaps one should regard \; or (qu,Gs) as
more important label than 8 since they determine the value of BPS vortex loop observables
more directly. But § still has an important role to set the pattern of gauge symmetry breaking

and the orderings of unbroken gauge group factors.
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Chapter 5

N = 4 theories

In this chapter we extend our description of vortex loops to those in 3D N = 4 theories. We
will first find out the condition on the singular behavior of fields near 1/2 BPS vortex loops, and
then identify the corresponding worldline quantum mechanics with 1D A = 4 supersymmetry.

We begin by reviewing the basic properties of 3D N = 4 gauge theories. For the theories on
flat R3, the four sets of supercharges transform as a bispinor under the R-symmetry SU(2)c x
SU(2)n. We denote its Cartan generators as J3, and J3;. A 3D N = 4 vectormultiplet is made
from an N = 2 vectormultiplet (A, o, A\, A\, D) and an adjoint chiral multiplet (¢,, F'). The
three scalars (o, ¢, ¢), three auxiliary scalars (D, F, F) and four spinors (), \,1,) form the
representations (3,1), (1,3) and (2,2) of SU(2)c x SU(2)y, respectively. In our convention ¢
has J 30 = 1 whereas F has J% = 1. The charges of the fields are summarized in Table 5.1.

field || 4, ¢ ¢ & | X X ¢ o |D F F
Bl o o 41 -1+ -1 +L -1]0 o0
Jyl o o0 0]—-5 +3 +5 —3/0 +1 -1

Table 5.1 R-charges of N' = 4 vectormultiplet fields.

Let us turn to the theory on S2. The SYM Lagrangian for an N = 4 vectormultiplet is
given by the sum of Lyy for the vectormultiplet and g~ 2Lya; for the adjoint chiral multiplet
in (1.3.14),(1.3.15). It is not SU(2)c x SU(2)u R-symmetric due to the coupling with the
background auxiliary field. But when ¢ = ¢ = f and the adjoint chiral multiplet has r = 1 the

Lagrangian has a Zy invariance:

L(Ap; 0,0,0; M\ ¢,9; D, F,F; H)
= ‘C(Am’ -0, qqubv TZM—%—;\,)\; D, _F, —F; —H) (501)

This implies that £ with » = 1 on a round S® has an enhanced supersymmetry: in addition to
the original N/ = 2 SUSY corresponding to the four independent solutions of (1.2.28), it has the

second set of N' = 2 SUSY corresponding to four independent solutions of the same equation
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(1.2.28) with H sign-flipped. The U(1) R-charge of the original A' = 2 SUSY is identified with
J?é —J:I)’{ because the fields ¢, 1, F' have the charges Ryr(1) = 1,0, —1. Similarly, the U(1) R-charge
of the second N' = 2 SUSY is identified as Rb(l) =-J% —J3.

A hypermultiplet in a representation A of the gauge group consists of N’ = 2 chiral multiplets
in the representations A and A. We will denote the chiral scalars as q,§, and their spinor
superpartners as x,X. It is known that (g,¢) form a doublet of SU(2)y and (y,x) form a
doublet of SU(2)c. On S3, these two chiral multiplets both need to have r = 1/2. Then the
Zo symmetry (5.0.1) of the theory on S can be easily extended to hypermultiplet sector by
identifying it with an element of SU(2)c x SU(2)y. The charges of the hypermultiplet fields are

summarized in Table 5.2.

field | ¢ ¢ ¢ q¢ | x X X X
Ry [+ —3 +3 —3| -4 +5 -§ +]
I e T e 1 e s e
Bl o o o o |-3 +& -1 41
3B ol-3 43 -3 43/ 0 0 0 0

Table 5.2 R-charges of hypermultiplet fields.

5.1 BPS boundary condition

Let us now turn to the definition of vortex loops. Consider first a vortex line stretching along
the x3-axis of flat R3. As in the cases with A” = 2 SUSY, the gauge field behaves as

A ~ Bde, Fio = 2162 (zt, 2% + - - - .

The vortex configuration can be made half-BPS by turning on the SU(2)g-triplet auxiliary
scalars D® = (F, F, D) appropriately. The unbroken SUSY then corresponds to solutions of the
BPS equation of the form

0 = Qs = Fio7"%€us — D (™), (5.1.1)

where A, B,--- and A, B,--- are doublet indices for SU(2)¢ and SU(2)y respectively, and o

is Pauli’s matrix. It has nontrivial solutions if one sets, for example,
D?=D=iFy.

The Lorentz symmetry SU(2)Lorentz and the R-symmetry SU(2)c x SU(2)y are then broken to
U(l)m x SU(2)c x U(l)J%, where M generates the rotation about the x3-axis. Four of the eight
supercharges corresponding to the SUSY parameter &,5 with 4% = £1 (M = :l:%) and J% = :F%

remain unbroken.
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Let us next consider the theory on a round S% with a half-BPS vortex loop along S(IT) at

f# = 0. Four of the eight supercharges are broken as in flat space. Two of the four unbroken
supercharges correspond to the Killing spinors &, € of (1.2.32), and the other two correspond to
new Killing spinors
, i cos ¢ - i —isin g
¢ =ezleT) 2, d=ezle 2. (5.1.2)
—1 S1n 3 COS 5
These four Killing spinors satisfy

_ 4 F_ 4. ¢ i gt @
Vi€ = 26777157 Vmé 2677”57 Vmé 2E’Ym§7 Vmé 2£7m£ .

One can check that the new Killing spinors ¢, " have M = i%, so the flat space analysis implies
they have J3 = ¥%. The quantum numbers of the four Killing spinors are thus determined as
in Table 5.3. The Zy transformation (5.0.1) acts as

Eod, el (5.1.3)
Killing spinor || Ryyp) Rg](l) J?é J3 —iLly, —ily,
3 +1 0 +1 —1 +3 +1
R A
¢ I R J I
g 0 -1 +3  +5 | +3 -3

Table 5.3 Quantum numbers of Killing spinors on S3.

Boundary condition on fluctuations. It remains to check if there is a set of boundary
conditions on the fluctuation of fields preserving 1/2 of the N/ = 4 SUSY. We continue to work
with a vortex loop in S% winding along the S(lT) at § = 0.

Let us first study the fluctuation of N' = 4 vectormultiplet using the decomposition into
N = 2 multiplets. According to what we found in Section 2.1 for the fluctuation of N' = 2
vectormultiplet fields, £, €\ may diverge mildly but €\, €\ must be finite near the vortex loop.
The boundary condition also preserves the SUSY corresponding to &, & if it respects the Zs
invariance (5.0.1) and (5.1.3). So &1, £'1p may diverge but £'1), €4p must be finite. Here one can
replace ¢ by ¢ (and similarly & by €) because they are proportional to each other along the
vortex loop. The resulting boundary conditions on v and v imply that the A" = 2 adjoint chiral
multiplet must obey BC1.

To be fully explicit, let us list the boundary condition for all the fields in an A/ = 4 vector-

multiplet near a BPS vortex loop:

Y6 Am, EYEO AN, €N &, €N, &Y, F, F may diverge,
EYES Ay, OO, b, B, EN, €, EN, &, oD must be finite. (5.1.4)
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This preserves the SUSY corresponding to &, ¢ as well as &, &',

The above form of boundary condition can also be used for a vortex line lying along, say,
the x3-axis of flat R3. In that case &, ¢ are eigenspinors of ¥3 = 1 and &, ¢’ are eigenspinors of
73 = —1. The above set of boundary conditions is clearly consistent with the unbroken SU(2)¢
symimetry.

A hypermultiplet in a representation A consists of an N' = 2 chiral multiplet ¢, x in A and
another chiral multiplet G, ¥ in A. To preserve the SUSY corresponding to ¢ and &, each of the
two chiral multiplets must obey the boundary condition BC1 or BC2. Then, as in the previous
paragraph, one can argue that the unbroken SUSY enhances if the boundary condition respects
the SU(2)c symmetry. Recall that, whichever boundary conditions we choose, the fields in the

representation A are divided into four groups of cohomological variables as follows:
J _
.&x € H —— H > &
J
R _ (Nf _ _
G,éx € HY ——— H* > £x. (5.1.5)
(It
Here the differential operators .7, i7 are defined in the same way as J = iéy™€EV,, and J =
—i&y™EV,, using the covariant derivative for fields in A. So in fact (j)Jr = J and (j)Jr =J.
Hence one can preserve SU(2)c by imposing the same boundary condition on ¢£x and €Y, and

similarly on £x and €Y, which form doublets. This leads us to conclude that there are the
following two BPS boundary conditions on a hypermultiplet:

o £y, &x are finite but £, X may diverge near the vortex loop. Namely, the chiral multiplet
(g, x) obeys BC1 and (g, x) obeys BC2.

e The opposite of the above. Namely, (g, x) obeys BC2 and (g, x) obeys BC1.

Note that our result is similar to the one obtained in [54]. There the fluctuation of fields with

more general (i.e. not necessarily mild) singular behavior near vortex lines is considered.

5.2 N =4 SUSY quantum mechanics

Let us next turn to the study of the vortex worldline theories. For a straight vortex line in a flat
R3, the worldline theory has a global symmetry SU(2)¢ x U(1) 38, % U(1)m. The four unbroken
supercharges transform under its SU(2) x U(1) subgroup as two SU(2)-doublets of U(1) charge
+1. The 1D N = 4 SUSY with this R-symmetry is a dimensional reduction of the 4D A = 1
SUSY.

A 1D N = 4 vectormultiplet is made from an N = 2 vectormultiplet (A, o, A\, A\, D) and an
adjoint chiral multiplet (¢,1)). The quantum numbers of the fields are determined as in Table 5.4
from the fact that €, € in the transformation rules (3.2.14) and (4.1.1) carry the same quantum
numbers as &, €. The U(1) R-charge of 1D A = 4 SUSY is identified with a linear combination

clJ% + oM. (ca—c1=2)
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field | A, 0 ¢ & | A X % ¥ |D| e ¢
J3 0 +1 —1|+4+3 -5 +3 —3|0|+3 -3
A 0 0 |—3 +3 +3 —3|0| -3 +3
M 0o +h -3 b 3o+ b

Table 5.4 Quantum numbers of A/ = 4 vectormultiplet fields on the vortex worldline.

For the computation of Witten index, one chooses a pair of supercharges (such as the pair
we have been using in the previous chapter) that generate an N' = 2 subalgebra. The index can
be generalized by twisting the periodic boundary condition of fields by global symmetries that
commute with the chosen supercharges. Of particular importance is the symmetry generated
by G = J?é — J% — 2M, as it shows up in the Witten index for vortex loops inside S3. This G
was already introduced in the previous chapter at (4.3.2) as a non-R global symmetry of N' = 2
SUSY theories. One can easily find from Table 5.4 that N/ = 2 vectormultiplet has G = 0 while
the adjoint chiral multiplet has G = +1.

A 1D N = 4 chiral multiplet is made from an N = 2 chiral multiplet (¢, x) and a Fermi
multiplet (n, F') in the same representation of the gauge group. The quantum numbers of fields
under J3; and M are constrained only by the requirement that the fermions (y, n) form an SU(2)-
doublet, so generally they take values as summarized in Table 5.5. This implies that, if ¢ and x
have G = g, then 1 and F should have G = g + 1. We call such a set of fields an A/ = 4 chiral
multiplet of G = g.

field || ¢ X n F
Bolo] -3+ 0
Ji)’{ a a+% a+% a+1
M [[b|b—2 b—3|b-1

Figure 5.1 1D N = 4 quiver diagram describing the GLSM for a vortex loop in 3D N = 4
U(N) pure SYM. The white nodes and solid lines represent 1D N = 4 vector and

chiral multiplets.
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Examples. As the most basic example of vortex loops in 3D A = 4 theories, let us consider
those in N' =4 U(N) pure SYM. The worldline theory is a special case (m = 0,7 = 1 and BC1)
of the quiver GLSM studied in Section 4.3.2. In 1D N = 2 terminology, it is a gauge theory
with the 1D and 3D gauge groups

U(Np_1) X ---U(Ns) x U(N)spy x U(Ng_1) x ---U(Ny).

The N = 2 vectormultiplet for each 1D gauge group factor is paired with an adjoint chiral
multiplet with G = 1 to form an N = 4 vectormultiplet. For each pair of neighboring gauge
group factors one has a pair of bifundamental A/ = 2 chiral and Fermi multiplets of G = 0 and
1, which form an N = 4 chiral multiplet of G = 0. The theory also has a pair of a chiral and
Fermi multiplets of G = —1,0 in the bifundamental of U(N,_;) x U(N,), which form an N = 4
chiral multiplet with G = —1. The field content is described by the N' = 4 quiver diagram of
Fig. 5.1. The FI couplings for U(N,) are all negative while those for U(N,) are all positive.
The theory has no Wilson line since it is free of global anomaly and one cannot turn on 3D CS

coupling without breaking SUSY to N < 3.

1 1
BC1 for fundamental chiral BC2 for fundamental chiral
BC2 for anti-fundamental chiral BC1 for anti-fundamental chiral

Figure 5.2 Addition of a fundamental hypermultiplet to 3D N = 4 U(N) theory and the

corresponding modification of the vortex worldline GLSM.

The next simplest are the vortex loops in 3D N' = 4 U(N) gauge theory with a fundamental
hypermultiplet. The worldline theory is obtained by adding some more fields to the theory
described previously according to the discussion of Section 4.3.3. The corresponding quiver
diagram is presented in Fig. 5.2. As was explained in Section 5.1, there are two consistent
boundary conditions on the hypermultiplet, which result in two different modification of the
quiver diagram of Fig. 5.1. The added N = 4 chiral multiplet is either in the anti-fundamental
of U(N,) or in the fundamental of U(N,_1), and it has G = —3/2 in both cases. Note that the
model agrees with the one discussed in [11,20] if the 3D U(V) gauge node is at either end of

the linear quiver.

Background fields for vortex loops in S%. Let us explain what kind of background fields

appear on the worldline of vortex loops in 3D A = 4 gauge theories on S3.
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We recall that the 1D N' = 2 SUSY of the vortex worldline theory was defined in accordance
with the 3D SUSY acting on cohomological variables. For vortex loops of ' = 4 theory on S3,

the square of the supercharge is given by (here ¢ is the worldline coordinate of period 2)
Qlipy ~ —0i + 0 +iA; +i(JE — Jf — 2M) + (3D vectormultiplet fields). (5.2.1)

N = 4 theories on S have the second set of N' = 2 SUSY corresponding to the Killing spinors
¢ € (5.1.2). It can be used to define the second 1D supercharge Q’(lD) which squares to

Q'(%D) ~ =0 — o +iAy —i(—=J} — I} — 2M) + (3D vectormultiplet fields)’, (5.2.2)

where the prime on the 3D vectormultiplet fields stands for the Zg action defined in (5.0.1).
Here one needs to be careful for the fact that the two supercharges are defined by identifying
different sets of cohomological variables as 1D multiplets. The set of 1D variables on which
Qp) acts as (3.2.14) or (4.1.1) is therefore different from the set on which Q’(lD) acts the same
way. But the two sets of variables are related by a simple “gauge transformation” as we now
explain.

Let ® be a cohomological variable made of 3D fields and &, ¢ such as ¥ that we considered
in (4.3.1), and @' the same cohomological variable with (£, &) replaced by (¢,¢'). Using the
quantum number of Killing spinors listed in Table 5.3 and the fact that cohomological variables

are all 3D Lorentz scalar, one generally finds
0;® =i(H - M)®, ;9" =i(H+ M)d', (5.2.3)
So the two cohomological variables are related by
P = M7, (5.2.4)

The gauge transformation relating the two sets of 1D variables explained above is given by the
same formula. Therefore, when considering the action of Q’(21D) on ® instead of ®', the RHS
of (5.2.2) has to be shifted by —2iM due to the above gauge transformation. The value of the

background 1D vectormultiplet field is thus determined as follows.

o+ i A i(J3 — J3 — 2M), ‘ AP = JL-M,
—o% HiAY = —i(=J} - T}), o = il —aM

Thus we recovered the result in Section 5.2 of [11] using a slightly different argument.

75



Chapter 6
Conclusion

In this thesis we studied different descriptions of BPS vortex loops in 3D N = 2 gauge theories
and derived exact formulae for their expectation values on an ellipsoid.

In Chapter 1 and Chapter 2 we reviewed N' = 2 SUSY gauge theories and the exact formula
for the partition function on 3D ellipsoid using localization techniques. The expectation value of
the vortex loop with the definition based on the singular gauge field were also computed there.
However, as discussed in Chapter 3, we realized that the result needed to be modified in order
to respect the well-known correspondence between Wilson and vortex loops [16]. We found that

our argument has to be modified with regard to the following two points.

(i) One was that we missed another boundary Squm, which is necessary so that the variation
principle lead to the equation of motion and the desired boundary condition. By employing
the coadjoint orbit quantization for the definition of Wilson loops, we demonstrated the

equivalence between Wilson and vortex loops, particularly in bosonic Pure CS theories.

(ii) The another point was that in N' = 2 theories the rule of correspondence contains the
unwanted parameter shift A — A 4+ p. We resolved this shift by relating it to the global

anomaly of 1D theory on vortex worldline and canceling it by Wilson lines.

On the other hand, our analysis of the boundary term revealed that vortex loops can also
be defined as a quantum mechanics on a loop interacting with the field theory in 3D space.

To extend the correspondence of the two definitions of vortex loops to a wider class of
N = 2 theories, we developed the descriptions of coadjoint orbit quantum mechanics as quiver
GLSMs. The index of the GLSM was computed by JK-residue prescription and we explicitly
confirmed the correspondence between the two descriptions. We also identified the extensions
of these GLSMs that incorporate the addition of various matter chiral multiplets on the vortex
background. This was done for the matters in the adjoint, fundamental and anti-fundamental
representations of U (V).

As another extension, we studied vortex loops in N' = 4 theories consisting of vector and
hypermultiplets. By analyzing them using decomposition into AN/ = 2 multiplets we found that,
in order for the vortex loop to preserve 1/2 SUSY, the adjoint chiral multiplet (which is a part
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of N' = 4 vectormultiplet) must always obey BC1. And we identified the the corresponding
worldline quantum mechanics with 1D N = 4 supersymmetry.

However, there still remain some unclear points. Regarding the correspondence between
Wilson and vortex loops in terms of our description, (i) is much clear, whereas (ii) is not: what
the Wilson line corresponds to in the description specified by singular behavior of the field is
not clear. In Chapter 2 we performed exact path integration on singular vortex backgrounds,
but the result did not respect the relation [16] claimed by Moore and Seiberg and a parameter
shift that could be interpreted as an anomaly appeared. It might be interesting to understand
the source and resolutions of this anomaly without moving to the description in terms of 1D-3D
coupled systems.

As noted above, when analyzing N' = 4 theories we found the N' = 2 adjoint chiral multiplet
must always obey BC1, though the SUSY on the vortex worldline seems to enhance for both
choices of boundary conditions. It may be the case that the mechanism of SUSY enhancement
is different for vortex loops in the ABJM model (for a recent work, see [55]) or other CS-matter
theories with N' > 4 SUSY that were classified in [56,57].

Finally, it should be noted that we were able to reproduce the worldline theory for only a
part of the vortex loops that were identified in [11] as the mirror of Wilson loops. The main
limitation for our analysis arises from that the function Vz(6) has to be expressed as a sum
over elements of W/Wy as in (4.2.2) or (4.3.4). This imposes a constraint on the set of poles
contributing to the JK-residue integral for the index I(6). On the other hand, [11] has examples
of vortex loops for which the index receives contributions from more poles. Perhaps this means
there are more vortex loops defined by worldline quantum mechanics than those described by
singular behavior of fields. Or it might be the case that we could reproduce more vortex loops
in [11] by relaxing the assumption of small 8 (2.4.7). In either case, more thorough study of the

correspondence is needed for a full understanding.
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Appendix A
Killing spinors

A1 R?

The simplest three-dimensional manifold is R?. The metric in cylindrical coordinate is
ds® = dr? 4+ r2dy?® + dt?, el =dr, e =rdp, € =dt. (A.1.1)
This coordinate system is suited for studying vortex operators extending in ¢-direction at r = 0.

By using (1.2.19), it can be easily shown that the only non-zero component of the spin connection

1S

Q2 = —dep. (A.1.2)
If the background fields V,,, H, K, are zero, the Killing spinor equations (1.2.28) become
vmf =0,
_ (A.1.3)
vmg =0,

which mean that &, ¢ are covariantly constant. In this case, by substituting (A.1.2) into the

equations above, one finds the only nontrivial equations are the ¢ components:
i
acpf = 57357
I
agaf = 5735 .

Each equation has two independent solutions, so (A.1.4) has four independent solutions. Two of

(A.1.4)

them will be of particular importance, since they correspond to the SUSY preserved by certain

1/2-BPS line operators. We choose them to be eigenspinors of 42 = +1, —1. Their explicit form

e%‘P _ 0
() () o

Note that they are normalized so that ¢ = —1. The Killing vector is then

v = EY"ED, = —O). (A.1.6)

1S

Note that the y3-eigenvalues of ¢, € are +1, —1, respectively, on the t-axis in which we intend to

insert a vortex. The same selection is made for the other examples discussed below.
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A.2 S3 and ellipsoid

Some characteristic properties of ellipsoid are described here. An ellipsoid is defined by its
embedding in R* as follows [5]:
x%:l—x% +x§+xi 1

7 7 . ds® = daf + das + das + da?. (A.2.1)

Moving from cartesian coordinate to polar coordinate by substituting (z1, z2, 3, 24) for (cos 0 cos p,

cos @ sin, sinf cos T, sinfsin7), a set of dreibein is expressed as follows:

el = f(0)dh, e€* =/lsinfdp, €3 =/lcosOdr, f(0)= \/172 sin? § 4 ¢2 cos? 6. (A.2.2)

On ellipsoid, non-zero components of the spin connection are

Q3 = —]{ sin Odr, Q2= —J{ cos Odep. (A.2.3)

To solve the Killing spinor equation (1.2.28), we begin by writing each of its component

separately as follows,

(0p —iVp) & = igvln, (A.2.4)
il . Ps
O0p — s costy” —iV, | £ = -{sinOy7k, (A.2.5)
2f 2
0 —zgsinﬁ 24V, 5_166089 3k (A.2.6)
Y v P €= VK. 2.

Here V,, is a suitable background U(1) gauge field. Let us, however, first solve the above
equations with gauge field V,,, = 0 and f = ¢ = ¢. This is just looking for Killing spinors on
round S3, but we will need them later when finding supersymmetric ellipsoid background. For

this background one can solve (A.2.4) for x:
k= —2i0" 1y Op¢. (A.2.7)
Futhermore, we assume that ¢ has definite p- and T-momenta.

£ = e2(PH) y(0) (st = £1). (A.2.8)

Then (A.2.5) and (A.2.6) can be written as
3 (1 .
X = —2s7v 3 cosf —sin6dy | x (A.2.9)
1
X = —2t~? (2 sin 6 4 cos 989) X- (A.2.10)
Taking the difference of the two equations and then multiplying (7>s sin @ ++2t cos ) one obtains

Ogx = %st’ylx, (A.2.11)
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which is solved by

. i (sprttr) Ae2® + Be1°
£St — e2 St <A€%9 _ Be—%9> 5 (A212)
for arbitrary A, B. Substituting this into (A.2.9) or (A.2.10) one finds an additional condition
A = —stB. Thus we obtain four independent solutions:
0
. ; cos 5
§r(A=B=1/2) = ext?t7) 2.
ising
(A.2.13)
A i Z'Sin%
£ (A=-B=1/2) = ehlern ,
cos g
. i cosg
§&-(A=B=1/2) = e :
—1sin g
(A.2.14)
~ i —1 Sing
£ (A=-B=1/2) = e 20677 ,
cosg
where A, B are determined so that £ = £¢/ = —1. And the Killing vector is
- 1
£v%¢ = (0,—sinf, — cosb), V=7 (Op +07) . (A.2.15)
It is easy to confirm that é++, £__ are the solutions for H = % with V,, = K, = 0, whereas

§:+_, E_Jr are the solutions for H = —%.

So far we have been looking at the Killing spinors for f = ¢ = ¢, i.e. round S3, but what we
actually need is that for ¢ # ¢, i.e. squashed S3. For generic ¢ # ¢ the Killing spinor equation
has no solution unless background gauge field V,,, = 0 is turned on. We determine V,,, so that
(A.2.13) or (A.2.14) remain solutions even after ellipsoidal deformation. Solving (A.2.4) for x

and using the result to eliminate x in (A.2.5) and (A.2.6), one obtains

—21'5“!’; (% - iVSD) X = —257° (; cos 0 — sin 0(9p — V9)> X (A.2.16)
Lt 1 (1.
_2th iy~ iVe ) x = =2ty 3 sin@ + cos 6(0p — Vi) | x. (A.2.17)

By comparing these with (A.2.9) and (A.2.10) one finds that, for the Killing spinor on the round
S3 (A.2.12) to remains solutions, the coefficients of y on the left-hand sides should be one, and
Vp has to be zero. Therefore the background gauge field is

This means that if one choose VT as the background gauge field, then ¢ = é++ and £ = f,,
define the rigid SUSY on the ellipsoid. Throughout this thesis we work with this choice for the

supersymmetric ellipsoid background, namely we choose

1 / 1 ¢ 1
V:2<1—f>dg0+2<1—f>d7', H:?, K, =0, (A.2.19)
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as the background fields. The Killing vector is

£y = (0, —sin@, — cos ), v=—=0,— —0-. (A.2.20)

14

If we chose instead V™~ as the background gauge field, then the SUSY would be defined by
§ =& and £= .

A3 S%?2x St

Another important background with rigid supersymmetry is S? x S' which leads to the path
integral definition of the 3D superconformal index [31,58]. S? is parametrized by a spherical
polar coordinate 0, (0 <0 <7, 0 < ¢ < 27) as usual. So the metric is

ds? = (d02 + sin? Gdcpz) + dr?, el =0do, €® =/lsinfdp, 3 =dr, (A.3.1)
where 7 ~ 7 4 27¢. Non-zero components of spin connections are

Q2 = —cosfdp, OB =03 =0. (A.3.2)

In components, the Killing spinor equation is as follows:

. i~
(Og —iVp) € = 5571& (A.3.3)
<8¢ — %cos 6~ — iV@) €= %Esin 0°k, (A.3.4)
(0 —iV,) € = %y%. (A.3.5)

Let us focus on the first two equations. If Vp =V, =0, (A.3.3) and (A.3.4) imply

<8¢ — %cos 973> £ = —isin 03 9p¢. (A.3.6)

Taking the ansatz _
E=edx(0)-p(r),  (s= 1) (A.3.7)

the differential equation (A.3.6) is rewritten as

1
x = 2573 <2 cos ) — sin 089) X (A.3.8)

which is solved by

A (sin g) 2(1-9) (cos g) 2(1+s)

B (sin g) 2 (1) (cos g) 2(179)
Thus the solution to (A.3.3),(A.3.4) is given by a linear combination of
- iy A(+) cos g A iy A(_) sing
£, = ebop(r) 0 R A 2 . (A.3.10)
B(+) S 5 B(,) COs 5
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Let turn to the 7 component of the Killing spinor equation (A.3.5). It does not have nontrivial

solution for V; = 0.' Turning on non-zero V; and setting p = const., one finds that €+ satisfies

(A.3.5) if
VT<A(+>):Z'~<O 1><A(”>, (A.3.11)
By 20\ 1 0 By

which is solved by V; = i%@ and B(;) = +A(4). In the same way, for é, one finds

v (Ao ot (O 1) [ Ae ) (A.3.12)
B, 20\ 1 0 )\ B

which is solved by V. = $2% and B_y = £A_). The Killing spinor equation for € can be solved
in the same way by noticing that only the sign in front of V; is flipped. On S? x S there are

two pairs of Killing spinors:

o cos % - i sin g i
£ =e2% , E=¢e 2% , for V; = —, (A.3.13)
sin % — cos g 20
i cosg _ i sin% i
¢ =e2¥ , g =e2% , for V; = ——, (A.3.14)
—sin g oS g 20

which are normalized, so that £ = £'¢’ = —cosf. Note that (A.3.5) implies H —iK = —273V;,
so the Killing spinors &, & are for H = 0, K = %73, whereas &', & are for H =0, K = —%73. If
the pair &, € is chosen as the SUSY-preserving Killing spinors, the Killing vector is

£y°¢ = (0,isinf, -1), v= —}8@ —i0r. (A.3.15)

5Suppose p(7) = €297 with g € R, the differential equation of 7 component (A.3.5):
ql
dox = 57X

has no solution except A = B = 0.
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Appendix B

Geometric Quantization

B.1 Prequantization

Let M be a symplectic manifold with a symplectic form w = %wmndxmdx”. Then for every

vector field X = X™0,, such that £xw = 0, there is a function f called moment map satisfying
df +1xw =0, (B.1.1)

or in components
Onf + X" wmn = 0. (B.1.2)

In what follows we denote the vector field corresponding to a function f by X (f).
The prequantization is defined as the following map from functions (f,g,h,...) on M to

differential operators (f, g, h,.. )

f=—ihX(f) —uxpd + [, (B.1.3)

acting on certain Hilbert space of wave functions. Here ¢ is a one-form satisfying w = dv. One
can show that, under this map, the classical Poisson bracket {f,g} = (W™ ™0 f0ng = h

turns into the commutation relation:
[f,9] =ihh. (B.1.4)
In order to show the above statement, it is enough to derive

[(X(f), X(9)] = =X (h), (B.1.5)
—thX (f){g — 1x(9)V} + ihX(9{f —ix(pnV} = il{h —1x )V} (B.1.6)

First, note that the Poisson bracket can be written in terms of X (f) by using (B.1.2).

{fo9t==X(f)-yg (B.1.7)
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We thus obtain, for any function ¢ on M,

(X (), X (9o = X(F)X(g) - & - X(9)X(f)- ¢
:{f7{gv¢}}_{ga{f7¢}}

={{f,9}, ¢}
= —X(h)- ¢.

(B.1.8)

thereby proving (B.1.5). Here we used the Jacobi identity at the third equality. Second, the
LHS of (B.1.6) is expanded as

) — 24 X ()" X (0) Ot — ) + (X ()"0 X (9)" ~ X ()"0 X (£)" )0 (B.19)

The second term is —{f,g} = —h, and the third term is 1 x(p) x(g)V = —2x(n)¥, thus (B.1.6)

has been proved.

An Example: M = R? w = dpdg This example is a two-dimensional phase space which
occur in classical mechanics for a single particle moving in one-dimension. The variables p, ¢
stand for the position and the momentum. The vector fields which generate translations on M
are given by

X(q)=—8,, X(p) =2, (B.1.10)

Here we used wp, = (w™1)% = 1. Then we implement the prequantization as discussed above
and obtain
4= —ihX(q) —1x(9¥ + q = 1hdy + q, (B.111)
p=—ihX(p) —1xp¥ +p = —ihdy,
where we set ¥ = pdgq. These are familiar results of one-dimensional quantum mechanics except
the term ¢h0, appearing in ¢. The polarization, the second step of the geometric quantization,

settles this issue by restricting the quantum wavefunctions to depend only on gq.

B.2 Complex structure

A manifold M is said to have a complex structure if M has an almost complex structure which is
integrable. In that case, M can be covered by complex coordinate patches. An almost complex
structure J™ on M is a tensor field satisfying J? = —1. Since a real matrix J satisfying
J? = —1 must have eigenvalues +i with equal multiplicities, M must be a real even-dimensional
manifold. The complexified tangent space T, M€ can be decomposed into the eigenspace T, M+
of eigenvalues J(x) = +i.

T,M® =T, M* ®T,M". (B.2.1)

Vector fields V (V) are called holomorphic(anti-holomorphic) if JV = +iV (JV = —iV), where

the action of J on vector fields is defined as follows.
J: V=V —s JV =V, (B.2.2)

85



As an example, let us consider the tangent space of a complex manifold M of dim¢M = k.

The tangent space T, M is spanned by 2k vectors

o 0 0 o 0 0
i i Rt e i B.2.

With the same coordinates, 7,7 M is spanned by
{d$1,dx2,...,dxk; dyl,dy2,...,dyk}. (B.2.4)
Suppose that the coordinate x,, ¥, are chosen such a way that J(p) satisfies
0 0 0 0
J — ) == J — = B.2.5
so that J(p)? = —idz,p. Then by defining a set of 2k vectors by
1/ 0 .0
Sl (A
ym 2\ 9zm Oym )’
o _1(0 .0
ozm 2\ 9x™  oym)’
one can check that the almost complex structure J(p) acts on the complex basis (B.2.6) as

J(p) (a,fm> = iafm, J(p) <a§m> = —iagm. (B.2.7)

Then 2™ = 2™ 4 iy™ is the complex coordinate on M. In fact the action of J(p) is independent

o

Q

(B.2.6)

of the chart. Let 2™ = 2™ 4 iy™ and w™ = u™ 4 iv™ be two charts overlapping at p. As the

function z™ = 2™ (w) satisfy the Cauchy-Riemann relations on this overlap, one finds

o\ T VL
() <8um> =) <8um ozn T gum 8y"> — Ovm’ (B:28)

10) (507 ) =~ 5o (B.2.9)

ov™m ou™

and likewise,

Therefore, J(p) takes the form

0 —1Ix

J(p) = , B.2.10

() ( - ) (B.210)

with respect to the coordinates =,y as well as u™, v, where I}, is the k X k unit matrix.
An almost complex structure J is integrable if the Nijenhuis tensor N;k defined by

N = 5" = 9;0%) — T (0T = 0,9%) (B.2.11)

vanishes. This condition is actually equivalent to that the Lie bracket of two holomorphic vector
fields be holomorphic. That is to say, for arbitrary vector fields V, W, the following equation
holds:

(J=)[(J+ )V, (J+))W]=0 (B.2.12)
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Using J2 = —1 and then i(J — i) = —J(J — i), the LHS of (B.2.12) can be written as
LHS = (J - {[JX,JV]| = [V,W] = J[JX,V] - JX,JV]}. (B.2.13)
The expression inside the big parenthesis above is rewritten in component notation.
{-- Y= (V)Y (IW), — (JW)ia;(JV)F — Vigwk + wig;vk
—J@“JVWMVh%JWY&W+WWMJWY—Mﬁ&UVf}
:4JVV@J%ww—wJWY@J%wﬂ—Jﬁ{vwgg,wﬂﬁ—mﬂ&ﬂm-Vm}
:wWﬂﬁmm—ﬁ@m—ﬁ@ﬁ+ﬁ&m}
= VIW'N}.
So the condition (B.2.11) is equivalent to Ni]j- = 0 as claimed.
Now let us make some comments on the case M = Adg(\) = G/K in Section 3.2.1. If

g = Lie(G) is decomposed as g = £ @ n such that [¢,n] C n, then n is identified with T\M. An

almost complex structure (B.2.1) thus corresponds to a decomposition
n“=nfon, (B.2.14)

+

where n® are the eigenspaces of J = +i. This almost complex structure is integrable if n* are

closed under Lie bracket relations, namely
[nt,nf] Cnt, [n",n7]Cn. (B.2.15)

The adjoint orbit M then has a complex structure: in other words, there exist a system of local
complex coordinate (2!, z”) on M.
Let g(z!, 27) be the map from M to G introduced in Section 3.2, expressed as a function of

the complex coordinate. The the tangent space of M at (2, 27) is given by

where Ad 5 7 (n%) = {gég71|¢ € n®}. This implies a relation of the form Eq. (3.2.6) between

the holomorphic tangent vectors 6%, and the elements of Ad 9(=1 27 (n+).

=¢l g Z) + (2" 7)o (€7 € Adyr .5y (n"))

= g(=!, 7)€ + ') (€7 ent)

and similarly for the antiholomorphic counterpart. Equivalently, if we denote d = @ + 0, one

has
g tog e tCant, g log et an. (B.2.17)
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Then we find that KKS 2-form (3.2.7) is of type (1,1) with respect to this complex structure.
w=—20Tr[A ((g7'09)* + (97'09)* + g~ '0g - g~ 09 + g~ 0g - g~ 'g)]
= —2iTe[\(Og ' - Og + g~ ' - 0g)]

Here the first and second terms of first line vanish due to (B.2.17). Let ¢g7'0g = p; H; + pto Ea,

where H; € &, E, € n" and p;, j1o are one-forms. Then the first term can be rewritten as follows.
Tr[A (g~ 10g)?] = Tr A(wiH; + uaEa)2]
= Tr [M[Hs, Hjlpipj + [Ea, Eplpaps + (HiEa — EoHi)pifia)]

One can show each term is indeed zero by using the fact that Tr[AB] is nonzero only if A €
n®, B € nT or A, B € £. Likewise, the second term A(g~'0g)? is zero. Thus the KKS symplectic
form is of type (1,1), so M is K&hler manifold.
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Appendix C

Jeffrey-Kirwan residue

C.1 Basic idea

Here we review the basic idea of Jeffrey-Kirwan(JK) residue to understand the detail of the
computation of indices for N' =2 SQMs discussed in Section 4.2. We mainly follow [50].
Let us consider the Gaussian path integral of a chiral multiplet (4.1.3) in a representation

Ac of a gauge group G:

o _Dt2—|—0'2—iD —iA <Z>

We regard the vectormultiplet fields Ay, o, A, X, D here as Cartan valued constants. The one-loop

determinant for the chiral multiplet is then given by

(n—u)(n—1a)—1iD —iA
H sdet < o ~ )

n—u

qiaaa —-n
= - C1l1
nl;Iqu\ |%’aua - n‘Q - quDa - (Qm’ua - n)_l%a)\“q@‘a)\“, ( )

where ¢; is the charge of the i-th chiral multiplet component and a = 1,2,...,r = rank(G). We
rewrite this infinite product further by introducing the fermions &, n defined by

(eX — EN).

N |

E=i(ed +EN), n=

These are linear combinations of A, A such that &7 = A\ and Q acts on the vectormultiplet

variables as
Qu =0, Qu=¢, Q¢ =0, Qn=D, QD =0. (C.1.2)

We denote the linear function of u® that appear in the denominator of (C.1.1) collectively as w;,

so that
H H (¢iau” — ) = Huz

neZ q; cAc
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Similar notation will be used for their complex conjugate 4 and the other variables D, ¢, n as
well. The infinite product (C.1.1) becomes

U;
.
1:[ |ui|? — 1D + i&mi(a;)~Y (C-13)

thus the integral of our interest for rank-r gauge theory is written as follows.
U;
—iD; +i&ni(u;) !

D2 .
d"ud"ad"€d"nd" D - e 22 P (). C.14
/ " Ir () (C.14)
Here (- --) is the contribution to the determinant form vector and fermi multiplets.
In order to avoid problems of divergence we will encounter later, at this point we remove
the tubular neighborhood of u; = 0 for each i from the u-integration domain. Also, we shift the
D-integration contour off the real axis so that D* € R —i0* (a = 1,2,...,7) .

Rank-1 case. For simplicity we first consider the rank-1 case, assuming that w; is the following
linear function of w.

U = qiu—n;

For simplicity, we focus on the jth factor of infinite product (C.1.4) and consider whether to
pick the residue of the pole u; = 0 (u = in;/q;). Expanding it with respect to &mn;,

u; B i€
luil? = iD;  (Juil* — iD;)?

_|_...,

one can integrate these fermions out, and the integral we want to evaluate is then,

U; 1 du;du;dD;

dudidédndD _ 1 [ _dwdwdDi C15
/ ududgdn \ui |2 —iD; + i&mi(w) ™' gl Jar i(Jwil® — iDy) ( )
1 dD; = U;
= — duzdﬁﬁ, <2u - >
G| Jr—igs Di Ju |ui|? —iD;
1 dD; w;du;
it (C.1.6)

el R—igis Di Jom uil* —iD;

Here M denote the complex wu;-plane with the origin removed. In the third equality, we applied
the Stokes theorem to the uj-integral, and then rewrote it as a contour integral along M. Also,
the contour of D;-integral is deformed from the real axis to R — ig;0. There is a simple pole
at D; = 0 in (C.1.6), even though D; = 0 was perfectly regular in (C.1.5). That is why we
deformed D; contour in advance. Now we evaluate the integral above in each components of
OM . First, we focus on one of M, the one going around the hole. Another one at infinity will
be discussed later.

Whether the boundary component contributes to the integral depends on the sign of ¢;0.

o If ¢;0 < 0, then Re(|u;|* —iD;) = |u;|* — ¢;6 > 0. The radius of the u; contour can be
shrunk as one likes. In this case, there is no contribution to the integral from contour

around u; = 0.
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e If ¢;6 > 0, then Re(|u;|?> —iD;) can vanish. To evaluate this contribution, we deform the
D; contour that is below the real axis to be above it. In this deformation, it hits the
pole at D; = 0, then we find that one should integrate over the D; contour along a line
above the real axis plus a circle going around the origin counterclockwise. Similarly to
the previous case, when D, takes value on a line above the real axis, the u; contour can
be shrunk without any problem. The D; contour over this line thus contributes nothing.
The contribution from the circle can be evaluated easily, and leaves us with a wu;-contour

integral that goes around the pole at u; = 0 clockwise. One obtains,

1 dD; % Zidui _ 2m [odu 47”2 (C.1.7)
’(h’ cew cw |u1’ —1iD; ’qz, cw Wi ‘qz‘
In summary, the whole contribution of the bulk poles are expressed as follows.
du
Resy—n, /q; <) (0 >0)
qz>0 /9 \ T (g — ma)
Touix = du . (C.1.8)
3w () @<
i(gi<0) [Ti(qiu—n)

Let us next consider the contribution of the boundary of M at infinity. In this case, since

the FI parameter ( plays significant role, we study the following integral with ( restored.

Uj

—iD; + iﬁmz‘/ﬂi
L / @ e_%ﬂfD / du H '
4772 R—is D |Qzu - nz|2 - ZQZDZ

When u; are on the circle at infinity, one may integrate over D first. If { > 0 (or ¢ < 0), one can

_ 1 _ D% D
=13 / dududédndD e 22 H e

close the D-integration contour in the lower (or upper) half-plane. Besides D = 0, there seem to
be many poles at D = |qu — n;|?/ig;. But it was argued in [18] that the limit e — 0 should be
taken with ¢’ = (e? and D' = D/e? held fixed. So all the poles of the integrand except D’ = 0
are at a distance ~ e~2 from the origin and negligible. As a result, the D-contour contains only
the pole at D = 0 for (§ < 0. After the D-integral one obtains a u-contour integral which picks
up all the bulk pole residues.

du
_ Resu:nv R i — 5> 07 <0
; i/ (Hz(%u_nz)> ( ¢ )
du
o B L (gu —ni) : (C.1.9)
;Resum/th (Hl((hu — nz)) ((5 <0,¢> 0)
0 (otherwise)

The sum of the bulk pole and infinity contribution depends on the sign of ¢ but not on the

regularization parameter 9.
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e (>0

du
'(Z;O) ReSu=ni/q¢ <W> +0
g
I =T+ I =
bulk + Z Res ( du > N ZRes ( du )
_ w=ni/q \ TT (07 _ w=nijo \ T
i(g;<0) Hi(%u n;) T Hi(qlu n;)
du
- Z ReSu=n,/q; () (C.1.10)
fh>0) Hz(QZU - nz)
e (<0
du
i(qi all ¢
I= Ibulk + Ioo = du
B Z Resu=n;/q; <> +0
i(qi<0) Hi(%u —n;)
du
- Z Resy—p, /g, () : (C.1.11)
i(q; <0) Hi(‘bu - nz)

So it is convenient to choose d = { so that one can ignore the contribution from infinity. Then

we should take poles at u; = 0 such that ¢;¢ > 0 only.

Rank-r case. For the case with general rank r, one has

U = Nj — 1GiqUa, Ui = N + 1¢iqUa, (C.1.12)
& = GiaCas M = GiaMla; D; = gia Do,
where a = 1,...,r. Let us first consider whether or not the intersection of » hyperplanes
Uy =upg=---=1u=0 (C.1.13)

contributes to the integral for simplicity. As in the previous analysis, we extract only the relevant

factors from the full integrand.

U;
I = / HduaduadfadnadD H| TiD G

a=1

7 dudD;
dru i
\det ia)| / H (Jus|> —iD;)?"

Since this is the product of r copies of the rank-1 problem (C.1.6), one may well think that

(C.1.14)

this pole contributes to the integral if ¢,;6, > 0 for all <. However, this is not the correct JK
prescription for a general rank-r. Nevertheless, let us continue the discussion based on this

regularization for a while.
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In the rank-1 case, a d?u integral was transformed into a contour du-integral using Stokes
theorem. Generalization of this to rank-r case a little involved. Let us first consider the integral

(C.1.14) with the domain of u-integration
M = {(u1,uz,...,uy) € C"||us| > € for all i}. (C.1.15)
The boundary of M and that of 9M are given by
8M:—ZSZ-, Si = {|ui| = € |uj] < € for all other j},

- ZSU’ Sij = {|ui| = |uj| = € |ug| < € for all other k} = S5; NS, (C.1.16)
J#i

where we ignored the boundary at infinity for simplicity. Moreover, there is a cell decomposition
of M of the form

M = ZC‘Z, 0C; = Cij—Si, 0Cy=Y Cijp—Sijs ... (C.1.17)
J#i k#i,5
The integral we consider (C.1.14) is rewritten using a 3r-form g,

r

1 du;dD;
= Ly uw= 5 Ad"u, C.1.18)
|det(gia)| Jarxr H (luil* —iD;) (

where I' is the D-contour. The exterior derivative with respect to @;: 0 = du; % raises the

degree of differential form by one. As an example one has

Ou; = i, (C.1.19)
where the (3r — 1)-form y; is given by
u;dD; o du,;dD;
= ——"5—— —— ANd"u. (C.1.20)
Di(|ui|* — iD;) gl(!UjQ—le)z
More generally, one can define the (3r — p)-form satisfying the decent relation as follows.
u;dD; 2 da;dD; .,
Hivi--ip = H T2 — D, H T e_pp/dw

GE€{i1in,mmip} Di(fui] iDi) §&{i1,i2,.vip} iyl iDj) (C.1.21)

Ofbiyi-iy, = Migigip — Mivigeip T+ + (=) Miyineoip
By applying Stokes theorem to the integral (C.1.18) once, one obtains

/MM:;/CZEM

=> Z/ i — /uz (C.1.22)

i J#i

—Z/ Mj)—zi:/&_#i'

1<)
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In the second equality, we used the cell decomposition (C.1.17). The first term on the last line

is the integral over a cell C;; of the differential form Ou;;. By r times repeated use of Stokes

Wiyig--iy — / Wiyiz iy
S,

0199 iy

theorem, the result is as follows.

/M“:”': 3 3 /C

1 <t2<-<ip j;éil,iz,...,zr 114 iy

r—1
- Z Z /S Hiyig--ip

p=1 11<iz<-<ip 1%92°ip
r
= — E E / Mi1i2~-~ip (C.1.23)
p=1 i1<ia<-<ip Siyig--ip

Let us now integrate also with respect to D; over I' = {D; € R —i4;}, where 0; = giq0,. We take

the D-integral into account and consider an integral, a part of (C.1.23).
/ ,uiliQ...ip (0124)
Sitige-ip X'

The integral vanishes if §; > 0 for some j € {i1,i2,...,7,}, because S;,;,..;, can then be shrunk
without problem. If §; > 0 for all j € {714, .}, then we move the integration contour for
D;y, Dy, ..., D;, to the other side of the origin as in the rank-1 case. We thus find

.
1= /MXF W= Z Z / Hiyin-ip

p=1 11<ia<<ip Siyig-ipXT
,
p=1 11 <ig<-<ip jE{i1,2,...,ip}
where ©(z) is the step function, equal to one if z > 0 and zero otherwise, and

Iili2"'ip = / /J'il’ig-nip; (0126)
S

i1i2...ip><ri1i2...ip
Tiyigiy = Sp, ¥ Sp, x-+-Sp. x [ (R—id;). (C.1.27)
122-*p Dil Di2 Dip J
J&{i1,i2,ip}

Note that I;;,..;, is a (3r — p)-dimensional integral, of which the integration with respect to
(ui,u2,...,up; D1,Da,...,Dp) can be performed straightforwardly. The resulting 3(r — p)-
dimensional integral is the rank-(r — p) version of the same problem, so that by repeatedly

applying Stokes theorem to it one obtains

r
Ii1i2~~-ip = - Z Z /S Hiyig-iq

q:p+1 ip+1<"'<iq i1i2-<-iq><ri1i2-<-iq

= > ¥ IT 96 Ly, (C.1.28)

q=p+1 ipr1<-<ig j€{ips1,..siq}
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The relation (C.1.25) can be thought of as the case p = 0 of the (C.1.28).
By using (C.1.28) repeatedly, one can prove the following formula by induction.

Liigeiy = (=)"7° H O(8;) | Livigeivs (C.1.29)
j¢{i177f'27~--’7:p}

This implies that, for the special case p = 0, the regularized integral

[Tew)
=1

picks up the residue of the pole w1 =uo =--- =u, =0 if §; = ¢4, > 0 for all <.

I=(-1) Ty (C.1.30)

Genelarization. The above argument can be generalized to the cases where the integrand
consists of more than r factors so that the domain of u-integration has a collection of k(> r)

hyperplanes. One can show that the following differential forms

r—p
U, dD; 1 duydDy

irigeip = I | s | I — A E . - ANd"u (C.1.31

Hiriz-—iy L Jug[? = iDy, Dj — (r—p)! \ & iug(luel* — iDy) ( )

Jje{itia, . ip}

satisfy the decent relation (C.1.21). The proof goes as follows. Let us first introduce the notation

Uk dﬂngg _ b b
||7E E = du®hgpd D’ = hyd D, .1.32

2 —iD, & itg(jug? —iDg) ’ (C-1.32)
! ;

and then (C.1.31) is rewritten as

dD; 1 a\r— r
[irigiy = G 11 Djj NG _p)!(hadD )" P Ad . (C.1.33)

Jje{itiz, .. ip}

Using the relation

= _, Og duyD, b
dg = da® = = ghyD C.1.34
9= 5ga g%: tae(lue® —iDg) I ( )
one can expand 5ui1i2...ip explicitly as follows.
3 _ by Tirar ~ " Qipa dD -..dD% 1 -
3ui1¢2...ip =g (hbD ) D”il?" — Dip A (’r — p)! (hap+ldDap+1 .. hardDa ) Adu

(C.1.35)

In the RHS, the indices aq - - - a, must be all different and, since h,’s anticommute, the index b

of hbDb has to agree with one of {ay,... ,ap}. For example b = ay,
! (:IilaldDal qigag tee ql a dDa2 e dDap ]_ _
RHS(b = = gh. D% . . pQp A b dDYY P A d
( a1) =g al Dy, Di, -+ D;, (T—p)!( a ) U
dD] 1 —(p—1
=g A (hqdD*)" =D A d"u
jE{ig‘,Z’p} D] (T - p + 1)' ¢
= Hig--ipy -

95



So the summation of the all b follows (C.1.21). As in the rank-1 case we remove from the
domain M of u-integration the tubular neighborhood of the singular hyperplane u; = 0 for each
k. Denoting the surface of the k-th tube by Sy we have as (C.1.16),

oM = —ZSk, 8Sk:*ZSkla s (C.1.36)

k 14k
Moreover, M can be cell-decomposed into the form (C.1.17) by defining C}, as the set of points
of M whose nearest boundary component is Si. Then the repeated application of the Stokes’

theorem works in the same way as the before.

C.2 The rule of JK-residue

One of the regularization prescription introduced above, namely the rule of the shift of the D-
integration contour, needs to be reconsidered here. In (C.1.27) we defined I';,..;, as a product
of a p-torus, |g; - D| = |gjaD®| = € for j € {i1,i2,...,%,}, and (r — p)-dimensional hyperplane
Im(gj - D) = —q; - 6 for j ¢ {i1,i2,...,ip}. As long as one considers the problem for which the
integrand has exactly r singular hyperplanes intersecting at a point (C.1.13), the definition of
[iyiy-i, (C.1.27) dose not cause any problem. However, in general one needs to consider many
poles if there are more than r hyperplanes as noted above.

In this general case, the imaginary shift of the contour I';;..;, should be specified by a vector

1) such that

i1 ip

qiq - 5i1i2-~~ip ==y 5i1i2~~~ip =0. (0.2.1)

Given a 0 and {¢;,, i, - - -, Gi, }, there is no way to determine such a &;,4,...;, uniquely. Therefore
it seems that, as was explained in [50], the only thing we can do is to introduce an independent
shift parameter d;,4,...;, for each of I';,...;, .

The JK-residue prescription begins by choosing a reference vector n € h*. For each D-

integration contour I';,..;, , the shift parameter d;,;,...;, has to be chosen so that
n- (51'11'2...1'? >0 (C.2.2)

is satisfied in addition to (C.2.1). Then the rest of the computation is much the same as before.

One obtains a set of recursion relations

I=- > II o0 L,

p=111<ia<-<ip jE€{i1,02,...,ip}

r
Iili?“‘ip == Z Z H @(Qj ’ 6i1i2"-iq) ’ Ii1i2"'7z'q’

q=p+1 dpp1<<ig j€{ipt1,...yiq}

which are solved by [50]

Iilig---ip = (—)T_p Z H @(Qj : 5$1j27) : I’ilig---’ir7 (0.2.3)

ip+1<'“<i7‘ jE{ip+1,---,i'r}
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where 7 stands for the omission of j. In particular,

I=(-1" Y II 9 6isoi) | - Livigei- (C.2.4)

11 <ig<-<ip je{il,ig,...,ir}
So the pole u;, = u;, = --- = u;. = 0 contributes to the JK-residue integral I if g; - ;,...5..;, >0
for all j € {i1,d2,...,9,}. We can rephrase the above result into the main rule of JK-residue

prescription as follows.

e The pole u;, = u;, =--- = u;, = 0 contributes to the JK-residue integral I if 7 is contained
in a cone spanned by the r charge vectors ¢;,, ¢i,,- - -, @, , or equivalently if
T
n:chqik, c1,Co,...,cp > 0. (C.2.5)
k=1

One can easily confirm that this is equivalent to what is concluded after (C.2.4). From (C.2.1)
and (C.2.2), we have

r
0<n- 52~1..Aj...,~r = Z Crqiy, - 5i1"'j"'ir = Cjq; - (Sil‘..j..AiT, (C.2.6)
k=1

thus ©(0;,...5...4,) = O(¢;).
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