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Abstract

In this thesis we study the two different descriptions of BPS vortex loops in 3D N = 2 supersym-

metric (SUSY) non-abelian gauge theories and present their equivalence. First, we calculate the

expectation value of BPS vortex loops on an ellipsoid using a definition that involves performing

a path integral over the field with a prescribed singular behavior. By using the obtained result,

we revisit the known equivalence between Wilson and vortex loops in pure Chern-Simons theory.

This implies an alternative definition of BPS vortex loops, where a quantum mechanics on a loop

interacts with the 3D field theory. However, straightforward computations of expectation values

in the N = 2 SUSY theory lead to an undesired shift in the correspondence rule for parameters.

To address this issue, we propose a relation between the parameter shift and the global anomaly

of N = 2 SUSY quantum mechanics. Additionally, for theories with U(N) gauge group, we

also develop an alternative description of vortex loops in terms of 1D N = 2 SUSY gauged

linear sigma models (GLSMs) on their worldline. Our construction reproduces certain GLSMs

for vortex loops in N = 4 theories studied by Assel and Gomis.
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Introduction

Quantum field theory is the most standard way to formulate particle physics and is currently

being studied in various direction. One of the subjects that has attracted the attention of many

physicists and mathematicians is the theory with supersymmetry(SUSY), which is symmetry

with respect to the exchange of bosons and fermions. SUSY provides powerful tools to analyze

problems in quantum field theories. A significant progress is the Localization techniques that

allows us to compute SUSY-preserving observables exactly.

The localization technique was applied to 3D SUSY gauge theories on S3 in [1], where a

formula for partition function and Wilson loop [2] was obtained for a class of N ≥ 2 supercon-

formal Chern-Simons(CS) matter theories. The papers [3,4] generalized the result to the N = 2

supersymmetric theories, in which R-charge of the matter fields is no longer constrained by their

Weyl weight. Further generalization was found by [5] that studied theories on the so-called 3D

ellipsoid or squashed S3.

The essential idea of localization is that contributions of a supersymmetric path integral are

only from the configuration of bosonic fields known as saddle points. The infinite-dimensional

path integral is then reduced to a finite-dimensional integral over the saddle points. The first

purpose of this thesis is to review the localization techniques on three-dimensional manifolds

and derive the exact formula for the partition function via a supersymmetric path integral. Our

main interest is N = 2 SUSY gauge theories on 3D ellipsoid, for which the formula is given by

ZS3
b
=

1

|W|

∫
drσ̂e−S ·∆v

1-loop ·∆c
1-loop.

This is a finite-dimensional integral over the saddle point parameter σ̂ which takes values in a

Cartan subalgebra h ⊂ g = Lie(G). The integrand, a function of σ̂ and squashing parameter

b, comprises a classical action and one-loop determinants which are obtained by evaluating

Gaussian integrals over vector and chiral multiplets around each saddle point.

The main purpose of this thesis is to give a detailed description of supersymmetric vortex

loops based on the paper [6]. Vortex loops play an important role in the study of 3D gauge

theories like Wilson loops. They are one-dimensional defects in 3D gauge theories typically

defined by a singular behavior of the gauge field A:

A ∼ βdφ,

where φ is the angle coordinate that goes around the vortex worldline and the parameter β, called

vorticity, can be gauge-rotated to be in a Cartan subalgebra h ⊂ g. Based on this definition,
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supersymmetric vortex loops were first studied in [7] for ABJM model [8]. Exact computation

of their expectation values was performed by [9, 10], but so far it has been mostly restricted

to abelian gauge theories. Moreover, the results seem to indicate that vortex loops in abelian

N = 2 gauge theories are trivial; namely, as far as supersymmetric observables are concerned,

they are equivalent to the identity operator.

There is another definition for the vortex loops based on the idea that the loop supports a

quantum mechanics interacting with the 3D fields. A systematic identification in 3D N = 4

theories was given in [11] using mirror symmetry [12] and type IIB brane construction [13–15].

However, generalization of their result to theories with less SUSY does not seem straightforward.

Also, the correspondence between this definition and the previous definition based on singular

gauge field is not fully clear yet.

The analysis of vortex loops in this thesis can be divided into two main parts. First, based

on the definition in terms of singular gauge field, we give an exact formula for the path integral

in the presence of vortex loops: the expectation value of a vortex loop on an ellipsoid is given

by

⟨Vβ⟩ =
1

|W|

∫
drσ̂ e−S ·∆v

1-loop ·∆c
1-loop · Vβ(σ̂).

Comparing the integrand above with that of ZS3
b
, we determine the function Vβ(σ̂) which encodes

the effect due to the presence of a vortex loop.

As consistency check of our definition, we test this result against the known equivalence of

Wilson and vortex loops in pure CS theory. In [16], Moore and Seiberg claimed that

Vβ(C) ≃Wλ(C) for λ =
kβ

2
,

where Wλ(C) is a Wilson loop operator in a representation of the gauge group with the highest

weight λ and k is the Chern-Simons level. The original proof of the equivalence [16] used the

coadjoint orbit quantization for representing Wilson loops. It can actually be thought of as a

prototypical example of a quantum mechanics on a loop interacting with the field theory in 3D

space. By understanding the equivalence of the Wilson and vortex loops, we have made in [6]

the first precise correspondence between the two definitions of vortex loops explained above.

In fact, by a naive comparison in N = 2 CS theory we find there is an unwanted shift ρ̃ of

parameters in the equivalence relation:

Vβ(σ̂) ≃Wλ(σ̂) for λ+ ρ̃ =
kβ

2
.

This was already pointed out in [17]. At the end of Chapter 3 we propose a resolution which

relates the shift to the global anomaly in N = 2 SUSY quantum mechanics [18].

Second, we extend the correspondence of the two definitions of vortex loops to a wider class

of N = 2 theories. For this purpose we will focus on vortex loops in U(N) gauge theories.

We begin in Chapter 4 by developing the description of coadjoint orbit quantum mechanics as

quiver gauged linear sigma models (GLSMs) of the kind studied in [19, 20]. The index I(σ̂) of

the GLSM is computed by JK residue prescription [18] and we can confirm the correspondence
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of the two description through the check of the relation I(σ̂) = Vβ(σ̂). We also identify the

extensions of these GLSMs that account for the addition of various matter chiral multiplets

on the vortex background. This will be done for the matters in the adjoint, fundamental and

anti-fundamental representations of U(N).

As another extension, we study 1/2 BPS1 vortex loops in N = 4 theories. We present all

the possible boundary conditions for N = 4 multiplets in order for the vortex loop to preserve

1/2 SUSY. We also identify the corresponding worldline quantum mechanics with 1D N = 4

supersymmetry.

Organization of this thesis

This thesis starts with a review of N = 2 SUSY gauge theories in Chapter 1. Some preparations

necessary for dealing with curved manifolds are also introduced there. In Chapter 2, exact

formulae for the partition function and the expectation value of vortex the loop are derived using

localization techniques. In Chapter 3, we then test this result against the known equivalence of

Wilson and vortex loops in pure CS theory. GLSM descriptions are introduced in Chapter 4.

The second half of this chapter, we extend the GLSMs to describe vortex loops in 3D theories

with various matter chiral multiples. Vortex loops in N = 4 theories are studied in Chapter 5

where our construction reproduces some of the GLSMs for vortex loops that are identified in [11].

We conclude in Chapter 6 with the summary and discussions.

1The Bogomolny-Prasad-Sommerfield (BPS) bound, named after Evgeny B. Bogomolny [21], M. K. Prasad,

and Charles M. Sommerfield [22], is originally a lower bound for the mass of a monopole that is set by its charge.

When the bound is satisfied, the field equation simplifies, and this state is referred to as “saturated”. In theories

with supersymmetry, states or objects that satisfy similar bounds often preserve a portion of SUSY. Therefore,

the terms “BPS” and “SUSY-preserving” refer to the same concept.
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Chapter 1

Supersymmetric gauge theories

In this chapter, we consider how to realize supersymmetric field theories on certain three-

dimensional manifolds. Our main interest in this thesis will be N = 2 supersymmetric field

theory on 3D ellipsoid, which is a squashed S3. For this purpose, we first construct the theory

on flat three-dimensional space. After some preparations to describe quantities on the curved

geometry, namely basic formulation of general relativity, we generalize our construction to Rie-

mannian manifolds. The naive general covariantization of the flat space theories does not possess

supersymmetry, but adding appropriate non-minimal couplings can keep the theories supersym-

metric. The condition that the theory admits one or several supersymmetries translates into

an equation that the supersymmetric transformation parameters must satisfy, called the Killing

spinor equation [23, 24]. In the first part of this chapter, we will explain this construction and

present supersymmetric Lagrangians.

In the latter part of this chapter, we will introduce supersymmetric vortex operators, which

are one-dimensional defect operators in three-manifolds. Naive volume integrals of Lagrangians

may be divergent if such operators are inserted, because of a singular behavior of the gauge field.

The divergence is regularized by removing a tubular neighborhood of the operator and adding

specific boundary terms to the action [9, 10].

1.1 3D N = 2 field theories on R3

In this paper we will consider three-dimensional N = 2 supersymmetric field theories. The

three-dimensional N = 2 supersymmetry algebra(superalgebra) has four real supercharges,

Qα, Q̄α(α = 1, 2). This is the same amount of supersymmetry as in four-dimensional N = 1

field theories, and many properties of the three-dimensional superalgebra can be deduced by

reduction from four dimensions. Let us first describe some basic properties of these theories

in flat three-dimensional space with Euclidean signature, in preparation for studying them on

curved backgrounds later. For more detail, see, e.g., [25–27].

The N = 2 SUSY algebra consists of the supercharges, satisfying the algebra:

{Qα, Qβ} = {Q̄α, Q̄β} = 0, {Qα, Q̄
β} = (γa) β

α Pa + iδ β
α Z (1.1.1)
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Here Pa is the momentum, Z is a real central charge. We choose the three-dimensional γ-matrices

to be the Pauli matrices:

(γa) β
α =

{
σ1, σ2, σ3

}
=

{(
0 1

1 0

)
,

(
0 −i
i 0

)
,

(
1 0

0 −1

)}
. (1.1.2)

where a = 1, 2, 3 is flat index. They satisfy

{γa, γb} = 2δab, γab ≡ 1

2

[
γa, γb

]
= iεabcγc, (1.1.3)

where εabc is the totally anti-symmetric symbol with ε123 = 1.

For a Lie group G with Lie algebra g = Lie(G), an N = 2 supersymmetric field theory with

gauge group G is made of a vectormultiplet V = (Am, σ, λ, λ̄,D) in the adjoint representation

of g, and by a chiral multiplet Φ = (ϕ, ψ, F ) and an anti-chiral multiplet Φ̄ = (ϕ̄, ψ̄, F̄ ) in some

representation R and R̄ of g, respectively.

Given such supermultiplets, one can write the supersymmetric transformation rules and

SUSY-invariant Lagrangians at least on flat space. In fact, most of the formulae of 3D N = 2

supersymmetric field theory can be obtained by a dimensional reduction of 4D N = 1 theory for

which all the basic formula are given in the textbook by Wess-Bagger [28]. Note that whereas

the [28] is written in superfield notation, we prefer to use component fields since it is more

convenient to deal with the theory on curved space.

1.1.1 Chiral multiplets

A chiral multiplet Φ consists of a complex scalar ϕ, a complex spinor ψ, and an auxiliary complex

scalar F . We denote the generator of supersymmetric transformation as

Q = ξQ+ ξ̄Q̄, (1.1.4)

where ξ, ξ̄ are constant spinors called supersymmetric parameters. In many papers, including

the references cited above, SUSY operators are defined as Grassmann-even operators. But we

define it to be Grassmann-odd: supersymmetric parameters ξ, ξ̄ are regarded as Grassmann-even

spinors2. We denote the bilinears of spinors by

ξψ ≡ ξαCαβψβ, ξγaψ ≡ ξαCαβ(γa) ρ
β ψρ, (1.1.5)

where Cαβ is an anti-symmetric matrix with C12 = −C21 = 1. From now on, the indices for

2-component spinors are always suppressed except needed.

The supersymmetric transformation rule on flat space for a chiral multiplet Φ (not having

gauge charges) is given by

Qϕ = ξψ, Qψ = iγa∂aϕξ̄ + Fξ, QF = iξ̄γa∂aψ. (1.1.6)

2Our notation and spinor conventions will mostly follow [6,29].
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The CPT conjugate of Φ is an anti-chiral multiplet Φ̄ = (ϕ̄, ψ̄, F̄ ), valued in the conjugate

representation R̄ of g, with the supersymmetric transformations:

Qϕ̄ = ξ̄ψ̄, Qψ̄ = iγa∂aϕ̄ξ + F̄ ξ̄, QF̄ = iξγa∂aψ̄. (1.1.7)

One can compute the square of Q, for example, by acting Q on ϕ twice:

Q2ϕ =Q(ξψ)

=ξ
(
iγa∂aϕξ̄ + Fξ

)
=iξ̄γaξ∂aϕ. (1.1.8)

Here, the second term in the second line is zero due to the spinor multiplication rule ξξ′ = −ξ′ξ.
Similarly, the action of Q2 on the other fields yields

Q2ϕ = iva∂aϕ, Q2ψ = iva∂aψ, Q2F = iva∂aF, (1.1.9)

Q2ϕ̄ = iva∂aϕ̄, Q2ψ̄ = iva∂aψ̄, Q2F̄ = iva∂aF̄ , (1.1.10)

where va ≡ ξ̄γaξ. Therefore the square of Q acts as

Q2 = iva∂a (1.1.11)

on all the fields. In fact, as we will see later, the square of Q acts as a sum of bosonic symme-

tries. In the present case, the right-hand side of (1.1.11) contains only the spacetime symmetry.

In terms of supersymmetric algebra (1.1.1), it corresponds to Z = 0. The SUSY invariant

Lagrangian consisting only of Φ, Φ̄ is given by

Lmat = ∂aϕ̄ ∂
aϕ− iψ̄ /∂ψ + FF̄ . (1.1.12)

1.1.2 Vectormultiplets

A vectormultiplet corresponds to a real superfield V which is subject to a kind of gauge trans-

formation. In the so-called Wess-Zumino (WZ) gauge, the vectormultiplet consists of a vector

Am, a real scalar σ, a pair of complex fermions λ, λ̄, and an auxiliary real scalar D which are

all g = Lie(G) valued. They transform under supersymmetry as

QAa = − i

2
(ξ̄γaλ+ ξγaλ̄),

Qσ =
1

2
(ξλ̄− ξ̄λ),

Qλ =
1

2
γabξFab − ξD − i /Dσ · ξ,

Qλ̄ =
1

2
γabξ̄Fab + ξ̄D + i /Dσ · ξ̄,

QD =
i

2
(ξ /Dλ̄− ξ̄ /Dλ) + i

2
(ξ[σ, λ̄] + ξ̄[σ, λ]),

(1.1.13)

where

Fab ≡ ∂aAb − ∂bAa − i[Aa, Ab], Daσ ≡ ∂aσ − i[Aa, σ]. (1.1.14)
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This also modifies the supersymmetry transformations of the chiral multiplet by terms involving

the vectormultiplet fields, which includes the replacements ∂a → Da:

Qϕ = ξψ, Qϕ̄ = ξ̄ψ̄,

Qψ = i( /Dϕ+ σϕ)ξ̄ + Fξ, Qψ̄ = i( /Dϕ̄+ ϕ̄σ)ξ + F̄ ξ̄,

QF = iξ̄( /Dψ − σψ)− iξ̄λ̄ϕ, QF̄ = iξ( /Dψ̄ − ψ̄σ) + iξϕ̄λ

(1.1.15)

where
Daϕ ≡ ∂aϕ− iAaϕ, Daϕ̄ ≡ ∂aϕ̄+ iϕ̄Aa,

Daψ ≡ ∂aϕ− iAaψ, Daψ̄ ≡ ∂aψ̄ + iψ̄Aa.
(1.1.16)

As in the previous section, one can compute the square of Q by acting Q twice on ϕ. The results

is

Q2ϕ = Q(ξψ)

= iva∂aϕ+Σϕ, (1.1.17)

where Σ = vaAa − iξ̄ξσ. Similarly, acting on the other fields, which are components of a

(anti-)chiral multiplet, one obtains

Q2ϕ = iva∂aϕ+Σϕ, Q2ϕ̄ = iva∂aϕ̄− ϕ̄Σ,

Q2ψ = iva∂aψ +Σψ, Q2ψ̄ = iva∂aψ̄ − ψ̄Σ,

Q2F = iva∂aF +ΣF, Q2F̄ = iva∂aF̄ − F̄Σ,

(1.1.18)

and for the fields in a vectormultiplet one obtains

Q2Aa = ivb∂bAa − iDaΣ,

Q2σ = iva∂aσ + [Σ, σ],

Q2λ = iva∂aλ+ [Σ, λ],

Q2λ̄ = iva∂aλ̄+ [Σ, λ̄],

Q2D = iva∂aD + [Σ, D].

(1.1.19)

As noted before, the square of Q generates a sum of bosonic symmetry transformations

Q2 = iva∂a + GaugeΣ (1.1.20)

where, for example,

GaugeΣΦ = ΣRΦ, GaugeΣΦ̄ = −Φ̄ΣR, GaugeΣΦadj = [Σ,Φadj], (1.1.21)

for Φ in R, Φ̄ in R̄, and V in the adjoint representation. It corresponds to Z = Σ in terms of

the supersymmetric algebra (1.1.1).
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1.1.3 Lagrangians

Let us list the building blocks of supersymmetric Lagrangians. First, we consider a chiral

multiplet Φ coupled to a vectormultiplet V . The standard kinetic term for the chiral multiplet

fields reads:

Lmat =Daϕ̄Daϕ+ ϕ̄σ2ϕ− iϕ̄Dϕ− i

2
ψ̄γaDaψ +

i

2
Daψ̄γ

aψ + iψ̄σψ

+ F̄F + iψ̄λ̄ϕ− iϕ̄λψ.
(1.1.22)

This Lagrangian is also expressed as follows by using the superspace formalism.

Lmat =

∫
dθ4K(Φ, Φ̄, V ), K(Φ, Φ̄, V ) = Φ̄e−V Φ. (1.1.23)

We can also consider the so-called F -term or the superpotential term for chiral multiplets:

Lpot =
∫

dθ2W (Φi) + c.c. =
∂W

∂Φi
Fi +

∂2W

∂Φi∂Φj
ψiψj + c.c., (1.1.24)

with a holomorphic function W (Φi) called the super potential.

For the vectormultiplet, there are two choices for the kinetic term. One is a supersymmetric

extension of the Chern-Simons (CS) term3:

LCS =
ik

4π
Tr

[
εabc

(
Aa∂bAc −

2i

3
AaAbAc

)
− λ̄λ+ 2Dσ

]
, (1.1.27)

where k is called the CS level and “Tr” stands for the standard trace4. These kinetic terms

Lmat, LCS preserve scale invariance classically5. The other choice of kinetic term for the vec-

tormultiplet fields is the Yang-Mills Lagrangian

LYM =
1

g2
Tr

[
1

2
F 2
ab + (Daσ)

2 +D2 +
i

2
λ̄γaDaλ−

i

2
Daλ̄γ

aλ− iλ̄[σ, λ]
]
. (1.1.28)

3The bosonic CS theory is defined by∫
DÂ exp

[
ik

4π

∫
Tr

(
ÂdÂ+

2

3
Â3

)]
=

∫
DA exp

[
−ik

4π

∫
Tr

(
AdA− 2i

3
A3

)]
(1.1.25)

≡
∫

DA exp (−SCS[A]) (1.1.26)

with Â anti-Hermite and A = −iÂ Hermite.
4For a simple group G, the trace in any representation R of a Lie group G gives an invariant bilinear form

Tr(XY ) for the Lie algebra elements X,Y . Here “Tr” stands for the standard trace which is defined by

Tr(XY ) =
1

2TR
trR(XY ),

where 2TR is knows as the Dynkin index. For example, TR = 1
2
, 1, 1

2
for the representation R = Cn,Rn,C2n of

SU(n), SO(n), Sp(n).
5In fact, N = 2 field theory defined by Lmat with the CS term LCS preserve scale invariance at the quantum

level [30].
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1.1.4 Real mass and FI parameters

When we consider the theory that has a non-trivial continuous global symmetry group GF , it

is useful to turn on a background vectormultiplet VF . We should think of this background field

as classical, and it takes fixed values that appear as the parameters in Lagrangians. In order to

preserve the supersymmetry, a background gauge field VF = (A
(F )
a , σ(F ), λ(F ), λ̄(F ), D(F )) takes

values such that the supersymmetric transformation of gaugino vanishes: Qλ(F ) = Qλ̄(F ) = 0.

In flat space, one should take

A(F )
a = D(F ) = 0, σ(F ) = mF ∈ gF . (1.1.29)

For a chiral multiplet with charge q under a global U(1) symmetry, after turning on the back-

ground vectormultiplet field, one finds additional terms in the action:

Lmat = · · ·+ ϕ̄(qmF )
2ϕ+ iψ̄qmFψ. (1.1.30)

The real parameter mF is called real mass in 3D, since qm in (1.1.30) corresponds to a mass for

both ϕ and ψ. This also modifies the supersymmetric transformation (1.1.15), for example,

Qψ = · · ·+ iqmFϕξ̄, QF = · · · − iqmF ξ̄ψ. (1.1.31)

If a theory has a U(1) gauge symmetry, one can define a current:

Ja
top = F̃ a ≡ 1

2
εabcFbc, (1.1.32)

which is conserved due to Bianchi identity. The corresponding global symmetry, U(1)T , is called

a “topological symmetry”. The charged objects of this symmetry are monopole operators. To

gauge this symmetry with a vectormultiplet Ṽ = (Ãa, σ̃, λ̃,
˜̄λ, D̃), one adds the supersymmetric

extension of coupling term ÃaJ
a
top:

i

2π
(εabcÃa∂bAc +Dσ̃ + σD̃ − λ̄λ̃+ ˜̄λλ), (1.1.33)

which is a mixed Chern-Simons term. If one regards Ṽ as the background vectormultiplet and

turns on a constant value for the scalar σ̃ = ζ, one obtains a Fayet-Iliopoulos (FI) term:

LFI =
iζ

2π
D. (1.1.34)

1.1.5 R-symmetry

The N = 2 algebra has a U(1) symmetry rotating the supercharges

Q→ eiαQ, Q̄→ e−iαQ̄, (1.1.35)

which is called U(1)R symmetry or simply R-symmetry. The supersymmetric parameters ξ, ξ̄

have R-charge +1, −1 respectively, so they are rotated as:

ξ → e−iαξ, ξ̄ → eiαξ̄. (1.1.36)
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One can assign the R-charges to the component fields in a single supermultiplet so that the

SUSY transformation (1.1.13), (1.1.15) preserves the R-charge.

ϕ→ e−irαϕ, ϕ̄→ eirαϕ̄,

ψ → e−i(r−1)αψ, ψ̄ → ei(r−1)αψ̄,

F → e−i(r−2)αF, F̄ → ei(r−2)αF̄ .

(1.1.37)

If the U(1)R symmetry is gauged by Vm, the derivatives acting on the fields with charge r should

be covariantized as follows.

∂m → ∂m − irVm. (1.1.38)

1.2 3D N = 2 field theories on curved manifold

We have reviewed the SUSY field theory on flat space so far. This section aims to realize the

SUSY field theory on a certain class of Riemannian three-manifoldsM3.

In general, the background metric breaks supersymmetry completely. Indeed, supersymme-

try is an extension of the Poincaré symmetry group, the isometry group of flat space, which is

also completely broken on an arbitrary manifold with a generic metric. On the other hand, some

M3 admit Killing vector fields vm which generate non-trivial isometries. Similarly, some may

also admit (generalized) Killing spinors, denoted by ξ, ξ̄, which generate curved-space supersym-

metries. The Killing vectors and spinors then generate a “rigid supersymmetric algebra” in

curved space.

Whether the SUSY theories are realized on M3 translates into the question whether the

Killing spinors can be defined on M3. On Riemannian manifold, the SUSY parameters ξ, ξ̄

which have been constant spinors on flat space are no longer constants, but are the Killing spinors

which are understood as solutions to the Killing spinor equation on the manifold, possibly with

additional background fields. According to Festuccia and Seiberg [23], this equation for curved-

space supersymmetry arises from the rigid limit of supergravity. In this paper, we are mainly

interested in 3D N = 2 field theories with an U(1)R symmetry. Such theories can be coupled to

the 3D N = 2 “new-minimal” supergravity.

To have a rigid supersymmetry, one assumes all the fields in supergravity to take some

classical values, and in particular all the fermionic fields, such as gravitinos, are set to zero. In

addition, the bosonic fields are determined from that the Q-variation of fermions are zero. The

requirement of the vanishing is nothing but the Killing spinor equation. Although one could

find the suitable background fields on each three-manifold as have been done on S3 [1,3,4] and

generalized to ellipsoid [5,31,32], we will follow the systematic way [24] based on the Festuccia-

Seiberg approach [23] to determine the background fields. See also review [25,26,33].

In the first half of this section, we make some preparations for dealing with curved manifolds.

In particular, we describe how the various quantities onM3 behave under the general coordinate

and the local Lorentz transformations. After that we will discuss the Killing spinor equation, and
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then explicitly derive the Killing spinor and the background fields on some specific Riemannian

three-manifoldsM3.

1.2.1 The general coordinate transformation

Here we summarize some standard facts about general relativity. First, consider a three-

dimensional Riemannian manifoldM3 with metric gmn:

ds2 = gmn(x)dx
mdxn. (1.2.1)

An object A = Am(x)dxm onM3 which transforms under general coordinate transformation as

Am(x)dxm = Ãm(x̃)dx̃m, (1.2.2)

is called a 1-form. The metric gmn or its inverse gmn are used to lower or raise vector indices, for

instance Amg
mn = An and Amgmn = An. For an infinitesimal general coordinate transformation

xm → x̃m = xm − vm(x), (1.2.3)

the difference between a tilded and a non-tilded vector fields(1.2.2) defines the Lie derivative

£v:

£vAm ≡ Ãm(x̃)−Am(x̃)

= vn∂nAm + ∂mv
n ·An

= vm∇mAn +∇nv
m ·Am.

(1.2.4)

Here the covariant derivative ∇m is defined with the affine connection Γl
mn as follows.

∇mAn = ∂mAn − Γl
mnAl,

∇mA
n = ∂mA

n + Γn
mlA

l.
(1.2.5)

The covariant derivatives of the vector fields ∇mAn, ∇mA
n behave as tensor fields, whereas the

partial derivatives of vectors ∂mAn, ∂mA
n do not. The affine connection is determined from

that it is symmetric and metric compatible:

Γl
mn = Γl

nm, ∇mgnl = 0. (1.2.6)

In general relativity, these properties come as a consequence of the Einstein’s principle of equiv-

alence. It is easy to show that (1.2.6) imply

Γl
mn =

1

2
glq (∂mgqn + ∂ngmq − ∂qgmn) . (1.2.7)

The Riemann tensor Rp
qmn is defined by

[∇m,∇n] A
p = Rp

qmnA
q,

[∇m,∇n] Ap = −Rq
pmnAq,

(1.2.8)
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where

Rp
qmn ≡ ∂mΓp

nq − ∂nΓp
mq + Γp

msΓ
s
nq − Γp

nsΓ
s
mq. (1.2.9)

It is easy to see that Rpqmn = gpsR
s
qmn is antisymmetric in the indices p, q and likewise in m,n,

while it is symmetric under the exchange of the pairs (p, q) and (m,n). The Ricci tensor Rmn

and the Ricci scalar R are defined as follows.

Rmn ≡ Rp
mpn = gpqRpmqn,

R ≡ gmnRmn.
(1.2.10)

If a vector vm satisfies the condition:

0 = £vgmn = ∇mvn +∇nvm, (1.2.11)

the vector vm is called a Killing vector onM3. Thus, the tensor ∇mvn is antisymmetric in the

indices m,n if vm is a Killing vector.

Note that the definition of the Lie derivative above is compatible with the usual mathematical

definition of that for a differential form:

£v · ≡ ıv(d · ) + d (ıv · ), (1.2.12)

where d and ı stand for the external derivative and the interior product. For example, for a

1-form A = Amdxm,

£vA = d(ıvA) + ıv(dA)

= ∂m(vnAn)dx
m + vm∂mAndx

n − vm∂nAmdx
n

= (∂nv
mAm + vm∂mAn) dx

m.

(1.2.13)

1.2.2 The local Lorentz transformation

For an arbitrary given point P on a Riemannian manifoldM3 with gmn, it is possible to find a

locally flat coordinate system near P . Such a coordinate system is called a local Lorentz frame.

One can introduce an orthonormal set of 1-forms eam such that

eame
bm = gmneame

b
n = ηab, (1.2.14)

where ηab = diag(+1,+1,+1) is the (inverse of) Euclidean metric, m,n are curved indices and

a, b = 1, 2, 3 are flat indices6. Alteratively, one can write the metric as an inner product of eam:

gmn = eame
b
nηab. (1.2.15)

A set of vectors eam are called a vielbein that means “many legs” in German. In the present case,

they are also called a dreibein since eam are a tripod. Given a metric gmn onM3 , one can always

6In what follows, the upper and lower flat indices might not always be placed in accordance with the Einstein’s

rule. But it will not cause as we work on Euclidean signature. On the other hand, for curved indices the distinction

of that is important.
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construct a dreibein eam satisfying (1.2.15). In fact, the dreibein is not uniquely determined, but

is transformed under local Lorentz transformations:

eam(x)→ ẽam(x) = Λa
b(x)e

b
m(x). (1.2.16)

The metric gmn is invariant under this transformation.

gmn → g̃mn = ηabẽ
a
mẽ

b
n

= ηabΛ
a
cΛ

b
de

c
me

b
d

= ηcde
c
me

d
n, (1.2.17)

where an argument x was suppressed. The third equality ηabΛ
a
cΛ

b
d = ηcd means that ηab is a

local Lorentz invariant tensor. A vector field with a flat index such as Aa, A
a is in a vector

representation of the local Lorentz group. Likewise, a spinor field Ψ is in a spinor representation

of that.7 The covariant derivatives of these fields are defined with the spin connection Ωab
m :

∇mA
a = ∂mA

a +Ωab
mA

b

∇mΨ = ∂mΨ+
1

4
Ωab
mγ

abΨ.
(1.2.18)

To determine Ωab
m one uses the fact that ean is covariantly constant like gmn, namely ∇me

a
n = 0.

In fact, all we need is its antisymmetric part, which can be expressed in terms of differential

forms as

0 = ∇ea = dea +Ωab ∧ eb, (1.2.19)

where we used ea = eamdxm, Ωab = Ωab
mdxm. The Riemann tenser with local Lorentz indices is

defined by

[∇m,∇n] A
a = Rab

mnA
b,

[∇m,∇n] ψ =
1

4
Rab

mnγ
abψ,

(1.2.20)

where Rab
mn is expressed as

Rab
mn ≡ ∂mΩab

n − ∂nΩab
m +Ωac

mΩcb
n − Ωac

n Ωcb
m. (1.2.21)

One can also show Rab
mn = Rpqmne

paeqb via

Γl
mne

a
l = ∂me

a
n +Ωab

me
b
n. (1.2.22)

Next, let us consider how a Lie derivative £v acts on the fields with flat indices. We define

£v so that it satisfy

£ve
a
m = 0, (1.2.23)

if and only if the vector v is a Killing vector. This, indeed, satisfies the condition(1.2.11):

£v(e
a
me

a
n) = £ve

a
m · ean + eam ·£ve

a
n = 0. (1.2.24)

7A spinor is not a representation of general coordinate transformation.
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We suppose that, in addition to ordinary terms (1.2.4), the Lie derivatives can be modified

by the local Lorentz transformation with a parameter Θab
(v). This parameter is determined by

solving (1.2.23):

0 = £ve
a
m = vn∇ne

a
m +∇nv

m · ean +Θab
(v)e

b
m. (1.2.25)

One thus obtain the Lie derivative of the fields in various representation of the local Lorentz

group [34]:

£ve
a
m = vn∂ne

a
m + ∂nv

m · ean +
(
vnΩab

n +Θab
(v)

)
ebm,

£vV
a = vm∂mV

a +
(
vnΩab

n +Θab
(v)

)
V b,

£vΨ = vm∂mΨ+
1

4

(
vnΩab

n +Θab
(v)

)
γabΨ,

(1.2.26)

where

Θab
(v) = ∇[mvn]e

amebn. (1.2.27)

1.2.3 Killing spinors

As was noted at the beginning of this section, when we realize supersymmetric theories on a

curved manifold, the SUSY parameters are no longer constant spinors, but must be the Killing

spinors, the solutions of the Killing spinor equation. The idea is based on the fact that a given

configuration of the supergravity background fields preserves rigid supersymmetry if and only

if gravitino variations vanish for some choice of SUSY parameter [23]. Since our interest is

in N = 2 supersymmetric field theories on M3, the most general form of the Killing spinor

equation [24] is

Dmξ ≡ (∇m − iVm) ξ =
i

2
γmκ,

Dmξ̄ ≡ (∇m + iVm) ξ̄ =
i

2
γmκ̄,

κ ≡
(
H − i /K

)
ξ, κ̄ ≡

(
H + i /K

)
ξ̄,

(1.2.28)

where /K = γmKm and Km is a smooth, conserved vector field ∇mK
m = 0. Note that the fields

Vm, H,Km are the background fields, which could also be interpreted as component fields of a

supergravity multiplet8. In particular, Vm is the gauge field for the U(1) R-symmetry and ξ, ξ̄

have R-charge +1,−1, respectively.
If there exists a pair of ξ, ξ̄ spinors satisfying the Killing spinor equation (1.2.28), the spinors

ξ, ξ̄ give rise to a Killing vector v = vm∂m with vm = ξ̄γaξ. It generates an isometry of M3

with the Riemann metric gmn, in other words it satisfies

£vgmn = ∇mvn +∇nvm = 0. (1.2.29)

In the following, we will present the explicit form of the Killing spinors and the suitable back-

ground supergravity fields on an ellipsoid which are used throughout this thesis. The Killing

spinors on some other manifolds are derived in Appendix A.

8Note that our notation (Vm, H,Km) corresponds to (Aµ − 3
2
Vµ, iH, iVµ) in [24, 26], and to (A

(R)
µ , iH, iVµ)

in [25,33].

14



An ellipsoid is a squashed three-sphere(S3), which is embedded in R4 as follows [5]:

x21 + x22
l̃2

+
x23 + x24
l2

= 1, ds2 = dx21 + dx22 + dx23 + dx24. (1.2.30)

Here b ≡
√
l/l̃ is called the squashing parameter which represents a measure of squashing. In

particular, the ellipsoid goes back to (round) S3 for l = l̃, namely b = 1. The supersymmetric

partition function on this ellipsoid with the embedding will be shown to depend on b in a

nontrivial manner [5].

Note that this squashing preserves only a U(1) × U(1) subgroup of the SU(2) × SU(2)

isometry of S3. Another squashing that preserves SU(2) × U(1) symmetry was also discussed

in [5], where it was shown that the partition function with this deformation dose not depend

on b. However, the paper [32] found that a squashing with the SU(2) × U(1) symmetry also

gives a b dependent partition function if the set of background fields is appropriately chosen. In

that paper, they showed that the 3D theory on such a background can be obtained by a specific

compactification of the 4D N = 1 theory on S3 × S1.

By moving from cartesian coordinates to polar coordinates by substituting (x1, x2, x3, x4)

with (cos θ cosφ, cos θ sinφ, sin θ cos τ, sin θ sin τ), a set of dreibein is expressed as follows.

e1 = f(θ) dθ, e2 = l̃ sin θ dφ, e3 = l cos θ dτ, f(θ) =

√
l̃2 sin2 θ + l2 cos2 θ. (1.2.31)

The coordinates φ, τ correspond to rotations within (x1, x2) and (x3, x4)-planes, whereas θ takes

values 0 ≤ θ ≤ π/2. The Killing spinor equation has the following solutions:

ξ = e
i
2
(φ+τ)

 cos θ
2

i sin θ
2

 , ξ̄ = e−
i
2
(φ+τ)

 i sin θ
2

cos θ
2

 , (1.2.32)

if the background fields Vm, H,Km take the following form.

V =
1

2

(
1− l̃

f

)
dφ+

1

2

(
1− l

f

)
dτ, H =

1

f
, Km = 0. (1.2.33)

The R-charges +1 and −1 are assigned to ξ and ξ̄, respectively. And they are normalized to

satisfy ξ̄ξ = −1. Then the Killing vector field v = vm∂m with vm = ξ̄γaξ is as follows.

ξ̄γaξ = (0,− sin θ,− cos θ), v = −1

l̃
∂φ −

1

l
∂τ . (1.2.34)

Note that another pair of Killing spinors, which is referred to as ξ′, ξ̄′ in Appendix A exists.

They are associated with another set of background fields Ṽm, H̃, K̃m:

Ṽ = −1

2

(
1− l̃

f

)
dφ+

1

2

(
1− l

f

)
dτ, H̃ = − 1

f
, K̃m = 0. (1.2.35)

Therefore, once one chooses a set of background fields, the pair of Killing spinors associated

with another set of background fields dose not correspond to SUSY of that background. Since

Vm = Ṽm = 0, H = H̃ = 1/ℓ on S3, it is easy to see that both pairs do generate supersymmetry

before the ellipsoidal deformation. In what follows, we take the background fields (1.2.33) and

use ξ, ξ̄ as our Killing spinors unless otherwise noted.
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1.3 Supersymmetric transformation rules and Lagrangians

Given a supersymmetric background, one can derive the curved-space supersymmetric varia-

tion and Lagrangians by modifying the previous law(1.1.13), (1.1.15). First, one redefines the

covariant derivative:

Dm ≡ (∇m − rΦVm − iAm) , (1.3.1)

with R-charge rΦ = R[Φ], that is, rΦ = (r, r−1, r−2) for the chiral multiplet Φ = (ϕ, ψ, F ) and

∇m is defined in Section 1.2.2. For example, for the chiral spinor ψ and the anti-chiral spinor

ψ̄,

Dmψ =

(
∂m +

1

4
Ωab
mγ

ab − (r − 1)Vm − iAm

)
ψ,

Dmψ̄ =

(
∂m +

1

4
Ωab
mγ

ab + (r − 1)Vm

)
ψ̄ + iψ̄Am

(1.3.2)

Then, the supersymmetric transformation for chiral multiplet (1.1.15) is modified to

Qϕ = ξψ,

Qϕ̄ = ξ̄ψ̄,

Qψ = i
(
/Dϕ+ σϕ

)
ξ̄ − rϕκ̄+ Fξ,

Qψ̄ = i
(
/Dϕ̄+ ϕ̄σ

)
ξ − rϕ̄κ+ F̄ ξ̄,

QF = iξ̄
(
/Dψ − σψ

)
− iξ̄λ̄ϕ+

(
r − 1

2

)
κ̄ψ,

QF̄ = iξ
(
/Dψ̄ − ψ̄σ

)
+ iξϕ̄λ+

(
r − 1

2

)
κψ̄.

(1.3.3)

The square of Q acts on the chiral multiplet as

Q2ϕ = ivm∂mϕ+Σϕ+ rBϕ

Q2ϕ̄ = ivm∂mϕ̄− ϕ̄Σ− rBϕ̄

Q2ψ = ivm∂mψ +Σψ + (r − 1)Bψ +
1

4

(
vmΩab

m +Θab
(v)

)
γabψ

Q2ψ̄ = ivm∂mψ̄ − ψ̄Σ− (r − 1)Bψ̄ +
1

4

(
vmΩab

m +Θab
(v)

)
γabψ̄

Q2F = ivm∂mF +ΣF + (r − 2)BF

Q2F̄ = ivm∂mF̄ − F̄Σ− (r − 2)BF̄ .

(1.3.4)

where
vm = ξ̄γmξ, Σ = vmAm − iξ̄ξ · σ,

B =
(
vmVm + ξ̄ξ ·H

)
, Θab

(v) = ∇[mvn]e
amebn.

(1.3.5)

Note that in order to derive the above result for Q2F , one needs the formula

ξ̄

(
/D /Dϕ · ξ̄ + i

2
Fmnϕγ

mnξ̄ +
2r

3
ϕ /D /Dξ̄

)
= 0. (1.3.6)
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This is automatically satisfied if ϕ and ξ̄ couple to Vm according to their R-charge, namely the

commutators of the covariant derivative act on those fields as follows.

[Dm , Dm ] ϕ = −iFmnϕ− ir(∂mVn − ∂nVm)ϕ,

[Dm , Dn ] ξ̄ =
1

4
Rab

mnγ
abξ̄ + i(∂mVn − ∂nVm)ξ̄.

(1.3.7)

Likewise, the supersymmetric transformation for vectormultiplet is

QAm = − i
2

(
ξ̄γmλ+ ξγmλ̄

)
,

Qσ =
1

2

(
ξλ̄− ξ̄λ

)
,

Qλ =
1

2
γmnξFmn − ξD − i /Dσ · ξ + σκ,

Qλ̄ =
1

2
γmnξ̄Fmn + ξ̄D + i /Dσ · ξ̄ − σκ̄,

QD =
1

2

(
ξ /Dλ̄− ξ /Dλ̄

)
+
i

2

(
ξ[σ, λ̄] + ξ̄[σ, λ]

)
+

1

4
(κλ̄− κ̄λ).

(1.3.8)

The square of Q acts on them as follows.

Q2Am = ivn∂nAm + i∂mv
n ·An − iDmΣ,

Q2σ = ivm∂mσ + [Σ, σ],

Q2λ = ivm∂mλ+ [Σ, λ] +Bλ+
1

4

(
vmΩab

m +Θab
(v)

)
γabλ,

Q2λ̄ = ivm∂mλ+ [Σ, λ̄]−Bλ̄+
1

4

(
vmΩab

m +Θab
(v)

)
γabλ̄,

Q2D = ivm∂mD + [Σ, D]

(1.3.9)

Q2D takes the above form thanks to

ξ /Dκ̄+ ξ̄ /Dκ = 0, (1.3.10)

which can be shown using only (1.2.28). The square of Q, which is a sum of bosonic symmetry

as noted, is modified to

Q2 = i£v + GaugeΣ +BRU(1), (1.3.11)

where the Lie derivatives for the fields are defined by (1.2.26).

Some Q-invariant quantities, namely candidates of Lagrangian, are listed below. It is easy to

check the Q-invariance for LCS and LFI. Those for LYM and Lmat are shown in next Subsection

1.3.1.

17



LCS =
ik

4π
Tr

[
εmnp(Am∂nAp −

2i

3
AmAnAp)− λ̄λ− 2σD

]
, (1.3.12)

LFI =
iζ

2π

(
D +Hσ −KmAm

)
, (1.3.13)

LYM =
1

g2
Tr

[
1

2
(Fmn − εmnpσK

p)2 + (Dmσ)
2 +

(
D −Hσ

)2
+
i

2
λ̄γmDmλ−

i

2
Dmλ̄γ

mλ− iλ̄[σ, λ]− 1

2
λ̄(H + i /K)λ

]
, (1.3.14)

Lmat = Dmϕ̄D
mϕ+ ϕ̄σ2ϕ+ i(2r − 1)Hϕ̄σϕ+

r

4
Rϕ̄ϕ− iϕ̄Dϕ+ F̄F

− r(2r − 1)

2
(H2 −KmK

m)ϕ̄ϕ+
2r − 1

2
Km(ϕ̄Dmϕ−Dmϕ̄ϕ)

− i

2
ψ̄γmDmψ +

i

2
Dmψ̄γ

mψ − 2r − 1

2
ψ̄(H − i /K)ψ

+ iψ̄σψ + iψ̄λ̄ϕ− iϕ̄λψ. (1.3.15)

1.3.1 Exactness of LYM and Lmat

Here we would like to show the SUSY exactness of LYM,Lmat by finding F which satisfies

QF = L up to total derivatives.

Consider first the F-term of gauge-invariant chiral multiplet with R-charge r = 2,

Qϕ = ξψ, Qψ = i /Dϕξ̄ − 2ϕκ̄+ Fξ, QF = iDm(ξ̄γmψ),

Qϕ̄ = ξ̄ψ̄, Qψ̄ = i /Dϕ̄ξ − 2ϕ̄κ+ F̄ ξ̄, QF̄ = iDm(ξγmψ̄).
(1.3.16)

One can show that the gauge-invariant F -term is Q-exact up to total derivatives,

Q(η̄ψ) = F +Dm(iη̄γmξ̄ϕ), Q(ηψ̄) = F̄ +Dm(iηγmξϕ̄) (1.3.17)

if there are spinor fields η, η̄ of R-charge +1,−1 satisfying

η̄ξ = 1, ηξ̄ = 1, (1.3.18)

and

ξ̄ /Dη̄ +
i

2
κ̄η̄ = 0, ξ /Dη +

i

2
κη = 0. (1.3.19)

Note that the above equations imply that η, η̄ are Q2-invariant:

Q2η = i£vη + aη +
1

2
ωη = −iγmξ ·Dm(ηξ̄) + iξ̄ ·

(
ξ /Dη +

i

2
κη

)
,

Q2η̄ = i£vη̄ − aη̄ +
1

2
ωη̄ = −iγmξ̄ ·Dm(η̄ξ) + iξ ·

(
ξ̄ /Dη̄ +

i

2
κ̄η̄

)
.

(1.3.20)

For the moment, we are unable to prove that every 3D background with Killing spinors ξ, ξ̄

has spinor fields η, η̄ satisfying the above property. So we present the explicit forms of η, η̄ in

interesting cases.
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■ R2 × R, S3
b Since we chose the Killing spinor (1.2.32) and (A.1.5) for S3

b and R2 × R,
respectively, so that ξ̄ξ = −1, one finds that

η = ξ, η̄ = −ξ̄, (1.3.21)

satisfy ηξ̄ = η̄ξ = 1. As κ = κ̄ = 0 on R2×R, it is obvious that (1.3.19) is satisfied. While on S3
b ,

since the background fields are Km = 0, H = 1
f , and κ, κ̄ are proportional to ξ, ξ̄, respectively.

Thus, each term in (1.3.19) is zero due to ξξ = ξ̄ξ̄ = 0.

■ S2 × S1 Since we chose the Killing spinor (A.3.13) so that ξ̄ξ = − cos θ, the situation is

slightly different from the above example. However, the fact that the third component of the

Killing vector v3 = ξ̄γ3ξ = −1 indicates that

η = γ3ξ, η̄ = γ3ξ̄ (1.3.22)

satisfy ηξ̄ = η̄ξ = 1. Since the background fields are Km = 1
ℓ̃
δm3, H = 0, we can write κ, κ̄:

κ = − i
ℓ̃
γ3ξ, κ̄ =

i

ℓ̃
γ3ξ̄. (1.3.23)

Thus, each term in (1.3.19) is zero as well.

Assuming that η, η̄ satisfying (1.3.18),(1.3.19) exist, let us use the above argument to show

the exactness of LYM. The field ΦYM ≡ 1
2 Trλ

2 is the bottom component of a gauge-invariant

chiral multiplet with r = 2. If we define the higher component ΨYM by

QΦYM = ξΨYM, (1.3.24)

its explicit form reads

ΨYM = Tr

[{
−1

2
γmnfmn −D + i /Dσ + σ(H + i /K)

}
λ

]
. (1.3.25)

As in (1.3.17), F -term is thus calculated as follows.

Q(η̄ΨYM) = Tr

[
(D − σH)2 + (F̃m − σKm −Dmσ)

2

− iDmλ̄γ
mλ− iλ̄[σ, λ]− 1

2
λ̄(H + i /K)λ

]
+Dm(iη̄γmξ̄ΦYM), (1.3.26)

where we used the notation F̃m = 1
2εmnlF

nl. Likewise, starting from an anti-chiral field Φ̄YM =
1
2 Tr λ̄

2, one can derive

QΦ̄YM =ξ̄Ψ̄YM,

Ψ̄YM =Tr

[{
−1

2
γmnFmn +D − i /Dσ − σ(H − i /K)

}
λ̄

]
,

Q(ηΨ̄YM) =Tr

[
(D − σH)2 + (F̃m − σKm +Dmσ)

2

+ i ¯λ /Dλ− iλ̄[σ, λ]− 1

2
λ̄(H + i /K)λ

]
+Dm(iηγmξΦ̄YM).

(1.3.27)
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The sum of (1.3.25) and (1.3.27) is exactly the Yang-Mills Lagrangian (1.3.14) up to total

derivatives,

LYM =
1

2g2
Q
(
η̄ΨYM + ηΨYM

)
. (1.3.28)

Next we turn to show the exactness of Lmat. We take Φmat = F̄ ϕ as the lowest component

of a gauge-invariant chiral multiplet of R-charge 2.

QΦmat =ξΨmat,

Ψmat =F̄ψ + i /Dψ̄ϕ+ iψ̄σϕ+ iϕ̄λϕ+
(
r − 1

2

)
(H + i /K)ψ̄ϕ,

Q(η̄Ψmat) =−DmD
mϕ̄ϕ+ ϕ̄σ2ϕ+ i(2r − 1)Hϕ̄σϕ+

r

4
Rϕ̄ϕ− iϕ̄Dϕ+ F̄F

− r(2r − 1)

2
(H2 −KmK

m)ϕ̄ϕ− (2r − 1)KmDmϕ̄ϕ

+ iDmψ̄γ
mψ − 2r − 1

2
ψ̄(H − i /K)ψ

+ iψ̄σψ + iψ̄λ̄ϕ− iϕ̄λψ +Dm(iξ̄γmη̄Φmat)

(1.3.29)

Likewise, taking anti-chiral field Φ̄mat = ϕ̄F , one can derive

QΦ̄mat =ξ̄Ψ̄mat,

Ψmat =ψ̄F + iϕ̄ /Dψ − iϕ̄σψ − iϕ̄λ̄ϕ+
(
r − 1

2

)
(H − i /K)ϕ̄ψ,

Q(ηΨ̄mat) =− ϕ̄DmD
mϕ+ ϕ̄σ2ϕ+ i(2r − 1)Hϕ̄σϕ+

r

4
Rϕ̄ϕ− iϕ̄Dϕ+ F̄F

− r(2r − 1)

2
(H2 −KmK

m)ϕ̄ϕ− (2r − 1)KmDmϕ̄ϕ

− iψ̄γmDmψ −
2r − 1

2
ψ̄(H − i /K)ψ

+ iψ̄σψ + iψ̄λ̄ϕ− iϕ̄λψ +Dm(iξ̄γmη̄Φmat).

(1.3.30)

Thus, the sum of these F -terms is Lmat up to total derivatives,

Lmat =
1

2
Q
(
η̄Ψmat + ηΨmat

)
. (1.3.31)

In this section, we showed the Q-exactness of LYM and Lmat. Throughout the calculations,

we kept track of total derivative terms even though they were dropped in the final results

(1.3.28),(1.3.31). They will become important in Section 1.5.

1.4 Vortex operators

Vortex operators are one-dimensional defects in 3D gauge theories characterized by a singular

behavior of the gauge field. For simplicity, let us suppose that there is a vortex line along the

x3-axis of R3. It is the simplest to describe it using cylindrical coordinate, i.e. r, φ are the

polar coordinates for the transverse (x1, x2)-plane, and the x3-axis is the cylindrical axis t as in

Appendix A.1. We require that the gauge field behaves near it as

A ∼ β dφ. (1.4.1)

20



If the gauge fieldA precisely takes the above value, the gauge field strength is F12 = 2πβδ2(x1, x2).

The 1-form dφ = (x1dx2 − x2dx1)/((x1)2 + (x2)
2) gets larger and larger as it approaches x1 =

x2 = 0 and finally diverges at that point. Hence, the requirement (1.4.1) introduces a defect

operator in the shape of a vortex along t. The parameter β, the coefficient of dφ, is called the

vorticity as it represents its magnitude. β is a constant that takes values in g = Lie(G), but it

can be gauge-rotated to be in a Cartan subalgebra h ⊂ g. Upon the vortex line the gauge group

G is broken to a subgroup K of G which is the centralizer of β, namely the group of elements

of G which commute with β

K =
{
h ∈ G|hβh−1 = β

}
. (1.4.2)

K is U(1)r (r = rank(G)) for a generic β. If one takes a special β, it can be non-abelian.

What are the conditions for the supersymmetry to be preserved after inserting the above

vortex operator? Since the square of Q involves a Lie derivative in the direction of the Killing

vector v = ξ̄γaξ∂a, for a vortex operator to be supersymmetric, it must extend along v. Now,

in the case v = −∂t = −∂3, Q2(fields) = 0 implies

D3σ = D3D = F3a = 0. (1.4.3)

Also ξ, ξ̄ must be eigenspinors of γ3

γ3ξ = +ξ, γ3ξ̄ = −ξ̄, (1.4.4)

which follow from the identities:

vaγaξ = −ξ, vaγaξ̄ = +ξ̄. (1.4.5)

Indeed, the Killing spinors we chose (A.1.5) satisfy the above equations. The SUSY transfor-

mations Q of Am, σ,D are trivial as the classical configuration of gaugino λ, λ̄ is zero. Then,

non-trivial equations are as follows:

0 = Qλ =
1

2
γabξFab − ξD − i /Dσ · ξ,

0 = Qλ̄ =
1

2
γabξ̄Fab + ξ̄D + i /Dσ · ξ̄,

(1.4.6)

which are rewritten in the following form

0 =

(
iF12 −D −i(D1σ − iD2σ)

i(D1σ + iD2σ) −iF12 −D

)(
e

i
2
φ

0

)
,

0 =

(
iF12 +D i(D1σ − iD2σ)

−i(D1σ + iD2σ) −iF12 +D

)(
0

e−
i
2
φ

)
.

(1.4.7)

Therefore one obtains, in addition to (1.4.3), the following conditions.

D = iF12, D1σ = D2σ = 0. (1.4.8)

If these BPS conditions are satisfied, the SUSY (1.4.4) is preserved even after inserting the

vortex operator [21, 22, 35]. Especially, when only two of four SUSY are preserved as in the
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present case9, it is called a half-BPS. Note that this condition is compatible with the saddle

point condition, which will be described in detail later. This fact is helpful for later calculation

using localization techniques.

1.5 SUSY with boundary

Naive volume integral of Lagrangians may be divergent in the presence of a vortex line. As

in the previous section, we assume there is a single vortex line along x3-axis, and we use the

standard cylindrical coordinate (r, φ, t). The flat metric and vielbein on the R3 are expressed as

follows.

ds2 = dr2 + r2dφ2 + dt2, e1 = dr, e2 = rdφ, e3 = dt. (1.5.1)

As in [9], we regularize the volume integral by removing a tubular neighborhood of the line r ≤ ϵ
from the integration domain and adding appropriate boundary terms at r = ϵ, so that the sum

of bulk and boundary terms

S + SB =

∫
r≥ϵ

dV L+

∫
r=ϵ

dSLB
(
dV ≡ e1e2e3, dS ≡ e2e3

)
is SUSY invariant. On the boundary, all fields of the theory must be provided with some

boundary conditions. This will be discussed in Section 2.3. Here we suppose that, in addition

to Aφ|r=ϵ = β, some boundary conditions are given for all other fields.

For some of the Lagrangians, the boundary terms can be found by using the argument given

in Section 1.3.1: the F -component of a gauge-invariant chiral multiplet (Φ,Ψ, FΦ) with r = 2 is

Q-exact up to a total derivative. More explicitly, the following holds:

Q(η̄Ψ) = FΦ +Dm(iη̄γmξ̄Φ), Q(ηΨ̄) = F̄Φ +Dm(iηγmξΦ̄). (1.5.2)

As an example, LYM could be expressed as FΦ+ F̄Φ for a gauge invariant chiral field ΦYM =
1

2g2
Trλλ and its conjugate Φ̄YM = 1

2g2
Trλ̄λ̄. The exactness of LYM (1.3.28) is rewritten including

total derivatives as follows.

1

2g2
(
Q(η̄ΨYM) +Q(ηΨYM)

)
= LYM +

i

2g2
Dm

(
η̄γmξ̄ Trλλ+ ηγmξ Tr λ̄λ̄

)
(1.5.3)

The boundary term for LYM is thus given by

LYM,B =
i

2g2

(
η̄γ1ξ̄Trλλ+ ηγ1ξTrλ̄λ̄

)
. (1.5.4)

Similarly, by setting Φmat =
1
2 F̄ ϕ, Φ̄mat =

1
2 ϕ̄F one obtains Lmat as their F-components up to

total derivatives. This allows us to determine the boundary term for Lmat as follows:

Lmat,B =
1

2

(
iη̄γ1ξ̄ · F̄ ϕ+ iηγ1ξ · ϕ̄F −D1(ϕ̄ϕ)

)
. (1.5.5)

9ξ, ξ̄ satisfy Eq. (1.4.4), but ξ′, ξ̄′ do not. So ξ and ξ̄ are associated to the preserved SUSY.
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The boundary terms for LFI and LCS can be constructed using the following argument.

Generally, supersymmetric bulk Lagrangian L satisfies QL = DmVm for some Vm. If V1 is

Q-exact, the boundary term can be determined from V1 = −QLB. By applying this to LFI,
first we find

VmFI =
ζ

4π

(
ξ̄γmλ− ξγmλ̄

)
.

After some manipulations we can write V1FI in a Q-exact form:

V1FI =
ζ

4π
(ξ̄γ1λ− ξγ1λ̄)

= − ζ

4π
vm(ξ̄γmγ1λ+ ξγmγ1λ̄)

=
iζ

4π
ε1mnvm(ξ̄γnλ+ ξγnλ̄)

= − ζ

2π
Q(wnAn), wn ≡ ε1mnvm. (1.5.6)

Here we used /vξ = −ξ, /vξ̄ = ξ̄ at the second equality and v1 = 0 at the third equality. Similar

analysis can be performed also for LCS. Acting Q on LCS, one finds

VCS
m =

ik

4π
Tr

[
1

2
An(ξ̄γ

mnλ+ ξγmnλ̄)− iσ(ξ̄γmλ− ξγmλ̄)
]
.

One thus finds the following boundary terms:

LFI,B =
ζ

2π
wmAm, LCS,B =

ik

4π
Tr
[
wmAm(2iσ + vnAn)

]
. (1.5.7)

The derivation of both requires v1 = 0, which means that the Killing vector v has to lie along

the boundary in order for SUSY-preserving boundary terms to exist.
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Chapter 2

Partition functions and vortex loop

VEVs

If a theory has at least one supersymmetry realized off-shell, SUSY-invariant quantities defined

by path integration can be evaluated by the localization technique. Localization principle allows

one to reduce an infinite-dimensional SUSY path integral to a finite-dimensional integral over

the configurations called saddle points. It was first applied to 3D SUSY gauge theories on S3

in [1], then generalized to the theory with arbitrary R-charge assignment [3] and squashed S3 [5].

In the first half of this chapter we will review this technique and derive the formulae for the

partition function on ellipsoid, where we introduce a powerful prescription that was developed

in [29]. This clarifies the computation process, and one finds that the set of eigenvalues of Q2 is

the only things we need. It is a powerful method to compute not only the partition functions,

but also the vacuum expectation value (VEV) of the vortex operator defined in Section 1.4. In

the second half of this chapter, our goal is to derive the exact formulae for the VEV, and we will

see that these results depend on the vorticity β as well as the choices of boundary conditions.

2.1 Path integration with localization technique

Supersymmetric path integrals localize to Q-invariant field configurations or saddle points, so

that the sum of Gaussian path-integrals (one-loop determinants) on each saddle point gives an

exact answer. See [36]for a review of localization techniques in SUSY gauge theories. Saddle

point configurations are the solutions of QΨ = 0 for all the fermions Ψ of the theory.

First, let us consider the saddle point configurations without vortex loop operators. Taking

ΨYM, Ψ̄YM in (1.3.25),(1.3.27) as the fermion fields, the saddle point condition QΨ = 0 becomes

0 = Tr

[
1

2
(Fmn − εmnpσK

p)2 + (Dmσ)
2 + (D − σH)2 + · · ·

]
, (2.1.1)

where the ellipses represent the terms including fermion fields that are usually set to zero on

saddle points. Assuming suitable reality condition on bosonic fields, the values of the vector-
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multiplet fields at the saddle points are thus given by

Fmn = εmnpσK
p, σ(constant), D = σH. (2.1.2)

Note that a Lie(G) = g valued constant σ can be gauge-rotated to take values in a Cartan

subalgebra h. Likewise, the requirement that the Q-variation of Ψmat, Ψ̄mat in (1.3.29),(1.3.30)

vanishes gives the saddle point configurations for chiral multiplets as follows.

ϕ = F = 0, ϕ̄ = F̄ = 0. (2.1.3)

The conditions QΨ = 0 for the other fermion fields are automatically satisfied by (2.1.2), (2.1.3).

In the next section, we review an explicit computation of exact partition functions and VEVs

of the vortex loop operator introduced in previous chapter.

2.2 The partition function on ellipsoid

On an ellipsoid preserving supersymmetry ξ, ξ̄ (A.2.13), the background fields are given by

Km = 0, H =
1

f
,

V =
1

2

(
1− ℓ̃

f

)
dϕ+

1

2

(
1− ℓ

f

)
dτ.

(2.2.1)

According to the argument in Section 2.1, supersymmetric path integrals localize to the saddle

points:

Am = 0, σ(constant) ∈ h, D =
σ

f
, ϕ = F = 0. (2.2.2)

In other words, the saddle points are labeled by constant values of σ. The FI (1.3.13) and CS

(1.3.12) actions take the following classical values on these saddle points.

SFI = 2πiζℓℓ̃σ, SCS = −iπkℓℓ̃Trσ2 (2.2.3)

The YM (1.3.14) and matter (1.3.15) actions vanish on the saddle points since they are Q-

exact. The other contributions to the path integral are one-loop determinants ∆1-loop which

are Gaussian integrals of the field fluctuations around these saddle points. In the following we

present explicit calculations of that for both chiral and vectormultiplets.

2.2.1 One-loop determinants: chiral multiplet

One-loop determinants can be computed most easily by a suitable change of path-integration

variables. Let us first explain this procedure for the theory of a chiral multiplet of unit U(1)

charge, with the U(1) vectormultiplet fields fixed at a saddle point (2.2.2). The problem is

already Gaussian, but it can be simplified further by rewriting in terms of the so-called coho-

mological variables

Ψ ≡ Qϕ = ξψ, Ψ′ ≡ η̄ψ, F ′ ≡ QΨ′ = F + J ϕ ; J ≡ iη̄γmξ̄Dm . (2.2.4)
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The change of path integration variables from (ϕ, ψ, F ) to (ϕ,Ψ,Ψ′, F ′) is invertible and the

Jacobian is trivial. ϕ is Grassmann-even and its superpartner Ψ is odd, and they are both

scalars of R-charge r. Likewise, Ψ′ (odd) and its superpartner F ′ (even) are both scalars of

R-charge r − 2. We denote the Hilbert spaces of their wavefunctions as

ϕ,Ψ ∈ H, Ψ′, F ′ ∈ H′.

Physically this means that the fields ϕ and Ψ are to be mode-expanded using the same set of

basis wavefunctions of H, and similarly for Ψ′ and F ′ in H′.

The one-loop determinant ∆1-loop can be computed by path integrating over the fields

(ϕ,Ψ,Ψ′, F ′) and their conjugates with a suitable choice of localizing Lagrangian L. Any L
will do as long as it is Q-exact and its bosonic part is bounded from below. Let us take10

L = Q
(
ϕ̄ ·Q2Ψ+ Ψ̄′F ′

)
= Ψ̄ ·Q2Ψ+ ϕ̄ ·Q2Q2ϕ+ F̄ ′F ′ − Ψ̄′Q2Ψ′,

Then the Gaussian integration gives the ratio of determinants

∆1-loop =
Det(Q2)H ·Det(−Q2)H′

Det(Q2Q2)H
=

Det(Q2)H′

Det(Q2)H
. (2.2.5)

The last equality holds up to a sign factor Det(−1)H′ which we have just dropped. So ∆1-loop can

be computed from the spectrum of Q2 on H and H′. Furthermore, one can check that the map

J : H → H′ commutes with Q2, which is as expected because it is made only of Q2-invariant

background fields. The Q2-eigenmodes in H and H′ paired by J make no net contribution to

∆1-loop. Hence we only need the spectrum of Q2 on the kernel and cokernel of J . In other

words,

∆1-loop =
Det(Q2)coker(J )

Det(Q2)ker(J )
. (2.2.6)

To work out the basis wavefunctions of ker(J ) and coker(J ) = ker(J̄ ), we need the explicit

form of J and its conjugate J̄ .

J = −ie−i(φ+τ)

[
− 1

f
∂θ +

i cos θ

ℓ̃ sin θ
(∂φ − irVφ)−

i sin θ

ℓ cos θ
(∂τ − irVτ )

]
,

J̄ = +ie+i(φ+τ)

[
− 1

f
∂θ −

i cos θ

ℓ̃ sin θ
(∂φ − i(r − 2)Vφ) +

i sin θ

ℓ cos θ
(∂τ − i(r − 2)Vτ )

]
.

(2.2.7)

In fact J̄ can be expressed as J̄ = −iηγmξDm, where

ηγaξ = ei(φ+τ)(1, i cos θ,−i sin θ), η̄γaξ̄ = e−i(φ+τ)(1,−i cos θ,− sin θ). (2.2.8)

The zeromode equations JΦ = 0, J̄Φ′ = 0 can be reduced to ordinary differential equations

(ODEs) for functions of θ by assuming that Φ,Φ′ have definite φ and τ -momenta. The resulting

10One can check that Q2 and Q2 commute. Note also that there is no issue of boundary terms for this L since

Q2 and Q2 contain no θ-derivatives.

26



ODEs actually need not be solved explicitly, but the behavior of the solutions at θ = 0 and π/2

are important. They are summarized as follows.

Φ = Φ̂(θ)eimφ+inτ ∈ ker(J ) =⇒ Φ̂(θ) ∼ (sin θ)−m(cos θ)−n,

Φ′ = Φ̂′(θ)eim
′φ+in′τ ∈ ker(J̄ ) =⇒ Φ̂′(θ) ∼ (sin θ)m

′
(cos θ)n

′
, (2.2.9)

with integers m,n,m′, n′. One should require m,n ≤ 0 and m′, n′ ≥ 0 so that the zeromodes

are regular. On the ellipsoid and for scalar fields, Q2 acts as

Q2 = i£v + Gauge(vmAm+iσ) + (vmVm −H)RU(1)

= − i
ℓ̃
∂ϕ −

i

ℓ
∂τ + i

(
σ +

i

ℓ̃
Aϕ +

i

l
Aτ

)
− 1

2

(
1

ℓ̃
+

1

ℓ

)
RU(1),

(2.2.10)

where Aϕ = Aτ = 0 on the saddle point. By multiplying all the eigenvalues of (2.2.10) we obtain

∆1-loop =

∏
m′n′≥0

m′

ℓ̃
+ n′

ℓ + iσ − r−2
2

(
1
ℓ̃
+ 1

ℓ

)
∏

m,n≤0
m
ℓ̃
+ n

ℓ + iσ − r
2

(
1
ℓ̃
+ 1

ℓ

) . (2.2.11)

Now we introduce the notations,

b ≡ (ℓ/ℓ̃)
1
2 , Q ≡ b+ b−1, σ̂ ≡

√
ℓℓ̃σ. (2.2.12)

where the parameter b is referred to as the squashing parameter, and σ̂ has mass dimension zero.

Thus the formula (2.2.11) can be expressed as follows:

∆1-loop =
∏

m,n≥0

mb+ nb−1 + iσ̂ − Q
2 (r − 2)

mb+ nb−1 − iσ̂ + Q
2 r

= sb

(
i(r − 2)Q

2
− σ̂

)
,

sb(x) =
∏
m,n≥

mb+ nb−1 + ix+ Q
2

mb+ nb−1 − ix+ Q
2

.

(2.2.13)

Here sb(x) is the double sine function which satisfies the following relations.

sb(x) = s1/b(x) = sb(−x)−1,

sb(
ib

2
− x)sb(

ib

2
+ x) = 2 cosh−1(πbx),

sb(x± ib)
sb(x)

= i

(
2 sinhπb

(
x± iQ

2

))∓1

.

(2.2.14)

For more detail on this function, we refer to [37,38], [39, appendix A.2].

The above result can be easily generalized to the theory of chiral multiplet in a representation

R of the gauge group G. The one-loop determinant of a chiral multiplet with R-charge r is given

by a product over weights µ of R.

∆c
1-loop =

∏
µ

sb

(
i(1− r)Q

2
− iµ · σ̂

)
. (2.2.15)

27



2.2.2 One-loop determinants: vector multiplet

Let us next study the integration over fluctuations of vectormultiplet fields around a saddle point

(2.2.2). In what follows we denote the saddle-point value of a field Φ by ⟨Φ⟩ and its fluctuation

by δΦ ≡ Φ− ⟨Φ⟩. As in [29], we first introduce the Faddeev-Popov ghost c, antighost c̄ and an

auxiliary field B and then move to cohomological variables.

The system of physical fields and ghosts has a nilpotent BRST symmetry QB. It acts on all

the physical fields as gauge transformation with parameter c:

QBAm = Dmc, QBσ = i[ c , σ],

QBϕ = icϕ, QBϕ̄ = −iϕ̄c,
(2.2.16)

whereas the ghost fields transform as

QBc = ic2, QBc̄ = B, QBB = 0. (2.2.17)

It is also known from [40] that if we set

Qc = iδΣ, Qc̄ = 0, QB = ivm∂mc̄+
[
⟨Σ⟩ , c̄

]
, (2.2.18)

then the combined supercharge Q̂ ≡ Q+QB acts on all the fields as

Q̂2 = i£v + Gauge⟨Σ⟩ −
1

2

(1
ℓ̃
+

1

ℓ

)
RU(1) . (2.2.19)

One may use Q̂ as the localizing supercharge. We now move from (Am, σ, λ, λ̄,D ; c, c̄, B)

to cohomological variables with respect to Q̂. They are given by 3 Grassmann-even plus 3

Grassmann-odd adjoint scalars

A+ ≡ ηγmξAm − iηξσ, c,

A0 ≡ η̄γmηAm + iη̄ησ, Λ ≡ ηλ̄− ηλ̄,

A− ≡ η̄γmξ̄Am + iη̄ξ̄σ, c̄,

(2.2.20)

and their Q̂ = (Q+QB)-superpartners:

QA+ = iξλ, Q c = iδΣ,

QA0 = i(ηλ̄+ ηλ̄), QΛ = 2(D −Hσ) + T, (2.2.21)

QA− = iη̄λ̄, Q c̄ = 0,

QBA+ = ηγmξ∂mc− i[A+ , c ] QB c = ic2,

QBA0 = η̄γmη∂mc− i[A0 , c ] QBΛ = i[ c , Λ], (2.2.22)

QBA− = η̄γmξ̄∂mc− i[A− , c ] QB c̄ = B,

where

T = i(ηγmξ̄ − η̄γmξ)(F̃m −Kmσ) + i(ηγmξ̄ + η̄γmξ)Dmσ. (2.2.23)
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It is straightforward to check that the change of variables is invertible and the Jacobian is

trivial. Since we will add an appropriate localizing term to the action so that the Gaussian

approximation is exact, it is enough to study Q̂-transformation of the fields to the linear order

in the fluctuations around the saddle points. And the problem becomes essentially the same

as that of path-integral over matter fields coupled to a fixed vectormultiplet field. Under this

approximation, the cohomological variables on the ellipsoid transform under Q̂ as

Q̂δA+ ≃ iξλ+ iJ̄ c, Q̂c̄ = B,

Q̂δA− ≃ iξ̄λ̄− iJ c, Q̂c ≃ −δσ + iδA0,

Q̂δA0 ≃
i

2
(ξ̄λ− ξλ̄) + Lvc− i

[
vm⟨Am⟩, c

]
, Q̂Λ ≃ 2δ

(
D − σ

f

)
+

4i

f
δA0,

+ iJ δA+ − iJ̄ δA−

where ≃ stands for the equality up to linear order in the fluctuation. This implies the relations

among Hilbert spaces.

H(A+)
J−−−→←−−−
J̄

H(A0, c,Λ)
J−−−→←−−−
J̄

H(A−) (2.2.24)

The one-loop determinant for a vectormultiplet is thus given by

∆v
1-loop =

(
Det(Q̂2)H(c̄)⊕H(c)⊕H(Λ)

Det(Q̂2)H(A+)⊕H(A−)⊕H(A0)

) 1
2

. (2.2.25)

Since A± have R-charge ±2 and A0, c̄, c,Λ have R-charge 0, this actually equals the one-loop

determinant for an adjoint chiral multiplet with r = 2.

∆v
1-loop =

∏
α∈∆

sb(−
iQ

2
− α · σ̂)

=
∏

α∈∆+

2 sinh(πbα · σ̂) 2 sinh(πb−1α · σ̂),
(2.2.26)

where ∆ is the set of roots of G and ∆+ is the set of positive roots.

2.3 The vortex operator on ellipsoid

Let us introduce the vortex loop operator introduced in Section 1.4 and evaluate its VEV by

localization techniques.

If ℓ, ℓ̃ are incommensurable, there are only two circles on which closed loops of finite length

along v can be wrapped. One is S1
(τ) (the circle parametrized by τ) at θ = 0, and the other is

S1
(φ) at θ = π/2. we will focus on a single loop operator wrapped on S1

(τ) at θ = 0.

The vortex loop wrapped on S1
(τ) is defined by the gauge field behaving as

A ∼ βdφ. (2.3.1)
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Solving Qλ = Qλ̄ = 0, one finds that the BPS condition is satisfied by setting the auxiliary field

to be

D = iF12 −
σ

f
, (2.3.2)

where F12 = 2πβδ2(θ = 0). This requires modifications of the saddle point configuration (2.1.2)

on S1
τ . Apparently it seems that the naive localization argument based on the vanishing of each

term in the YM Lagrangian

0 = Tr

[
1

2
F 2
mn + (Dmσ)

2 + (D −Hσ)2 + · · ·
]
, (2.3.3)

does not work. This is because the values of some fields are complex at the new saddle points.

The supersymmetry preserved by (2.3.2) allows us to evaluate the VEV by applying the usual

localization techniques without worry.

Now we move on the calculation of VEV of the vortex loop. The classical action, if defined

as a naive volume integral, diverges due to the singular gauge field behavior. We thus should

regularize the actions as discussed in Section 1.5. The regularized FI and CS actions on our

saddle points are evaluated as

SFI + SFI,B = 2πiζℓℓ̃

(
σ +

iβ

ℓ̃

)
, SCS + SCS,B = −iπkℓℓ̃

(
σ +

iβ

ℓ̃

)2

. (2.3.4)

Note that the boundary at θ = ϵ is oriented in such a way that
∫
θ=ϵ dϕdτ = −4π2. Similarly to

the case without vortex loops, the regularized YM and matter kinetic actions vanish since they

are Q-exact.

From the above simple result for Scl, one may guess that just replacing σ by σ+ iβ

ℓ̃
in ∆1-loop

(2.2.15),(2.2.26) leads to the one-loop determinants in the presence of the vortex operator, but

it is not so simple. In what follows we will explain it in detail.

One-loop determinants. As in the previous subsection, let us first consider the theory of a

chiral multiplet of unit U(1) charge, with the U(1) vectormultiplet fields fixed at the saddle point,

now in the presence of the vortex loop. ∆1-loop can be easily computed by moving from (ϕ, ψ, F )

to the cohomological variables (Φ,Ψ,Ψ′, F ′), and choosing a suitable localizing Lagrangian. The

problem is thus reduced to finding the Q2-eigenmodes in the spaces kerJ and cokerJ .

J = −ie−i(φ+τ)

[
− 1

f
∂θ +

i cos θ

ℓ̃ sin θ
(∂φ − iβ − irVφ)−

i sin θ

ℓ cos θ
(∂τ − irVτ )

]
,

J̄ = +ie+i(φ+τ)

[
− 1

f
∂θ −

i cos θ

ℓ̃ sin θ
(∂φ − iβ − i(r − 2)Vφ) +

i sin θ

ℓ cos θ
(∂τ − i(r − 2)Vτ )

]
. (2.3.5)

Considering the behavior of the zeromode equation JΦ = 0, J̄Φ′ = 0 at θ = 0 and π/2, we find

Φ = Φ̂(θ)eimφ+inτ ∈ ker(J ) =⇒ Φ̂(θ) ∼ (sin θ)β−m(cos θ)−n,

Φ′ = Φ̂′(θ)eim
′φ+in′τ ∈ ker(J̄ ) =⇒ Φ̂′(θ) ∼ (sin θ)m

′−β(cos θ)n
′
, (2.3.6)
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where m,n,m′, n′ are integers.

In fact, in the presence of a vortex loop with non-integer β, not only the zeromodes (2.3.6)

but all the eigenfunctions of J̄ J or J J̄ , which are the natural basis wavefunctions of H or H′,

behave as fractional power of θ near θ = 0 [29]. In this case, the simplest boundary condition

requiring the wavefunctions of both H and H′ to vanish at θ = 0 is inconsistent for the following

reason. In order for the Q-transformation to be well-defined, the Hilbert spaces H, H′ need to

satisfy

JH ⊂ H′, J̄ H′ ⊂ H . (2.3.7)

Also, the operators J , J̄ contain θ-derivatives which generically lower the power of θ by 1.

Suppose a wavefunction Φ ∈ H vanishes as θγ (0 < γ < 1) near θ = 0. Then JΦ, if nonzero,
would have to be in H′ and diverge as θ−(1−γ) at θ = 0. Similar argument holds with the role

of H and H′ exchanged.

As was proposed in [29] for a similar problem in two dimensions, there are two consistent

boundary conditions for chiral multiplet fields at θ = 0.

BC1. Φ ∈ H is finite. Φ′ ∈ H′ may diverge mildly but J̄Φ′ is finite.

BC2. Φ′ ∈ H′ is finite. Φ ∈ H may diverge mildly but JΦ is finite.

The mild divergence here means the behavior θ−γ (0 < γ < 1), which is not forbidden by

the normalizability of wavefunctions. Note that “is finite” can be replaced by “vanishes” for

non-integer β.

Let us compute ∆1-loop for the chiral multiplet in the presence of a vortex loop. First, under

the boundary condition BC1, the physical zeromodes of J , J̄ are those in (2.3.6) with

β −m ≥ 0 , −n ≥ 0 ; m′ − β > −1 , n′ ≥ 0 .

The first and the third inequalities are equivalent to m ≤ ⌊β⌋ and m′ ≥ ⌊β⌋. These zeromodes

all have definite Q2-eigenvalues which are now β-dependent. By multiplying all of them one

obtains the one-loop determinant of a chiral multiplet on a vortex background:

BC1 =⇒ ∆1-loop =

∏
m′≥⌊β⌋, n′≥0

m−β′

ℓ̃
+ n′

ℓ + iσ − r−2
2

(
1
ℓ̃
+ 1

ℓ

)
∏

m≤⌊β⌋, n≤0
m−β

ℓ̃
+ n

ℓ + iσ − r
2

(
1
ℓ̃
+ 1

ℓ

)
= sb

( i(1− r)Q
2

− σ̂ − ibβ + ib⌊β⌋
)
.

(2.3.8)

The computation is similar for the boundary condition BC2. In this case, the integers m,m′ in

(2.2.9) are bounded as β −m > −1 and m′ − β ≥ 0, or equivalently m ≤ ⌈β⌉ and m′ ≥ ⌈β⌉.

BC2 =⇒ ∆1-loop =

∏
m′≥⌈β⌉, n′≥0

m−β′

ℓ̃
+ n′

ℓ + iσ − r−2
2

(
1
ℓ̃
+ 1

ℓ

)
∏

m≤⌈β⌉, n≤0
m−β

ℓ̃
+ n

ℓ + iσ − r
2

(
1
ℓ̃
+ 1

ℓ

)
= sb

( i(1− r)Q
2

− σ̂ − ibβ + ib⌈β⌉
)
.

(2.3.9)
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Note that ∆1-loop is a periodic function of β for both boundary conditions. This is a consequence

of large gauge invariance.

The above result can be easily generalized to the theory of chiral multiplet in a representation

R of the gauge group G. The one-loop determinant is then given by a product over weights µ

of R.

∆c
1-loop(β) =

∏
µ

sb

( i(1− r)Q
2

− µ·(σ̂ + ib · β) + ib[µ·β]
)
. (2.3.10)

Here [ · · · ] is the floor or ceiling functions depending on the choice of boundary condition.

Now let us move on to vectormultiplet. We already know that, as far as the one-loop

determinant is concerned, a vectormultiplet is equivalent to an adjoint chiral multiplet with

R-charge r = 2. The remaining question is which boundary condition should be chosen for that

chiral multiplet, BC1 or BC2.

In the presence of a vortex loop at θ = 0, the Cartan part of A+ = ηγmξAm and A− =

η̄γmξ̄Am:

ηγmξAm = ei(φ+τ)

(
1

f
Aθ +

i cos θ

ℓ̃ sin θ
Aφ −

i sin θ

ℓ cos θ
Aτ

)
∼ ei(φ+τ)

ℓ̃

(
Aθ + iβθ−1

)
,

η̄γmξ̄Am, = e−i(φ+τ)

(
1

f
Aθ −

i cos θ

ℓ̃ sin θ
Aφ +

i sin θ

ℓ cos θ
Aτ

)
∼ e−i(φ+τ)

ℓ̃

(
Aθ − iβθ−1

)
,

(2.3.11)

diverge as θ−1 but A0 = η̄γmηAm is finite. It is therefore natural to allow mild divergence for

A± but require A0 to be finite at θ = 0. Note that A± are the lowest components of the adjoint

chiral multiplet with r = 2. In addition, the relation (2.2.24) says that c,Λ and c̄ are finite.

We thus conclude that the one-loop determinant of a vectormultiplet is equivalent to an adjoint

chiral multiplet with R-charge r = 2 obeying BC2.

∆v
1-loop =

∏
α∈∆

sb

(
− iQ

2
− α·(σ̂ + ibβ) + ib⌊α·β⌋

)
(2.3.12)

2.4 Partition function and vortex loop VEVs

Now we are ready to present exact formulae for the supersymmetric observables of our interest

on an ellipsoid. First, the partition function can be expressed as [5]

ZS3
b

=
1

|W|

∫
drσ̂ e−S ·∆v

1-loop ·∆c
1-loop, (2.4.1)

where r = rk(G) and W is the Weyl group of G. S is the sum of the classical FI and CS actions

evaluated at saddle points,

SFI = 2πiζ̂σ̂, SCS = −iπkTr
(
σ̂2
)
, (2.4.2)
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where ζ̂ ≡
√
ℓℓ̃ ζ is the dimensionless FI coupling. The one-loop determinants ∆c,v

1-loop in the

absence of vortex loop take the form (2.3.10), (2.3.12).

The expectation value of a vortex loop can be expressed in a similar way,

⟨Vβ⟩ =
1

|WK |

∫
drσ̂e−S−SB ·∆v

1-loop(β) ·∆c1
1-loop(β) ·∆c2

1-loop(β), (2.4.3)

whereWK is the Weyl group of K (the centralizer of β) or equivalently the subgroup ofW which

leaves β invariant. We also separate the one-loop determinant of chiral multiplets according to

the type of boundary conditions. We notice that the classical actions (2.3.4) remain the same as

(2.4.2) if one redefines σ̂+ ibβ as σ̂. Under the same redefinition of σ̂, the one-loop determinants

for vector and chiral multiplets become

∆v
1-loop(β) =

∏
α∈∆

sb

(
− iQ

2
− α·σ̂ + ib⌈α·β⌉

)
,

∆c1
1-loop(β) =

∏
µ

sb

( i(1− r)Q
2

− µ·σ̂ + ib⌊µ·β⌋
)
,

∆c2
1-loop(β) =

∏
µ

sb

( i(1− r)Q
2

− µ·σ̂ + ib⌈µ·β⌉
)
.

(2.4.4)

Here we used the property of the double sine function (2.2.14). The one-loop determinants

(2.4.4) essentially differ from those at β = 0 only by a product of sinh functions. Thus the

expectation value of a vortex loop can be expressed as

⟨Vβ⟩ =
1

|W|

∫
drσ̂ e−S ·∆v

1-loop ·∆c
1-loop · Vβ(σ̂), (2.4.5)

where S and ∆v,c
1-loop are the same as those for the partition function (2.4.1), and Vβ(σ̂) is the

function which encodes the effects of insertion of a vortex loop.

Vβ(σ̂) =
|W|
|WK |

· V v
β (σ̂) · V c1

β (σ̂) · V c2
β (σ̂)

=
|W|
|WK |

·
∆v

1-loop(β)

∆v
1-loop(0)

·
∆c1

1-loop(β)

∆c1
1-loop(0)

·
∆c2

1-loop(β)

∆c2
1-loop(0)

. (2.4.6)

Note that, since we have redefined σ̂, the contour of integration is now σ̂ ∈ h + ibβ. In the

following we will assume that it can be brought back to h without problem. This is the case

for pure YM-CS theories since ∆v
1-loop(β) has no poles. For theories with chiral multiplets this

would lead to constraints on their R-charges r, representation R as well as β which we will not

go into details.

Using Weyl group, generic β can be brought into a Weyl chamber so that α·β > 0 for all

positive roots α. For non-generic β one has α·β ≥ 0 for all positive roots α but α·β = 0 for

some α, corresponding to the enhanced unbroken symmetry K. In what follows we make further

simplifying assumption that β is small:

−1 < α·β < 1 for all roots α, −1 < µ·β < 1 for all weights µ. (2.4.7)
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Then Vβ(σ̂) is the product of the following functions.

V v
β (σ̂) =

∏
α·β>0

(
2 sinhπbα·σ̂

)−1
,

V c1
β (σ̂) =

∏
µ·β<0

2 sinhπb
(
µ·σ̂ +

irQ

2

)
V c2
β (σ̂) =

∏
µ·β>0

(
2 sinhπb

(
µ·σ̂ − i(2− r)Q

2

))−1
. (2.4.8)

Here we neglected all the signs and powers of i’s which can be absorbed into redefinition of the

loop operator.

In the following sections we test the above formulae against some well-known facts. In fact,

we will find that all these formulae need to be corrected.
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Chapter 3

Pure Chern-Simons theories

The (bosonic) CS theory is a topological field theory which provides a physical description of a

wide class of topological invariants associated to knots or links in 3-manifolds or the manifolds

themselves. The theory was exactly solved in [41] by using non-perturbative methods and its

relation to 2D conformal field theory with G symmetry.

N = 2 pure CS theories are essentially the same as the bosonic CS theories, because all

the vectormultiplet fields except for the gauge field Am are auxiliary fields. Some of the known

formulae for observables in the bosonic CS theory can be reproduced using the results of the

previous section. For example, the ellipsoid partition function of N = 2 CS theories is given by

the following integral

Z =
1

|W|

∫
drσ̂e−SCS ·∆v

1-loop

=
1

|W|

∫
drσ̂eiπkTr(σ̂

2)
∏

α∈∆+

2 sinh(πbα·σ̂) · 2 sinh(πb−1α·σ̂). (3.0.1)

The result of [41] for the sphere partition function can be reproduced up to overall coefficients by

setting b = 1 and performing explicit σ̂-integration with the help of Weyl’s denominator formula∏
α∈∆+

2 sinh(πα·σ̂) =
∑
w∈W

ϵ(w)e2πw(ρ)·σ̂, (3.0.2)

where ρ ≡ 1
2

∑
α∈∆+ α is the Weyl vector and ϵ(w) = ±1 is the parity of w ∈ W. Likewise,

the expectation value of an unknot can be reproduced as that of a BPS Wilson loop in N = 2

theory,

WΛ(C) ≡ TrΛPexp i

∮
C
(Amv

m + iσ)adt , (3.0.3)

where a is an arbitrary real constant and C is an integral curve of d
dtx

m = avm(x). As an

example, take C = S1
(τ) oriented in the increasing direction of τ (which is opposite to the

direction of vm). The Wilson loop expectation value is then given by an integral of the form

(3.0.1) with an additional insertion of

Wλ(σ̂) = TrΛe
2πσ̂ =

∑
w∈W ϵ(w)e2πw(ρ+λ)·σ̂∏

α∈∆+ 2 sinhπα·σ̂ . (3.0.4)
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Here λ is the highest weight of the representation Λ. Also, hereafter we will use a new dimen-

sionless field σ̂

σ̂ = bσ̂ = ℓσ, (3.0.5)

which is more suitable than σ̂ for the discussion of circular vortex loops of radius ℓ.

An important remark is in order. Many exact formulae for observables in bosonic CS theory

depends on the CS coupling through the combination k + h∨, where h∨ is the dual Coxeter

number of G. This can be understood as a perturbative correction at one-loop. But such shift

of k does not occur in N = 2 CS theories due to the presence of auxiliary fields [42]. Later we

will encounter a similar difference between bosonic and N = 2 theories concerning the shift of

the label λ of Wilson loops [17].

3.1 Equivalence of Wilson and vortex loops

An interesting fact known in bosonic CS theories is that vortex loops are equivalent to Wilson

loops in the representation with the highest weight λ = kβ/2. We will first review how the equiv-

alence works in bosonic CS theories, and then attempt to reproduce it in N = 2 supersymmetric

setting.

3.1.1 Quantization of (co)adjoint orbits

It is known that, for every irreducible representation Λ of a compact group G, there is a sym-

plectic manifold (M,ω) which gives Λ as the Hilbert space of its geometric quantization. Using

this, one can express a Wilson loop for arbitrary G and Λ by a suitable quantum mechanics

on the loop interacting with the bulk gauge field. We summarize the basic idea here by going

through one simple example. For more details of geometric quantization, see [43,44].

Let us take G = SU(2) and Λ = spin-s representation. The symplectic manifold for this

case is M = S2 and the symplectic form ω = ℏs sin θdθdφ, where θ, φ are the usual polar

coordinates. We will keep the ℏ-dependence of various formulae for the next few paragraphs.

The Hamiltonian functions (moment maps) and corresponding vector fields generating SU(2)

symmetry are given by

P 1 = −ℏs sin θ cosφ X(P 1) = − sinφ
∂

∂θ
− cot θ cosφ

∂

∂φ
,

P 2 = −ℏs sin θ sinφ, X(P 2) = +cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ
,

P 3 = −ℏs cos θ, X(P 3) =
∂

∂φ
.

(3.1.1)

They are related to each other by dP a + ıX(Pa)ω = 0. The Poisson bracket on this M is defined

by { f, g} ≡ (ω−1)mn ∂mf ∂ng. It satisfies

{φ, θ} = 1

ℏs sin θ
, {P a, P b} = εabcP c.
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In geometric quantization, Hilbert space is constructed in two steps. The first step, called

prequantization, defines a map from functions f, g, · · · on M to operators f̂ , ĝ, · · · acting on

certain Hilbert space H of wave functions by the formula

f̂ ≡ −iℏX(f)− ıX(f)ϑ+ f. (3.1.2)

Here ϑ is a one-form satisfying dϑ = ω, which is necessary in order that {f1, f2} = f3 lead to

[f̂1, f̂2] = iℏf̂311. But such a ϑ exists in general only locally. This makes the wave functions

not ordinary functions on M but sections of a line bundle B, called prequantum bundle, with

connection ∇ = d− iℏ−1ϑ = dxm∇m. f̂ is rewritten in term of the covariant derivative ∇m as

f̂ = −iℏX(f)m∇m + f. (3.1.3)

The symplectic form ω is then subject to the quantization condition

c1(B) =
[ ω

2πℏ

]
∈ H2(M,Z) .

In the present case it gives
∫
S2

ω
2πℏ = 2s ∈ Z.

The second step is to choose an integrable Lagrangian subbundle P of TMC called polar-

ization and require the quantum wave functions to be covariantly constant along P̄ . This is

the generalization of the familiar fact that wave functions depend only on half of the phase

space coordinates, and the complexification is to accommodate generalizations of coherent state

quantization of harmonic oscillator. Various choices of P are possible for a given (M,ω), but

for a Kähler manifold M a particularly convenient one is in which the quantum wave functions

depend only on holomorphic coordinates. For the present example, M = S2 can be covered by

two coordinate patches z = tan θ
2e

iφ and w = cot θ
2e

−iφ = z−1. In the gauge

ϑ[z] = −2iℏs
z̄ dz

1 + zz̄
, ϑ[w] = −2iℏs

w̄ dw

1 + ww̄
,

quantum wave functions Ψ are holomorphic functions in the respective coordinate patches.

Moreover, Ψ[z] and Ψ[w] are related by Ψ[w] = z−2sΨ[z], so they are both polynomials of degree

≤ 2s. Quantum Hilbert space thus becomes (2s + 1)-dimensional as required for the spin-s

representation.

The above simple problem can also be studied using path integral formalism [45]. The

appropriate Lagrangian for the quantum mechanics of θ and φ is (hereafter we are back in ℏ = 1

units)

L = −s cos θφ̇+ γφ̇ , (3.1.4)

where γ is a constant satisfying the quantization condition s± γ ∈ Z.
Note that the first term in (3.1.4) gives the correct Poisson bracket of θ and φ in the same

way that {q, p} = 1 follows from L = pq̇. In other words, one has

{φ, πφ} = 1, πφ ≡
∂L

∂φ̇
, (3.1.5)

11In Appendix B.1 we demonstrate this fact in detail.
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and one can go to the quantum theory by replacing the above by the usual commutation relation

[φ̂, π̂φ] = i (in ℏ = 1 units). In addition, the commutation relation of angular momenta [Ĵa, Ĵb] =

iεabcĴc is reproduced by setting Ja:

J1 = s sin θ cosφ, J2 = s sin θ sinφ, J3 = s cos θ, (3.1.6)

which satisfy {Ja, Jb} = εabcJc as desired.

The second term in (3.1.4) and quantization condition for γ are necessary for exp(i
∫
dtL)

to be a continuous functional of the path {θ(t), φ(t)}. It can be understood by thinking of

continuous deformations of a path such that its winding number around the points θ = 0 or π

jumps.

For γ = −s the above L and P a can be expressed as

L = 2iTr(λg−1ġ), P a = Tr(λg−1σag), (3.1.7)

where σa are Pauli’s matrices and λ, g are the following 2× 2 matrices.

λ =
s

2
σ3, g = exp

(
− iφ

2
σ3
)
exp

(
− iθ

2
σ2
)

=

(
sin θ

2 e−iφ cos θ
2

−eiφ cos θ
2 sin θ

2

)
. (3.1.8)

Using these quantities, one can express the Wilson loop as a path integral of a quantum me-

chanical system coupled to the 3D gauge field.

Wλ(C) = TrΛPexp

(
i

∮
C
dxmAa

m T
a

)
=

∫
Dg exp

∫
dtTr

(
−2λg−1(ġ − iẋmAmg)

)
. (3.1.9)

The S2 in the above discussion is the simplest example of adjoint orbit12. The adjoint orbit

of a Lie algebra element λ ∈ g = Lie(G) is defined by

AdG(λ) ≡ {gλg−1 | g ∈ G}. (3.1.10)

The irreducible representation of a Lie group with highest weight λ can be obtained from geo-

metric quantization of the adjoint orbit AdG(λ), where the weight λ ∈ h∗ and the Lie algebra

element λ ∈ h are identified via

λ·σ = 2Tr(λσ) .
(
∀σ ∈ h

)
(3.1.11)

The formula (3.1.9) works for arbitrary gauge groups and representations. General properties

of adjoint orbits will be discussed in more detail later.

12Throughout this paper we work with the natural identification of adjoint and coadjoint orbits.
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3.1.2 Boundary terms in CS theories revisited

In Chapter 1 we determined the boundary term for the CS action (1.5.7) from SUSY invariance.

We are now in a position to argue this was not enough, and explain what needs to be added. Our

argument is based on [16,46] which carefully studied the canonical quantization of CS theories.

For simplicity, let us first consider the theory on R3 with a BPS vortex line satisfying (1.4.1),

(1.4.4) lying along the x3-axis. So M is an R3 with the tubular neighborhood of the vortex line

removed. As is the previous chapter, we use t for the coordinate along the vortex line and the

polar coordinate r, φ for the transverse two dimensions, so that ∂M is the cylinder at r = ϵ

parameterized by φ, t. Our formula (1.5.7) for the boundary term for N = 2 CS theory becomes

in this case

SCS,B = − ik
4π

∫
∂M

dφdtTr
[
Aφ(At − 2iσ)

]
. (3.1.12)

Let us examine if the variational problem is well-defined under this choice of boundary term.

Recall that the variation of the bosonic CS action gives

δSCS = δ

{
ik

4π

∫
M

Tr
(
AdA− 2i

3
A3
)}

=
ik

2π

∫
M

Tr
(
δA ∧ F

)
+
ik

4π

∫
∂M

Tr
(
δA ∧A

)
. (3.1.13)

The first term in the RHS vanishes due to the equation of motion F = 0. The second term can

be rewritten as
ik

4π

∫
∂M

dφdtTr
(
δAφAt −AφδAt

)
.

The variational problem becomes well-defined by requiring that one of the two gauge field

components Aφ, At vanish on ∂M . Alternatively, one can specify nonzero boundary value for

At by adding a boundary term

SCS,B = − ik

4π

∫
∂M

dφdtTr
(
AφAt

)
, (3.1.14)

which is in fact a part of (3.1.12). Somewhat confusingly, the boundary term for specifying Aφ

is different from this SCS,B by minus sign. One can indeed check δ(SCS + SCS,B) vanishes if

F = 0 holds in the bulk and δAt = 0 on the boundary.

δ(SCS + SCS,B) =
ik

2π

∫
M

Tr(δA ∧ F )− ik

2π

∫
∂M

dφdτ Tr(AφδAt) (3.1.15)

Also, the addition of (3.1.14) has an effect of changing the bulk Lagrangian

LCS = − ik
4π

Tr
(
AφȦt −AtȦφ + · · ·

)
−→ L′CS = − ik

4π
Tr
(
2AφȦt + · · ·

)
,

where the dots above At, Aφ stand for r-derivatives. Therefore, if the theory is radially quantized

with the Lagrangian L′CS, At plays the role of canonical coordinate and Aφ the momentum. The

wave functions describing states on equal-r surfaces are functionals of At. This is in accord with

the fact that one can set the value of At on the boundary at will.
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Suppose that, instead of vortex singularity, a quantum mechanics with G symmetry is intro-

duced along the x3-axis. Let SQM be the action describing the quantum mechanics interacting

with the G-gauge field At in the bulk R3. Then one can define a 1D-3D coupled system by the

path integral of e−SCS−SCS,B−SQM with respect to the quantum mechanical variables and the 3D

gauge field. The boundary term which is appropriate for this construction is again (3.1.14).

Now that we have already chosen (3.1.14) as the boundary term, what can we do to impose

the boundary condition on Aφ? The answer is simply to set

SQM = −ik
∫

dtTr
(
βAt

)
. (3.1.16)

Then the variation of the whole action

δ
(
SCS + SCS,B + SQM

)
=

ik

2π

∫
M

Tr
(
δA ∧ F

)
− ik

2π

∫
∂M

dφdtTr
(
AφδAt

)
− ik

∫
dtTr

(
βδAt

)
gives Aφ

∣∣
∂M

= β as an equation of motion. Furthermore, according to [16] one should average the

boundary condition over the orbit of β, namely to modify the boundary condition as Aφ

∣∣
∂M

=

gβg−1 for a t-dependent element g ∈ G and integrate over g(t). This can be done by modifying

SQM as follows:

SQM[g] = k

∫
dtTr

(
βg−1

( d

dt
g − iAtg

))
. (3.1.17)

Here the kinetic term for g(t) has been added to make SQM gauge-invariant. We thus arrived

at a description of vortex loops in terms of a quantum mechanics of g(t) coupled to 3D gauge

field. Moreover, the quantum mechanics is the same as the one for the Wilson loops (3.1.9) if

their parameters λ, β are related as

λ =
kβ

2
. (3.1.18)

So, in bosonic CS theory with coupling k, a vortex loop with vorticity β is equivalent to a

Wilson loop for the representation with the highest weight λ = kβ/2. Note that this leads to a

quantization of β in CS theories.

Let us come back to the N = 2 CS theories on an ellipsoid with a BPS vortex loop along

S1
(τ) at θ = 0. The supersymmetric boundary term is (1.5.7) instead of (3.1.12). The role of

At, Aφ in the previous discussion is now played by

−vmAm =
1

ℓ̃
Aφ +

1

ℓ
Aτ , ℓℓ̃ sin θ cos θ · wmAm = ℓ cos2 θAφ − ℓ̃ sin2 θAτ .

where wm is defined in (1.5.6). To describe a vortex loop with vorticity β, one needs to introduce

SQM = k

∫
dτTr

[
βℓ(ivmAm − σ)

]
, (3.1.19)

or the averaged version

SQM[g] = k

∫
dτTr

[
βg−1 d

dτ
g + βg−1ℓ(ivmAm − σ)g

]
. (3.1.20)

Note that we included σ in these formulae to make SQM supersymmetric.
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We believe that both of the above boundary terms lead to consistent descriptions of vortex

loops. The boundary term SQM (3.1.19) sets the boundary condition Aφ = β and leads to the

definition of a vortex loop by a singular behavior of the gauge field. On the other hand, the

averaged version SQM[g] describes a vortex loop in terms of a quantum mechanics coupled to the

bulk gauge field. In the latter description of vortex loops, one usually does not assume singular

behavior for the gauge field before integrating out the quantum mechanical degrees of freedom.

These may sound somewhat empirical, but we would like to show in the following that the above

two definitions indeed lead to the same result for the expectation value of a vortex loop.

3.1.3 Path integral over fields with singularity

Here we compute the expectation value of a BPS vortex loop on an ellipsoid using the boundary

term without averaging, i.e. SQM (3.1.19). Its value on the saddle point (2.2.2) and the boundary

condition (2.3.1) is

SQM = −k
∫

dτ Tr
[
βℓ
(
σ +

iβ

ℓ

)]
= −2πkTr(βσ̂) = −πkβ·σ̂.

Note that we shifted σ as explained after (2.4.5) and then used (3.1.11). This corrects our

previous formula for Vβ(σ̂) (2.4.6) and V
v
β (σ̂) (2.4.8) as follows:

Vβ(σ̂) =
|W|
|WK |

V v
β (σ̂), V v

β (σ̂) =
eπkβ·σ̂∏

α·β>0 2 sinhπα·σ̂
. (3.1.21)

Recall that β was gauge-rotated so that α·β ≥ 0 for all the positive roots. Those which are

orthogonal to β, if any, are the positive roots of the subgroup K ⊂ G left unbroken by the vortex

loop.

We would like to compare this with the function Wλ(σ̂) (3.0.4) for a Wilson loop in the

representation Λ. We decompose the Weyl vector as ρ = ρK + ρ̃, where

ρK =
1

2

∑
α∈∆+

K

α, ρ̃ =
1

2

∑
α∈Π+

α .

(
∆+

K ≡ {α ∈ ∆+ |α·λ = 0}

Π+ ≡ {α ∈ ∆+ |α·λ > 0}

)
(3.1.22)

Then

Wλ(σ̂) =

∑
w∈W/WK

∑
w′∈WK

ϵ(w)ϵ(w′)e2πw
′(ρ+λ)·w(σ̂)∏

α∈∆+ 2 sinhπα·σ̂

=
∑

w∈W/WK

∑
w′∈WK

ϵ(w′)e2π(w
′(ρK)+ρ̃+λ)·w(σ̂)∏

α∈∆+ 2 sinhπα·w(σ̂)

=
∑

w∈W/WK

e2π(ρ̃+λ)·w(σ̂)

∏
α∈∆+

K
2 sinhπα·w(σ̂)∏

α∈∆+ 2 sinhπα·w(σ̂)

=
∑

w∈W/WK

e2π(ρ̃+λ)·w(σ̂)∏
α∈Π+ 2 sinhπα·w(σ̂) , (3.1.23)
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where WK was defined at (2.4.3).

The expectation values of a Wilson loop in a representation with highest weight λ and a

vortex loop with vorticity β are given respectively by integrals ofWλ(σ̂) and Vβ(σ̂) over h with a

measure (2.4.5). Inside such an integral, the summation over the images of W/WK is the same

as the multiplication by |W|/|WK |. So the above result implies an equivalence between Wilson

and vortex loops

Vβ(σ̂) ≃Wλ(σ̂) for λ+ ρ̃ =
kβ

2
. (3.1.24)

Note that there is a correction to the rule of correspondence compared to that for bosonic theory

(3.1.18). This looks problematic because the trivial Wilson loop (λ = 0) does not correspond to

the trivial vortex loop (β = 0).

3.2 1D-3D coupled system

Next we study the description of a vortex loop using the averaged version (3.1.20) of the boundary

term. The quantization of (3.1.20) itself would give the representation with the highest weight

λ = kβ/2, because it is identical to the action (3.1.9) for the adjoint orbit quantization. We

would like to do something slightly different here. As the bulk CS theory was promoted to a

3D N = 2 theory, one can also promote the quantum mechanics on the vortex worldline to a

1D N = 2 SUSY theory. The interaction between 1D and 3D fields can be chosen in such a

way that the whole system is invariant under a SUSY that acts on both 1D and 3D fields at the

same time. The path integral of the combined system can be performed exactly.

3.2.1 Adjoint orbits

We begin by summarizing basic properties of general adjoint orbits13. The adjoint orbit M =

AdG(λ) for λ ∈ g is defined by

AdG(λ) ≡ {gλg−1|g ∈ G}. (3.2.1)

M admits a transitive action, which means any two points on M are related by an element of

G. For g1, g2 ∈ G, one point g1λg
−1
1 ∈M maps to the other point g2λg

−1
2 ∈M by the action of

element g2g
−1
1 ∈ G.

g−1
2 g1 : g1λg

−1
1 7−→ g2λg

−1
2 . (3.2.2)

A manifold with a transitive action of Lie group is called a homogeneous manifold, which is

identified with the coset space G/K. The group K is the stabilizer of a point. In the case

M = AdG(λ), the stabilizer of a point λ is the centralizer of λ, namely the group K is the

subgroup of G which consists of elements that commute with λ.

K = {h ∈ G|hλh−1 = λ}. (3.2.3)

13For more detailed reviews of the mathematical properties of adjoint orbits, see [47].

42



To describe mathematical properties of M , it is convenient to think of a map g(x) (x ∈
M, g ∈ G) such as the SU(2)-valued function g(θ, φ) (3.1.8). The action of a Lie group element

g0 ∈ G on M translates into a coordinate transformation xm → x′m according to the relation

g0 · g(x) = g(x′) · h(x, g0)
(
h(x, g0) ∈ K

)
, (3.2.4)

since h(x, g0) commutes with λ and therefore

(g0g(x))λ(g0g(x))
−1 = g(x′)λg(x′)−1. (3.2.5)

As an infinitesimal version14 of this, multiplication of Lie algebra generators T a ∈ g translates

into the action of vector fields Xa = Xam(x)∂m,

Xag(x) = −iT ag(x) + ig(x)Ha(x) ,
(
Ha(x) ∈ k

)
(3.2.6)

where k ⊂ g is the Lie algebra of K. The corresponding moment map function P a is determined

from dP a + ıXaω = 0, where ω is the G-invariant symplectic form on M called the Kirillov-

Kostant-Souriau(KKS) 2-form.

ω = −2iTr
[
λ(g−1dg)2

]
. (3.2.7)

From dP a = −ıXaω, we have

ıXa 2iTr
[
λdg−1dg

]
= 2iTr

[
λ(−iHag−1 + ig−1T a)dg + λdg−1(−iT ag + igHa)

]
= 2d

(
Tr
[
λg−1T ag

])
,

thus

P a = 2Tr
[
λg−1T ag

]
. (3.2.8)

One can easily check dω = 0, and the G-invariance can be shown as follows.

g0 : ω 7−→ 2iTr[λ{(g0gh−1)−1d(g0gh
−1)}2] = 2iTr[λ(hg−1dg·h−1 + hdh−1)2]

= ω

In the above computation, after expanding the squared binomial inside the trace, one finds the

(hdh−1)2 term is zero because of the fact that the 1-form hdh−1 takes values in k, the cross term

is zero, and the remaining term is exactly ω. The G-invariance of ω can also be expressed as

£Xaω = 0, which can be shown as follows.

£Xaω = dıXaω = −d2P a = 0. (3.2.9)

14Expanding (3.2.4) for an infinitesimal transformation with small parameter ϵa, one finds

g0g(x)h
−1 ⋍ (1 + iϵaT

a)g(x)(1− iϵaH
a(x))

= g(x) + iϵaT
ag(x)− iϵag(x)H

a(x) + o(ϵ2).
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Next we turn to complex structures on M . Let n be the orthogonal complement of k with

respect to the Killing form. We are interested in the cases where G/K is reductive, that is when

the decomposition g = k ⊕ n is such that [k, n] ⊂ n. Note that n is identified with the tangent

space at λ ∈ M . To define a complex structure J on M , one first needs a decomposition of nC

into two subspaces n± of definite eigenvalues of J . By transporting this decomposition of TλM
C

to all other points on M by the action of G (3.2.4) one obtains an almost complex structure on

M . It is integrable if the set of holomorphic (or antiholomorphic) vector fields on M is closed

under Lie bracket, which simply amounts to [n±, n±] ⊂ n±.

Recall that λ was chosen to be in a Cartan subalgebra h, and α·λ ≥ 0 for all the positive

roots α ∈ ∆+. This leads to a decomposition gC = kC ⊕ n+ ⊕ n−, where

kC = hC ⊕
∑

α∈∆+
K

(CEα + CE−α) , n+ =
∑
α∈Π+

CEα , n− =
∑
α∈Π+

CE−α (3.2.10)

and Π+ was defined in (3.1.22). The symplectic form (3.2.7) is of type (1, 1) under the complex

structure thus defined, so M is a Kähler manifold. Note that there are in general multiple

complex structures for a single coset space G/K. For example,

λ1 = diag(1, 1, 0, 0, 0,−1,−1), λ2 = diag(3, 3, 0, 0,−2,−2,−2)

both break G = SU(7) to K = SU(3)×SU(2)2×U(1)2 but lead to different complex structures

on G/K.

A useful fact is that G/K can be thought of as the flag manifold GC/P , where P is a parabolic

subgroup of G corresponding to the Lie algebra kC ⊕ n−. (When K equals a maximal torus of

G, P is called Borel subgroup.) This implies that any complex coordinate on N+, the Lie group

corresponding to n+, can be used as a complex coordinate on M . Moreover, under such a choice

of coordinate on M , the vector fields Xa (3.2.6) become holomorphic Killing vector fields which

preserve the Kähler metric on M .

3.2.2 N = 2 SUSY quantum mechanics on M

Let us now turn to the 1D N = 2 supersymmetric quantum mechanics with the target space

M = AdG(λ) and its quantization. As M is Kähler and we are gauging its isometry, we need

chiral and vectormultiplets.

Take a complex coordinate zI on M such that its metric and Kähler form are given in terms

of the Kähler potential K(z, z̄) as follows.

ds2 = gIJ̄(z, z̄)dz
Idz̄J̄ , ω = igIJ̄(z, z̄)dz

I∧dz̄J̄ ; gIJ̄(z, z̄) =
∂2K(z, z̄)

∂zI∂z̄J̄
. (3.2.11)

The isometry of M is generated by holomorphic Killing vectors

Xa = XaI(z)
∂

∂zI
+ X̄aJ̄(z̄)

∂

∂z̄J̄
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satisfying [Xa, Xb] = −fabcXc. To each Xa there is a corresponding moment map P a satisfying

dP a + ıXaω = 0, or in components

∂IP
a = igIJ̄ X̄

aJ̄ , ∂̄J̄P
a = −igIJ̄XaI . (3.2.12)

Using gIJ̄ = ∂I∂̄J̄K and the holomorphicity of Killing vector one can integrate these equalities

to determine P a up to constant shifts, which in turn can be fixed by requiring P a to transform

in the adjoint representation. For a suitable K, P a can be written as

P a = −iXaI∂IK = iX̄aJ̄ ∂̄J̄K . (3.2.13)

A (1D) vectormultiplet consists of a gauge field At, bosons σ,D and fermions λ, λ̄ transform-

ing as

QAt =
i

2
(ϵλ̄+ ϵ̄λ), Qλ = ϵ(−iDtσ −D),

Qσ =
1

2
(ϵλ̄+ ϵ̄λ), Qλ̄ = ϵ̄(−iDtσ +D),

QD = − i
2
Dt(ϵλ̄− ϵ̄λ) +

i

2
[σ, ϵλ̄− ϵ̄λ],

(3.2.14)

where ϵ, ϵ̄ are Grassmann-even constant SUSY parameters. All the fields are Lie algebra valued,

so one can express them using the set of generators T a as follows.

At = Aa
t T

a, σ = σaT a, etc.
(
[T a, T b] = ifabcT c

)
The complex coordinates zI on M are promoted to chiral multiplets. Each chiral multiplet

consists of a boson zI and its superpartner χI . They transform as

QzI = ϵχI, QχI = −iϵ̄
(
Dtz

I − iσaXaI
)
, Dtz

I ≡ żI +Aa
tX

aI ,

Qz̄J̄ = ϵ̄χ̄J̄ , Qχ̄J̄= −iϵ
(
Dtz̄

J̄ − iσaX̄aJ̄
)
, Dtz̄

J̄ ≡ ˙̄zJ̄ +Aa
t X̄

aJ̄ . (3.2.15)

The SUSY-invariant kinetic Lagrangian for the chiral multiplets is given by

Lkin = gIJ̄Dtz̄
J̄Dtz

I + gIJ̄ X̄
aJ̄XbIσaσb + iDaP a − gIJ̄ X̄aJ̄λaχI + gIJ̄ χ̄

J̄ λ̄aXaI

− igIJ̄ χ̄J̄Dtχ
I + gIJ̄ χ̄

J̄∂KX
aIσaχK + gIJ̄,Kχ̄

J̄XaKσaχI,

Dtχ
I ≡ χ̇I +Aa

t ∂KX
aIχK + ΓI

KLDtz
KχL. (3.2.16)

Another invariant can be constructed using the one-form ϑ = ϑIdz
I + ϑJ̄dz̄

J̄ satisfying dϑ = ω.

Ltop = igIJ̄χ
Iχ̄J̄ − iϑI

(
Dtz

I − iσaXaI
)
− iϑJ̄

(
Dtz̄

J̄ − iσaX̄aJ̄
)

= igIJ̄χ
Iχ̄J̄ − i(ϑIżI + ϑJ̄ ˙̄z

J̄)− (σa + iAa
t )P

a. (3.2.17)

What we actually need to do is to gauge the isometry of the adjoint orbitM by the 3D gauge

field and not by an independent 1D vector field. To do this in a supersymmetric manner, we
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recall the transformation rule of cohomological variables constructed from the 3D vectormultiplet

fields.

Q(umAm) =
i

2
(ηλ̄+ η̄λ), Q(η̄λ) = −iumDmσ − D̃,

Qσ =
1

2
(ηλ̄+ η̄λ), Q(ηλ̄) = −iumDmσ + D̃,

QD̃ = − i
2
umDm(ηλ̄− η̄λ) + i

2
[σ, ηλ̄− η̄λ].

(3.2.18)

Here um ≡ η̄γmη is equal to −vm on the ellipsoid and D̃ ≡ D− 1
f σ−u

mF̃m. By comparing this

with (3.2.14) one finds that the 3D fields

umAm , σ , η̄λ , ηλ̄ , D̃

transform under the 3D SUSY in the same way that the 1D vectormultiplet transforms under

1D SUSY with ϵ = ϵ̄ = 1. The 1D-3D coupling is thus obtained by identifying t with ℓτ ,

replacing the vectormultiplet fields in (3.2.16), (3.2.17) by the above 3D fields and regarding

Q(3D) +Q
(1D)
(ϵ=ϵ̄=1) as the SUSY of the total system. Recalling (3.2.8) and (3.2.7) one finds that

the bosonic part of Ltop (3.2.17) agrees precisely with the action SQM[g] (3.1.20) for the quantum

mechanics on vortex loops, and the fermions appear in Ltop as auxiliary fields.

The Lagrangians Ltop and Lkin play a role similar to that of SCS and SYM for the 3D gauge

field. First, the fermions χI, χ̄J̄ are auxiliary variables in the theory without Lkin. Second,

Ltop = QΨtop but Ψtop depends on the components of ϑ

Ψtop = ϑIχ
I + ϑJ̄χ̄

J̄ ,

which are defined only up to (Kähler) gauge transformations. As a consequence, Ltop takes

different nonzero values on different saddle points, whereas Lkin vanishes at every saddle point.

Witten index. Let us compute the Witten index, i.e. the S1 partition function of the quantum

mechanics on a vortex loop. It is a SUSY quantum mechanics with the target spaceM = AdG(λ)

coupled to 3D vectormultiplet field. The 3D fields are fixed at a saddle point (2.2.2). So we only

need to study the 1D theory defined by (3.2.15), (3.2.16) and (3.2.17) with all the vectormultiplet

fields turned off except for constant σ, which we may assume to be in h.

According to (3.2.15), the saddle point condition for our quantum mechanics is

żI − iσaXaI = 0, ˙̄zJ̄ − iσaX̄aJ̄ = 0.

In terms of the original coordinate g on M , these become

d

dt
(gλg−1)− [σ, gλg−1] = 0.

If σ and the periodicity of t take generic values, this can only be solved by requiring the two

terms on the LHS vanish independently. So, gλg−1 is a constant element of h at saddle points.

Since λ is also an element of h, gλg−1 has to be an image of λ under Weyl group.

46



Let us study the saddle point g = id (gλg−1 = λ) in detail. The neighborhood of this point

can be covered by a local complex coordinate system zα such that

g = exp i
∑
α∈Π+

(zαEα + z̄αE−α). (3.2.19)

Then the Kähler form and metric around this point are approximately given by

ω ≃ i
∑
α∈Π+

gαᾱdz
α ∧ dz̄α, gαᾱ ≡ 2λ·αTr

(
EαE−α

)
. (3.2.20)

Note the positive definiteness of the metric. The moment map and the Killing vector corre-

sponding to σ = σiHi ∈ h read

σiPi ≃ λ·σ −
∑
α∈Π+

(α·σ)zαz̄αgαᾱ, σiXi = −i
∑
α∈Π+

α·σ
(
zα

∂

∂zα
− z̄α ∂

∂z̄α

)
, (3.2.21)

where we used [Hi, Eα] = αiEα. Note that the expression for the Killing vector is exact. The

value of the action (the integral of Ltop) on this saddle point is

e−SQM = e2πℓλ·σ = e2πλ·σ̂ . (3.2.22)

The one-loop determinant ∆1-loop at this saddle point can be computed using the SUSY-exact

localizing Lagrangian Lkin, which takes the approximate form

Lkin ≃
∑
α∈Π+

gαᾱ

{
˙̄zαżα + (α·σ)2z̄αzα − iχ̄αχ̇α − i(α·σ)χ̄αχα

}
. (3.2.23)

The Gaussian integration over zα and χα can be easily performed using det
(
d
dt+ω

)
= 2 sinhπℓω

(if t ∼ t+ 2πℓ). The contribution of this saddle point finally becomes

e−SQM ·∆1-loop

∣∣∣
gλg−1=λ

=
e2πλ·σ̂∏

α∈Π+ 2 sinhπα·σ̂ . (3.2.24)

Other saddle points are all characterized by the equation gλg−1 = w(λ) for some element

w of the Weyl group. Their contribution can be computed by repeating the above steps with

the replacement λ → w(λ). But once this replacement is made, the set of positive roots also

needs to be redefined so that α·w(λ) ≥ 0 for all α ∈ ∆+
(new). So the contribution from other

saddle points are obtained from (3.2.24) by replacing λ→ w(λ) and α→ w(α), or more simply

by the replacement σ̂ → w−1(σ̂). The full partition function is thus obtained by summing over

different saddle points labeled by w ∈ W/WK . The index finally becomes

Iλ(σ̂) =

∫
D[z, χ] exp (−SQM)

=
∑

w∈W/WK

e2πλ·w(σ̂)∏
α∈Π+ 2 sinhπα·w(σ̂) . (3.2.25)
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Comparison of the results. The functions Vβ(σ̂) (3.1.21) and Iλ(σ̂) are to be integrated over

h with a W-invariant measure (2.4.5) to give the expectation value of a vortex loop defined in

two different ways. Taking account of the fact that the sum over the Weyl images is redundant

inside the integral, one finds

Vβ(σ̂) ≃ Iλ(σ̂) for λ =
kβ

2
. (3.2.26)

This gives a precise correspondence between the two definitions of a BPS vortex loop, namely

the boundary condition Aφ = β versus an N = 2 SUSY quantum mechanics with the target

M = AdG(λ).

On the other hand, the insertion of a BPS Wilson loop in the representation with the highest

weight λ is described by Trλe
2πσ̂ = Wλ(σ̂) (3.1.23). This function can be reproduced from a

non-supersymmetric quantum mechanics with the target M = AdG(λ) and the action (3.1.9).

Our computation shows that the partition functions of the bosonic and supersymmetric quantum

mechanics with the same target M = AdG(λ) are slightly different:

Iλ(σ̂) =Wλ−ρ̃(σ̂) . (3.2.27)

Similar shift of parameter was noticed and studied in some earlier works [17, 48]. This result

may look strange since the bosonic model was supersymmetrized by adding fermions as aux-

iliary fields. However, when computing Iλ we perturbed the theory further by Lkin, and as a

consequence the fermions became dynamical. In fact, the problem is similar to the evaluation of

perturbative correction to the CS coupling of SUSY YM-CS theory [42]. For the simplest case

G = SU(2) it was shown by an explicit one loop analysis that the added fermions give rise to a

shift of the spin s by −1/2 [17].

3.3 Resolution of the unwanted parameter shift

As we have seen, there is a subtle difference between the bosonic and N = 2 theories which

appears as the shift λ→ λ− ρ̃ in the formulae for observables. Here we would like to argue that

one can (and should) nevertheless relate the Wilson and vortex loops in N = 2 theory by the

same formula λ = kβ/2 as in bosonic theory. For this purpose, we need to explain the effect of

the added fermions in more detail.

It is worth noting that the partition function Iλ of the N = 2 SUSY quantum mechanics

agrees precisely with that of geometric quantization with the so-called metaplectic correction

taken into account. The importance of metaplectic correction is often skipped over, but when

applied to the system of harmonic oscillator, it gives the correct account of its zero-point energy

from the requirement of internal consistency alone. The origin of the metaplectic correction can

be understood by studying how the quantum Hilbert spaces corresponding to different polar-

izations are related to each other, and in particular how the group of canonical transformations

(the symplectic group) is represented. See for example [43] for more detail. The upshot is that,

if the quantum Hilbert spaces are constructed from the space of sections of the prequantum
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bundle B, the symplectic group will be represented only projectively. But it can be improved by

replacing B by B ⊗K1/2, where K is the canonical bundle of the target space M . Note that K

does not always have a well-defined square root, and K1/2 may not be unique even if it exists.

Let us calculate the metaplectic correction for the case M = AdG(λ). Since the correction

should preserve the property of M as a homogeneous manifold with G-symmetry, it should

at most modify the parameter λ. Take a function σiPi and the vector field σiXi in (3.2.21),

and consider the action of the corresponding operator σiP̂i on quantum wave functions in the

holomorphic polarization. Before the metaplectic correction, σiP̂i is the following differential

operator near zα = 0.

σiP̂i = − i
∑
α∈Π+

σiX
α
i

( ∂

∂zα
− iϑα

)
+ σiPi

= λ·σ −
∑
α∈Π+

(α·σ)zα ∂

∂zα
. (3.3.1)

After the metaplectic correction, wave functions transform differently under infinitesimal coor-

dinate transformations. So the definition of the operator is also modified accordingly.

σiP̂i = − i
∑
α∈Π+

[
σiX

α
i

( ∂

∂zα
− iϑα

)
+

1

2

∂(σiX
α
i )

∂zα

]
+ σiPi

= λ·σ − 1

2

∑
α∈Π+

(α·σ)−
∑
α∈Π+

(α·σ)zα ∂

∂zα
. (3.3.2)

This shows that the shift λ→ λ− ρ̃ can indeed be explained by metaplectic correction.

Another important effect of the fermions in N = 2 SUSY quantum mechanics is the global

anomaly [18]. The fact that the highest weight λ receives quantum correction implies that the

G-symmetry of the quantum mechanics may be anomalous, because λ− ρ̃ is not always a weight

of G. The anomaly arises from quantization of the fermions. Consider a theory with fermions

χ, χ̄ valued in linear spaces VF, V
∗
F and a Lagrangian of the form

L = iχ̄Dtχ+ · · · . (3.3.3)

Quantization of the fermions leads to the Hilbert space of fermionic states

HF = det−
1
2VF ⊗ ∧VF. (3.3.4)

If VF represents a symmetry, then the symmetry has an anomaly unless det
1
2VF gives a well-

defined one-dimensional representation. For N = 2 SUSY non-linear sigma model (NLSM) with

the target space M discussed in Section 3.2.2, the fermions χ take values on the pull back of

the holomorphic tangent bundle TM by the boson z. The Hilbert space of this model is thus

identified with the space of sections of the bundle

K1/2 ⊗ ∧TM ⊗B. (3.3.5)

The model has an anomaly unless this is a well-defined vector bundle. Note the similarity

of (3.3.5) with the metaplectic correction. As an example, for the case M = S2 with ω =
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s sin θdθdφ one can show by canonical quantization that the Hilbert spaces of the bosonic and

N = 2 supersymmetric NLSMs are spanned by monopole harmonics [17]. They can therefore

be decomposed into irreducible representations of SU(2):

HN=0 =
⊕

n∈Z≥0

(spin s+ n),

HN=2 =

[ ⊕
n∈Z≥0

(spin s− 1
2 + n)

]
boson

⊕
[ ⊕
n∈Z≥0

(spin s+ 1
2 + n)

]
fermion

. (3.3.6)

Note that these Hilbert spaces are for NLSMs which have a mixture of the first and second order

kinetic terms for bosons. As the second order kinetic term is turned off, only the representation

with the lowest spin remains and others are all lifted up to extremely high energy. This is

another way to see the shift s→ s− 1/2.

The global anomaly in N = 2 SUSY quantum mechanics can be canceled by turning on a

suitable Wilson line [18]. This is because the introduction of a Wilson line with charge q,

exp

(
−
∫

dtLWL

)
= exp

(
iq

∫
dtAt

)
,

has an effect to shift the charge of all the states uniformly by q. In fact, Ltop (3.2.17) can

be regarded as a Wilson line in which the pull back of ϑ plays the role of At. This can be

used to cancel the unwanted shift of λ while maintaining the relation λ = kβ/2. We define the

BPS vortex loop with vorticity β by a 1D N = 2 SUSY quantum mechanics with the target

M = AdG(λ), λ = kβ/2 and the Wilson line which precisely cancels the shift λ → λ − ρ̃. As

we will see in the next chapter, this definition turns out to be more convenient when describing

the quantum mechanics on vortex loops in terms of gauged linear sigma models.

An example: CPN−1. We close this chapter with one concrete example. Take G = SU(N)

and

λ = m

(
N − 1

N
,− 1

N
, · · · ,− 1

N

)
∈ h∗, kβ = m · diag

(N − 1

N
,− 1

N
, · · · ,− 1

N

)
∈ h. (3.3.7)

The corresponding adjoint orbit is CPN−1 with the prequantum bundle B = O(m). The quan-

tum mechanical partition function is supposed to reproduce the character for the M -th sym-

metric tensor representation of SU(N).

We start from the Euclidean action (3.1.20) for the vortex loop along S1
(τ) at θ = 0:

S = k

∫
dτTr

[
βg−1

( d

dτ
− iAτ − σ̂

)
g
]
. (3.3.8)

We assume that the values of the 3D vectormultiplet fields Aτ and σ̂ = ℓσ are constant, and

they take the following diagonal form.

Aτ = diag(A0
τ , · · · , AN−1

τ ), σ̂ = diag(σ̂0, · · · , σ̂N−1). (3.3.9)
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Let Z̄ ≡ (Z̄0, · · · , Z̄N−1)
T be the first column of g and Z ≡ (Z0, · · · , ZN−1) the first row of g−1.

The above action can be rewritten as

S = m

∫
dτ Z

( d

dτ
− iAτ − σ̂

)
Z̄, |Z|2 = 1. (3.3.10)

The field Z transforms as anti-fundamental of the SU(N). One can regard it as the homogeneous

coordinate on CPN−1. In terms of zI ≡ ZI/Z0 the above action can be further rewritten as

S =

∫
dτ
{
−i(ϑIDτz

I + ϑJ̄Dτ z̄
J̄)− σ̂aP a

}
, (3.3.11)

from which one can read off the 1-form ϑ, Killing vector Xa and the moment map P a.

ϑ =
im

2

zIdz̄Ī − dzI z̄Ī

1 + zI z̄Ī
,

XaI∂I = i
(
T a
IJz

I + T a
0J − T a

I0z
IzJ − T a

00z
J
)
∂J,

P a =
m

1 + zI z̄Ī

{
(T a)IJ̄ z

I z̄J̄ + (T a)I0z
I + (T a)0J̄ z̄

J̄ + (T a)00

}
. (3.3.12)

Here T a are N ×N matrices representing the generators of SU(N), and I, J̄ = 1, · · · , N − 1.

The supersymmetrized theory has N saddle points. One of them corresponds to Z =

(1, 0, · · · , 0), and the others are all related to it by permutations of the N components. The clas-

sical value of the action on this saddle point is S = −2πm(σ̂0+ iA0
τ ). The localizing Lagrangian

near zI = z̄Ī = 0 looks like

Lkin ≃ m
N−1∑
I=1

[{
˙̄zĪ − i(AI

τ −A0
τ )z̄

Ī
}{
żI + i(AI

τ −A0
τ )z
}
+ (σ̂I − σ̂0)2z̄ĪzI

− iχ̄Ī
{
χ̇I + i(AI

τ −A0
τ )− (σ̂I − σ̂0)χI}

]
. (3.3.13)

So the contribution to partition function from this saddle point is

e−S
N−1∏
I=1

Det
[

d
dτ + i(AI

τ −A0
τ )− (σ̂I − σ̂0)

]
Det

[(
d
dτ + i(AI

τ −A0
τ )
)2 − (σ̂I − σ̂0)2

] =
e2πmû0∏N−1

I=1 2 sinhπ(û0 − ûI)
,

where û ≡ σ̂ + iAτ . It depends holomorphically on û, which is as expected because we started

from the action (3.3.8). Summing up the contributions from all saddle points one obtains the

full partition function∫
Dge−S =

∑
w∈W/WK

e2πλ·w(û)∏
α∈Π+ 2 sinhπα·w(û) =

N−1∑
I=0

e2πmûI∏
J ̸=I 2 sinh(û

I − ûJ)
. (3.3.14)

This is not the character for the M -th symmetric tensor representation of SU(N). One way to

fix the mismatch would be to start with the orbit of λ+ ρ̃ instead of λ, where

ρ̃ =
1

2

∑
α∈Π+

α =
1

2

N−1∑
I=1

(e0 − eI) =

(
N − 1

2
,−1

2
, · · · ,−1

2

)
. (3.3.15)

In other words, replace m by m+N/2 at the beginning. Our resolution is not to shift M , but

to cancel the anomaly by turning on the Wilson line with “charge” N/2.
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Chapter 4

GLSM on vortex loops

In this chapter we develop further the description of vortex loops as 1D-3D coupled systems using

gauged linear sigma models (GLSMs). These models generally have an independent 1D gauge

symmetry in addition to the (global) G symmetry that is gauged by the 3D vectormultiplet.

We will see that the Wilson line that cancels the global anomaly for this 1D gauge symmetry

naturally resolves the problem of the unwanted shift λ→ λ− ρ̃.
We begin by reviewing 1D N = 2 supersymmetric GLSMs and an exact formula for the

Witten indices.

4.1 1D N = 2 SUSY GLSMs

A 1D N = 2 supersymmetric GLSM consists of a vectormultiplet (At, σ, λ, λ̄,D) (3.2.14) for

some gauge group G and matter chiral multiplets (ϕ, ψ) and Fermi multiplets (η, F ) in some

representations of G. The fields in chiral and Fermi multiplets transform under SUSY as

Qϕ = ϵψ, Qψ = ϵ̄(−iDtϕ+ iσϕ),

Qϕ̄ = ϵ̄ψ̄, Qψ̄ = ϵ(−iDtϕ̄− iϕ̄σ),

Qη = ϵF + ϵ̄E, QF = ϵ̄(−iDtη + iση −Ψ),

Qη̄ = ϵ̄F̄ + ϵĒ, QF̄ = ϵ(−iDtη̄ − iη̄σ − Ψ̄).

(4.1.1)

Here E is a composite field made only of chiral fields of the theory and Ψ is its superpartner.

The square of Q acts to all fields as

Q2 = −i∂t + i(σ + iAt). (4.1.2)

There are various Q-invariants which can be used for Lagrangian. First, there are kinetic

terms for the three multiplets,

Lv = Tr
[
(Dtσ)

2 − iλ̄Dtλ+ iλ̄[σ, λ] +D2
]
,

Lc = Dtϕ̄Dtϕ− iψ̄Dtψ + ϕ̄σ2ϕ− iϕ̄Dϕ− iψ̄σψ − iϕ̄λψ − iψ̄λ̄ϕ,

Lf = −iη̄Dtη + iη̄ση − F̄F + ĒE − η̄Ψ+ Ψ̄η.

(4.1.3)
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Also, supersymmetric interaction terms of chiral multiplets (ϕi, ψi) and Fermi multiplets (ηi, Fi;Ei)

can be constructed according to the formula:

Lint =
∑
i

(
JiFi + J̄iF̄i

)
+
∑
i,j

(
ψj
∂Ji
∂ϕj

ηi + ψ̄j
∂J̄i
∂ϕj

η̄i

)
, (4.1.4)

where Ji is a composite of chiral fields such that
∑

i JiEi = 0. This can be regarded as the

F-term of the Fermi multiplet with the lowest component (superpotential) W =
∑

i Jiηi. In

addition, for U(1) vectormultiplets, the Fayet-Iliopoulos term (with coupling ζ) and the Wilson

line (with charge q) are also invariant.

LFI = iζD, LWL = −q(iAt + σ). (4.1.5)

An important role of Wilson lines in 1D GLSMs is to cancel global anomaly. Sometimes

Wilson lines with fractional charges become necessary. For example, for a U(N) gauge theory

with Nf fundamental chirals, Na anti-fundamental chirals, Ñf fundamental Fermis and Ña anti-

fundamental Fermis, the diagonal U(1) subgroup is anomaly free if the Wilson line with the

following U(1) charge q is added.

q ∈ −1

2
(Nf −Na + Ñf − Ña) + Z. (4.1.6)

4.1.1 Witten index.

A powerful formula for the Witten index of 1D N = 2 GLSMs was obtained in [18]. The deriva-

tion uses the localization of path integral that follows from the Q-exactness of the Lagrangians

(4.1.3). The saddle point configurations are can be read from

0 = Tr
[
(Dtσ)

2 +D2 + · · ·
]
, (4.1.7)

which implies

Dtσ = D = 0. (4.1.8)

At these saddle points, σ and At are mutually commuting constants and all other fields must

vanish. One can gauge-rotate σ into a Cartan subalgebra h ⊂ Lie(G), and At then takes values in

the corresponding maximal torus. The pair (σ,At) is further subject to the identification by the

action of Weyl groupW. The space of saddle points thus becomes a real 2r-dimensional orbifold,

where r = rk(G). It is useful to define a complex coordinate u ≡ σ + iAt on this space. At

this stage, one may also deform the theory by gauging its global symmetry GF by a background

vectormultiplet û ≡ σ̂ + iÂt satisfying the saddle point condition. Also, for convenience we

rescale all the fields and the coordinate t so that the time circle has unit radius.

The index can be obtained by evaluating the one-loop determinant ∆(u, û), multiplying by

the Wilson line e−SWL and then integrating over u. Due to the fact that u is Q-closed but ū

is not, the index I(û) is expressed as a multiple contour integral of a holomorphic function.

Similarly to the discussion in Section 2.2, the one-loop determinant can be expressed in terms
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of the determinant of Q2. For a quantum mechanics on S1, the determinant of Q2 is given by

products of sinh functions.

DetQ2 = Det(−i∂t + iu) =
∏
w

(−i∂t + iw(u)) =
∏
w

2i sinhπw(u). (4.1.9)

Thus, the index I(û) (up to an overall ± sign) is given by

I(û) =
1

ir|W|

∫
dru e−SWL(u)∆(u, û),

∆(u, û) =

∏
α

2 sinhπ(α·u)
∏
i

2 sinhπ
(
νi·u+ ν̂i·û

)
∏
j

2 sinhπ
(
µj ·u+ µ̂j ·û

) . (4.1.10)

Here (µj , µ̂j) runs over the weights of the representation of G×GF furnished by chiral multiplets,

and similarly (νi, ν̂i) is for the Fermi multiplets.

The contour integral can be performed using the operation called the Jeffrey-Kirwan (JK)

residue, which means that one only has to collect residue of the poles meeting certain require-

ment [49, 50]. To simplify the discussion, let us assume that all the poles of ∆ are transverse

intersection of r singular hyperplanes. Each singular hyperplane is of the form

µj ·u+ µ̂j ·û = ik
(
k ∈ Z

)
,

and is labeled by a charge vector µj ∈ h∗. Now, the evaluation of JK-residue integral begins by

choosing an arbitrary reference charge vector η ∈ h∗. Then a pole contributes to the integral

if η is contained in the cone spanned by the r charge vectors labeling the pole. Note that the

set of poles contributing to the integral depends on the choice of η, but the final result of the

integral is independent of η.

The function ∆(u, û) has poles in the interior of the space of saddle points as well as at

infinity. As was studied in detail in [18] and reviewed in Appendix C, the residue of the pole

at infinity may or may not contribute depending on the choice of η as well as the value of the

FI coupling ζ. In particular, they do not contribute if η is set equal to ζ, so it is customary

to set η as such when studying Witten indices of 1D GLSMs. Note that this implies that the

Witten indices do depend on ζ although the FI Lagrangian is Q-exact. The GLSMs in general

are known to exhibit different behavior depending on the values of ζ, and accordingly the space

of FI couplings is divided into several regions or “phases”. The index may jump as ζ is varied

across phase boundaries. See [18] for more detail.

An example: CPN−1. The GLSM is given by a U(1) gauge theory with N chiral multiplets

of charge +1 and a positive FI coupling. We turn on the Wilson line with charge q and gauge

the flavor SU(N) symmetry by a constant background vectormultiplet û = diag(û0, · · · , ûN−1).

The Witten index is then given by a contour integral

I(û) =

∫
du

i

e2πqu∏N−1
J=0 2 sinhπ(u− ûJ)

=

N−1∑
I=0

e2πqû
I∏

J ̸=I 2 sinhπ(û
I − ûJ)

. (4.1.11)
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The JK-residue integral picks up the contribution of all the N poles u = ûI . Without the Wilson

line, the integrand is not invariant under a large gauge transformation u → u + i for odd N .

This is an example of global anomaly. To obtain the character for the m-th symmetric tensor

representation of SU(N) one has to set q = m + N/2. We would like to view it as the model

with q = m whose anomaly is canceled by the additional Wilson line with q = N/2.

4.2 GLSM for vortex worldline quantum mechanics

Let us now turn to the SUSY quantum mechanics on the worldline of vortex loops. We first

consider the case where the 3D gauge theory is made of vectormultiplet only. So we take the

3D N = 2 CS theory with G = SU(N) at level k, and put a vortex loop with

β = diag(β1, · · · , βN ) = diag
(
β(1), · · · , β(1)︸ ︷︷ ︸

n1

, β(2), · · · , β(2)︸ ︷︷ ︸
n2

, · · · , β(p), · · · , β(p)︸ ︷︷ ︸
np

)
,

β(1) > β(2) > · · · > β(p) (4.2.1)

which breaks G to K = S[U(n1)× · · · × U(np)]. For later use let us introduce

N0 = 0, N1 = n1, N2 = n1 + n2, · · · Np = n1 + · · ·+ np = N.

The quantum mechanics on the vortex worldline is a 1D N = 2 theory with a global symmetry

G = SU(N) which is gauged by the 3D vectormultiplet fields. Also, its Witten index should

reproduce the corrected version of (3.2.25):

Vβ(σ̂) =
∑

w∈W/WK

V v
β (w(σ̂)), V v

β (σ̂) =
e2π

∑
i(λ+ρ̃)iσ̂i∏

βi>βj
2 sinhπ(σ̂i − σ̂j)

, (4.2.2)

where W,WK , ρ̃,Π
+ are defined around (3.1.22) and λ, ρ̃ are N -component vectors

λ = (λ1, · · · , λN ) =
(
λ(1), · · · , λ(1)︸ ︷︷ ︸

n1

, · · · , λ(p), · · · , λ(p)︸ ︷︷ ︸
np

)
, λ(a) = kβ(a) ,

ρ̃ = (ρ̃1, · · · , ρ̃N ) =
(
ρ̃(1), · · · , ρ̃(1)︸ ︷︷ ︸

n1

, · · · , ρ̃(p), · · · , ρ̃(p)︸ ︷︷ ︸
np

) , ρ̃(a) =
1

2
(N −Na −Na−1) . (4.2.3)

By noticing that each w ∈ W/WK is in one-to-one correspondence with a division of {1, · · · , N}
into subsets d1, · · · , dp of order |da| = na, (4.2.2) can also be written as the sum over divisions

Vβ(σ̂) =
∑

{d1,··· ,dp}

e2π
∑

i(λ+ρ̃)iσ̂i∏
a<b

∏
i∈da

∏
j∈db 2 sinhπ(σ̂i − σ̂j)

. (4.2.4)

The Vβ(σ̂) in (4.2.2) or (4.2.4) equals the character for the representation of SU(N) with

the highest weight λ. The same character formulae work also for G = U(N) by relaxing the

tracelessness condition for σ̂i and modifying the quantization condition for λi. To be more
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N Np−1 Np−2 N2 N1

Figure 4.1 The quiver diagram for a GLSM on a vortex loop. It has a 1DN = 2 vectormultiplet

for each node and a bifundamental chiral multiplet for each solid line connecting

the neighboring nodes. The shaded node represents the 3D gauge symmetry.

explicit, recall that we have described the highest weights of SU(N) representations as N -

component vectors λ = (λ1, · · · , λN ) satisfying

λi − λj ∈ Z≥0 (i > j),
N∑
i=1

λi = 0.

So, λi are all equal modulo Z to m/N for some integer m which gives the charge of the represen-

tation under the central subgroup ZN ⊂ SU(N). The highest weight of a U(N) representation

is obtained from that of an SU(N) representation λ by a uniform shift of λi to make them all

integer.

4.2.1 A GLSM and its quiver representation

The GLSM for flag manifolds has been discussed in many places; see [19,20] for example. Here

we study the 1D N = 2 version of it. The models can be conveniently described by the quiver

diagram of Fig. 4.1. It is a U(Np−1)× · · · ×U(N1) gauge theory with N chiral multiplets in the

anti-fundamental of U(Np−1) and one bi-fundamental chiral multiplet for each neighboring pair

of unitary groups, namely Na+1 ×Na of U(Na+1)× U(Na) for each a ∈ {1, · · · , p− 2}. The FI

couplings for the diagonal U(1)p−1 are chosen to be all negative. In addition, we turn on the

following Wilson line for the U(1)p−1:

LWL = −
p−1∑
a=1

qaTr
(
iA

(a)
t + σ(a)

)
, qa = k(β(a) − β(a+1)) +

1

2
(Na+1 −Na−1). (4.2.5)

The first term in the formula for qa is needed so that the model agrees with the adjoint orbit

quantization with λ = kβ/2. The second term is needed to cancel the global anomaly.

Let us denote the constant value of the U(Na) vectormultiplet fields at saddle points as

σ(a) + iA
(a)
t = diag(u

(a)
1 , · · · , u(a)Na

).

The index is then given by the JK residue integral of the holomorphic function

e−SWL(u)∆(u, σ̂) =

exp

( p−1∑
a=1

Na∑
i=1

2πqau
(a)
i

)
·
p−1∏
a=1

Na∏
i ̸=j

2 sinhπ(u
(a)
i − u

(a)
j )

N∏
i=1

Np−1∏
j=1

2 sinhπ(σ̂i − u(p−1)
j )

p−2∏
a=1

Na+1∏
i=1

Na∏
j=1

2 sinhπ(u
(a+1)
i − u(a)j )

. (4.2.6)
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At each pole of ∆, the value of the variables u
(a)
i are determined one by one through an

iterated residue integral. At some of the poles, they are determined according to the following

steps. First, each of u
(p−1)
j (j = 1, · · · , Np−1) is set equal to one of {σ̂1, · · · , σ̂N}. Their values

must be all different so that the numerator of ∆ is nonzero. Once {u(a)j }j=1,··· ,Na are determined,

then the values of {u(a−1)
j }j=1,··· ,Na−1 are chosen in the same way as in the previous step, until

all the u
(a)
i are determined and a pole is thus specified. Each such pole corresponds to a division

of {1, · · · , N} into subsets d1, · · · , dp of order |da| = na. There are
∏p−1

a=1Na! different poles

corresponding to the same division, and they all have the same residue. As we will explain

shortly, for negative FI couplings these are the only poles which contribute to the JK-residue

integral.

The index I(σ̂) of the GLSM thus obtained is related to Vβ(σ̂) (4.2.2) as follows:

Vβ(σ̂) = I(σ̂) · e2πq
∑N

i=1 σ̂i = I(σ̂) ·Wq(σ̂), (4.2.7)

where q = kβ(p) − 1
2Np−1. The index reproduces Vβ(σ̂) precisely for G = SU(N). If the 3D

gauge group is G = U(N), the GLSM has to be accompanied by a Wilson line of charge q for

the diagonal U(1) subgroup of U(N).

4.2.2 Detail of JK-residue integral

Here we explain some detail of the JK-residue integral for our present problem. The basic idea

of the JK-residue prescription is presented in Appendix C. Let us denote by {e(a)i }
a=1,··· ,p−1
i=1,··· ,Na

the

basis vectors for the space of charges. The singular hyperplanes of ∆ (4.2.6) are then labeled by

the charge vectors of the form

qj ≡ −e(p−1)
j or q

(a)
ij ≡ e

(a+1)
i − e

(a)
j . (4.2.8)

The dimension of the space of charges is r =
∑p−1

a=1Na.

At each pole, the values of u
(a)
i are determined one by one through an iterated residue

integral. The process can be regarded as if the u-variables are connected together into some

trees each starting at one of the σ̂i’s. At the same time, a set Π of r charge vectors are chosen

from (4.2.8), and all the basis vectors e
(a)
i are expressed as their linear combinations. As an

example, take N = 4, (N3, N2, N1) = (3, 2, 1) and consider a pole

σ̂1 = u
(3)
1 ,

σ̂2 = u
(3)
2 = u

(2)
1 = u

(1)
1 ,

σ̂4 = u
(3)
3 = u

(2)
2 . (4.2.9)

Then all the basis vectors e
(a)
i are expressed as linear combinations of the 6 charge vectors in

Π = {q1,q2,q3,q
(2)
21 ,q

(2)
32 ,q

(1)
11 }:

e
(3)
1 = −q1,

e
(3)
2 = −q2, e

(2)
1 = −q2 − q

(2)
21 , e

(1)
1 = −q2 − q

(2)
21 − q

(1)
11 ,

e
(3)
3 = −q3, e

(2)
2 = −q3 − q

(2)
32 . (4.2.10)

57



The form of the trees can be read from (4.2.9), and the relations (4.2.10) indicate how each

u
(a)
i is connected to one of the σ̂i’s by a unique path along the trees. In the above example,

the elements of Π always appear in the RHS of the relations (4.2.10) with negative coefficients

because the trees have grown only in the decreasing direction of a. Since the reference charge

vector η (C.2.5) is given by

η =

p−1∑
a=1

ζa

Na∑
i=1

e
(a)
i , (ζa < 0) (4.2.11)

it is a positive linear combination of the elements of Π, and therefore the pole (4.2.9) contributes

to the JK-residue integral. The same argument applies to all the poles described in the paragraph

after (4.2.6): all of them contribute to the index since the corresponding trees extend only in

the decreasing direction of a.

In fact, ∆ (4.2.6) has other poles corresponding to (i) trees with branchings or (ii) trees part

of which grow in the wrong direction. Both types of the poles have vanishing residues, but those

of type (ii) are also excluded by the rule of JK-residue. If parts of the trees grow in the wrong

direction, some elements of Π appear in the expression for η with wrong sign.

4.2.3 Another GLSM.

There is another GLSM whose Witten index reproduces Vβ(σ̂) (4.2.2) up to sign. It has the

gauge group U(Ñp−1) × · · · × U(Ñ1), where Ña = N − Na, with one bifundamental chiral for

each neighboring pair of unitary groups and N chirals in the fundamental of U(Ñ1). The model

is described by the quiver diagram of Section 4.2.3. The p− 1 FI couplings are all chosen to be

positive. In addition, we need Wilson line with the U(1)p−1 charge

q̃a = k(β(a+1) − β(a)) +
1

2
(Ña+1 − Ña−1). (4.2.12)

The index for this GLSM can be computed in the same way as in the previous model. It satisfies

(4.2.7) with q = kβ(1) +
1
2Ñ1.

Ñp−1 Ñp−2 Ñ2 Ñ1 N

Figure 4.2 The quiver diagram of another GLSM for the same flag manifold.

4.2.4 More alternatives.

In addition to the two quiver theories presented above, there are two series of alternative quiver

theory realizations for the sigma model whose target is the same flag manifold. The first is

defined by the quiver diagram of Fig. 4.3. In addition to the bifundamental chiral multiplets for

neighboring pairs of nodes, the theory has a Fermi multiplet in Ns−1× Ñs of U(Ns−1)×U(Ñs).
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The FI couplings for the U(Na) are all negative while those for U(Ña) are all positive. In

addition, we need the Wilson line with U(1)p−1 charge

qa = k(β(a) − β(a+1)) +
1

2
(Na+1 −Na−1), (a = 1, · · · , s− 1)

q̃a = k(β(a+1) − β(a)) +
1

2
(Ña+1 − Ña−1). (a = s, · · · , p− 1) (4.2.13)

The index of the model satisfies (4.2.7) with q = kβ(s) +
1
2(Ñs −Ns−1). This series interpolates

the previous two GLSM descriptions.

Ñp−1 Ñs N Ns−1 N1

Figure 4.3 The quiver diagram describing a series of GLSMs for the same flag manifold. The

dashed line represents a bifundamental Fermi multiplet.

The second series of GLSMs is defined by the quiver diagrams of Fig. 4.4 which have one

more node than the previous ones. The FI couplings for the U(Na) are all negative while those

for U(Ña) are all positive. In addition, we need the Wilson line with the following U(1)p charges:

qa = k(β(a) − β(a+1)) +
1

2
(Na+1 −Na−1) (a < s), qs = k(β(s) − β∗) +

1

2
(N −Ns−1 − Ñs),

q̃a = k(β(a+1) − β(a)) +
1

2
(Ña+1 − Ña−1) (a > s), q̃s = k(β(s+1) − β∗) +

1

2
(Ñs+1 +Ns −N),

(4.2.14)

where β∗ is a parameter which is constrained only by the anomaly cancellation condition. The

index of this model satisfies (4.2.7) with q = kβ∗ +
1
2(Ñs −Ns). Note that the second series for

β (4.2.1) can be thought of as the first series for

β = diag
(
β(1), · · · , β(1)︸ ︷︷ ︸

n1

, · · · , β(s), · · · , β(s)︸ ︷︷ ︸
ns

, β∗, · · · , β∗︸ ︷︷ ︸
0

, β(s+1), · · · , β(s+1)︸ ︷︷ ︸
ns+1

, · · · , β(p), · · · , β(p)︸ ︷︷ ︸
np

)
.

Ñp−1 Ñs N Ns N1

Figure 4.4 Quivers for another series of GLSMs for the same flag manifold.

It is tempting to identify β(a)’s as some kind of position coordinates. The formulae for qa, q̃a

suggest that the a-th gauge node (white node) corresponds to branes stretching between β = β(a)

and β = β(a+1). One might also think that the position of the 3D gauge node (shaded node)
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should be determined according to the value of β(a)’s, but this is not the case. The bulk 3D U(N)

gauge theory has fields in the adjoint representation only, so there are no fields charged under

the diagonal U(1) subgroup of U(N). The expectation value of a vortex loop should therefore

be invariant under the uniform shift β(a) → β(a) + c. As we will see in the next section, the

situation changes when matters in (anti-)fundamental representation of U(N) are introduced.

Let us briefly explain how these alternatives give the same flag manifolds as the space of

classical vacua, by taking the example for the Grassmannian Gr(n,N) = U(N)/
(
U(n)×U(N −

n)
)
. The usual model is the U(n) gauge theory with N fundamental chiral multiplets AiI (i =

1, · · · , n, I = 1, · · · , N), as described by the quiver diagram of Fig. 4.5 left. The classical vacuum

equation is ∑
I

AiIĀIj = ζδij ,

where ζ is the FI coupling for the diagonal U(1) subgroup of U(n). For ζ > 0, each solution

gives a set of n orthonormal N -component complex vectors. The equivalence classes of solutions

with respect to U(n) define n-dimensional hyperplanes in CN , and the space of such hyperplanes

is Gr(n,N).

n N n N N − n

Figure 4.5 The usual and alternative quivers of the GLSM for the Grassmannian Gr(n,N).

The alternative model is the U(n)×U(N − n) gauge theory with N chiral multiplets in the

fundamental of U(n), N chiral multiplets in the anti-fundamental of U(N − n) and a Fermi

multiplet in the bifundamental of U(N − n)×U(n) as described by the quiver of Fig. 4.5 right.

Let us denote the bottom components of these multiplets as

AiI , BIȷ̃, ηȷ̃i (i = 1, · · · , n ; ȷ̃ = 1, · · · , N − n ; I = 1, · · · , N).

In the presence of the superpotential W =
∑

i,ȷ̃,I AiIBIȷ̃ηȷ̃i, the classical vacuum equations are∑
I

AiIĀIj = ζδij ,
∑
I

B̄ı̃IBIȷ̃ = −ζ̃δı̃ȷ̃, AiIBIȷ̃ = 0,

where ζ, ζ̃ are the FI couplings for U(n) and U(N − n). If ζ > 0 and ζ̃ < 0, each solution of

these equations defines an n-plane and a (N −n)-plane in CN that are orthogonal to each other.

The space of such pairs is again given by Gr(n,N).

In view of the fact that many alternative GLSMs presented in this section give the same

Witten index and vacuum manifold, we suspect they are all dual to one another.

60



4.3 Theories with matters

Here we study vortex loops in 3D U(N) gauge theories with various matter chiral multiplets.

The path integral with respect to the added chiral multiplets on the vortex background modifies

Vβ(σ̂) (4.2.2) according to the formula in Section 2.1. We would like to find the corresponding

modification of the quiver GLSMs introduced in the last section.

4.3.1 Global symmetry of the 1D theory

For a vortex loop in a theory with chiral multiplets of real mass m and R-charge r, the function

Vβ(σ̂) will also depend onm, r and the squashing parameter b. Sincem is in a 3D vectormultiplet,

m̂ ≡ ℓm appears in the 1D theory on the vortex worldline according to the same rule as that

for σ̂. In fact, the other parameters r, b also appear in the 1D theory through the background

gauging of a specific global U(1) symmetry.

The 3D N = 2 theory on an ellipsoid has the translation symmetry U(1)τ × U(1)φ and

the R-symmetry U(1)R(3D). The U(1)τ descends to the translation symmetry along the vortex

loop, whereas U(1)φ appears in the 1D theory as a global symmetry. The R-symmetry of the

1D N = 2 SUSY theory should be a linear combination of U(1)φ and U(1)R(3D) (and other

abelian global symmetries if there are any). However, the Witten index is independent of the

assignment of this R-charge on matters because the square of the 1D SUSY (3.2.14), (4.1.1)

does not contain the R-symmetry. But the index does depend on the charge assignments of the

other non-R linear combination of U(1)φ and U(1)R(3D), as we now explain.

The SUSY of the 3D theory on an ellipsoid squares to

Q2
(3D) =

1

ℓ
H+

1

ℓ̃
M− 1

2

(
1

ℓ
+

1

ℓ̃

)
R(3D) + i

(
σ +

i

ℓ
Aτ +

i

ℓ̃
Aφ

)
+ im,

where H and M are operators that act on dynamical fields as −iL∂τ and −iL∂φ , respectively.
In section 3.2.2 we have made contact of this Q(3D) with the 1D SUSY on the vortex worldline

using the fact that the cohomological variables transform under Q(3D) like 1D N = 2 multiplets.

So, let us study the action of Q2
(3D) on cohomological variables on top of the vortex worldline.

As an example take Ψ = ξψ (2.2.4) which is the superpartner of a chiral scalar ϕ. With the

understanding that H,M,R(3D) act only on a dynamical field ψ and not ξ, one finds

Q2
(3D)Ψ

∣∣∣
θ=0

= ξ ·
{
1

ℓ
H+

1

ℓ̃
M− 1

2

(
1

ℓ
+

1

ℓ̃

)
R(3D) + i

(
σ +

i

ℓ
Aτ

)
+ im

}
ψ

=
i

ℓ

{
−∂τ +

ibQ

2

(
R(3D) − 2M

)
+ (σ̂ + iAτ ) + m̂

}
Ψ. (4.3.1)

Here we used L∂τ ξ = L∂φξ = i
2ξ and also that L∂φΨ = 0 along the vortex worldline because

Ψ is a Lorentz scalar. The above computation works for all the cohomological variables. Thus

the SUSY squared of the vortex worldline theory should take the form (here t is the worldline
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coordinate of period 2π):

Q2
(1D) ∼ − ∂t +

ibQ

2
G + (σ̂ + iAτ ) + m̂+ (1D vectormultiplet fields) ,

G ≡ R(3D) − 2M . (4.3.2)

Note that G is a non-R global symmetry in the sense of both 3D and 1D. The interpretation of

the second term in the RHS is that the global U(1)G symmetry of the vortex worldline theory

is gauged by the background field:

σG + iAG
t =

ibQ

2
. (4.3.3)

4.3.2 Adjoint representation

Let us first consider the case with an adjoint chiral multiplet with mass m and R-charge r.

According to the result of Section 2.1, the function Vβ now consists of the contribution from

vector and chiral multiplets:

Vβ(σ̂) =
∑

w∈W/WK

V v
β (w(σ̂))V

c
β (w(σ̂)). (4.3.4)

Here V v
β (σ̂) is given in (4.2.2) and

V c1
β (σ̂) =

∏
βi>βj

2 sinhπ
(
σ̂i − σ̂j − m̂−

irbQ

2

)
,

V c2
β (σ̂) =

∏
βi>βj

(
2 sinhπ

(
σ̂i − σ̂j + m̂− i(2− r)bQ

2

))−1
, (4.3.5)

depending on the choice of boundary condition BC1 or BC2. Suitable 1D N = 2 SUSY theories

should reproduce these as the Witten index up to a freedom of additional Wilson lines. It is

natural to expect that such theories can be obtained by modifying the GLSMs introduced in

the previous section. We take the theory of Fig. 4.3 as the starting point.

BC1. Let us consider a GLSM corresponding to the quiver diagram of Fig. 4.6 which is ob-

tained by adding links to the quiver of Fig. 4.3. The matters corresponding to the added links

are charged under U(1)G as well as U(1)m corresponding to the 3D real mass. We denote their

generators by G and m.

The matter multiplets and their charges are as follows. Each gauge group has an adjoint

chiral multiplet with m = 1 and G = r. Each pair of neighboring nodes has a bifundamental

chiral multiplet with m = G = 0 and a bifundamental Fermi multiplet with m = 1,G = r. In

addition, there is a Fermi multiplet with m = G = 0 and a chiral multiplet with m = −1,G = −r
in the bifundamental of U(Ns−1)×U(Ñs). The FI couplings are negative for U(Na) and positive

for U(Ña) gauge groups.

62



Ñp−1 Ñs N Ns−1 N1

Figure 4.6 The worldline theory for a vortex loop in 3D U(N) gauge theory with an adjoint

chiral multiplet (represented by a thick line) satisfying BC1.

The theory is free of global anomaly, so the charge of Wilson line is determined by the CS

coupling and β only.

qa = k(β(a) − β(a+1)), (a = 1, · · · , s− 1)

q̃a = k(β(a+1) − β(a)). (a = s, · · · , p− 1) (4.3.6)

However, when V v
β (σ̂) was re-defined in (4.2.2), we also included the Wilson line factor e2π

∑
i ρ̃iσ̂i

which cancels the global anomaly of the quiver theory for Fig. 4.3. The added massive 1D matters

bring about another global anomaly, but it can be canceled by a Wilson line factor e−2π
∑

i ρ̃iσ̂i .

Thus V c1
β (σ̂) needs to be corrected by this Wilson line factor.

The Witten index is the JK-residue integral of the following one-loop determinant ∆ multi-

plied by the Wilson line with charges (4.3.6):

∆ = (2 sinhπm̃)−
∑

a Na−
∑

a Ña

×
s−1∏
a=1

Na∏
i ̸=j

2 sinhπ(u
(a)
i − u

(a)
j )

2 sinhπ(u
(a)
i − u

(a)
j + m̃)

p−1∏
a=s

Ña∏
i ̸=j

2 sinhπ(ũ
(a)
i − ũ

(a)
j )

2 sinhπ(ũ
(a)
i − ũ

(a)
j + m̃)

×
p−2∏
a=s

Ña+1∏
i=1

Ña∏
j=1

2 sinhπ(ũ
(a+1)
i − ũ(a)j + m̃)

2 sinhπ(ũ
(a+1)
i − ũ(a)j )

·
Ñs∏
i=1

N∏
j=1

2 sinhπ(ũ
(s)
i − σ̂j + m̃)

2 sinhπ(ũ
(s)
i − σ̂j)

×
N∏
i=1

Ns−1∏
j=1

2 sinhπ(σ̂i − u(s−1)
j + m̃)

2 sinhπ(σ̂i − u(s−1)
j )

·
s−2∏
a=1

Na+1∏
i=1

Na∏
j=1

2 sinhπ(u
(a+1)
i − u(a)j + m̃)

2 sinhπ(u
(a+1)
i − u(a)j )

×
Ns−1∏
i=1

Ñs∏
j=1

2 sinh(u
(s−1)
i − ũ(s)j )

2 sinh(u
(s−1)
i − ũ(s)j − m̃)

, (4.3.7)

where we used m̃ ≡ m̂+ ibQr
2 . In the limit m̂→ −∞ the one-loop determinants for the massive

multiplets turn into Wilson lines. The above ∆ then reduces to

exp
(
−πm̃

∑
a<b

nanb

)
·W 1

2
(Ñs−Ns−1)

(σ̂)

times the ∆ for the quiver GLSM of Fig. 4.3 and a Wilson line factor that shift the charges

(4.3.6) back to (4.2.13). On the other hand, we will see in Chapter 5 that the 1D theory has an

enhanced SUSY when m̂ = 0.
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The above one-loop determinant ∆ has more poles than the one corresponding to Fig. 4.3

due to the added chiral multiplets. However, as we explain in the next paragraph, none of those

new poles contribute to the index according to the rule of JK-residue. This is in accordance

with the fact that Vβ(σ̂) (4.3.4) is given by a sum over elements ofW/WK as in pure CS theory.

Once one accepts this fact, it is straightforward to check that the index reproduces (4.3.4) for

BC1.

Detail of JK-residue integral (2). Here we discuss some detail of the JK-residue integral

with the above ∆ in the integrand. The space of charges is of dimension r =
∑s−1

a=1Na +∑p−1
a=s Ña and we denote its basis vectors by {e(a)i }

a=1,··· ,s−1
i=1,··· ,Na

, {ẽ(a)i }
a=s,··· ,p−1

i=1,··· ,Ña
. Let us first list

the charge vectors labeling the singular hyperplanes of ∆. The hyperplanes which are present

before introducing the 3D adjoint chiral multiplet are labeled by the charges

q̃
(a)
ij ≡ ẽ

(a)
i − ẽ

(a−1)
j , q̃i ≡ ẽ

(s)
i , qi ≡ −e(s−1)

i , q
(a)
ij ≡ e

(a+1)
i − e

(a)
j .

The hyperplanes corresponding to the added chiral multiplets are labeled by

p
(a)
ij ≡ e

(a)
i − e

(a)
j +m, p̃

(a)
ij ≡ ẽ

(a)
i − ẽ

(a)
j +m, rij ≡ e

(s−1)
j − ẽ

(s)
i −m,

where we included the generator m of the U(1)m for convenience.

As in the previous example, the iterative residue integral at each pole determines the values

of the variables u
(a)
j , ũ

(a)
j one by one. The process can be viewed as if those variables are linked

together to form trees each starting from one of the σ̂i. At the same time, the process also

picks up from the above list a set Π of r charge vectors that play the role of the links. All the

basis vectors e
(a)
i , ẽ

(a)
i are then expressed as linear combinations of the elements of Π. Now,

to decide whether the pole contributes to the JK-residue integral, one expresses the reference

charge vector (C.2.5)

η =
s−1∑
a=1

Na∑
i=1

ζae
(a)
i +

p−1∑
a=s

Ña∑
i=1

ζ̃aẽ
(a)
i (ζa < 0, ζ̃a > 0)

as a linear combination of the elements of Π, and checks if the coefficients are all positive. As

we observed in the previous simpler example, the sign of the coefficient of a given element of Π

is to a large extent related to the direction in which the trees grow at the corresponding link.

There are a few conditions that a pole must satisfy in order to contribute to the integral.

One can prove them step by step. First, rij cannot participate in Π. Then, all the basis vectors

−e(a)i must be expressed as non-negative linear combinations of {qj ,q
(b)
jk ,p

(b)
jk }, and similarly

all ẽ
(a)
i must be non-negative linear combinations of {q̃j , q̃

(b)
jk , p̃

(b)
jk }. In terms of the formation

of trees these conditions can be phrased as follows: each tree consists of u-variables only or

ũ-variables only. A tree of u-variables can only be extended by attaching a new variable u
(b)
j

according to

σ̂j = u
(b)
j (for b = s− 1) or u

(b+1)
k = u

(b)
j or u

(b)
k + m̃ = u

(b)
j .
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Likewise, a tree of ũ-variables can only be extended by attaching ũ
(b)
j according to

ũ
(b)
j = σ̂j (for b = s) or ũ

(b)
j = ũ

(b−1)
k or ũ

(b)
j = ũ

(b)
k − m̃.

For each pole satisfying the above conditions we study whether the residue is nonvanishing.

In fact, due to the determinants of vector and Fermi multiplets in the numerator of ∆, the

residue vanishes if Π contains p
(a)
ij or p̃

(a)
ij . The residue also vanishes when two or more trees

start from a single σ̂i, or when there are trees with branchings. Thus the trees must consist only

of (i) linear chains of u-variables extending in the decreasing direction of a and (ii) linear chains

of ũ-variables extending in the increasing direction of a. Moreover, each σ̂i can have at most one

chain starting from it. The set of poles contributing to the JK-residue integral is therefore the

same as before introducing the adjoint chiral multiplet in 3D, and it is precisely what is needed

for the integral to reproduce (4.3.4).

BC2. For this boundary condition, the GLSM on the vortex worldline is described by the

quiver diagram of Fig. 4.7 which has extra links compared to the quiver of Fig. 4.3.

Ñp−1 Ñs N Ns−1 N1

Figure 4.7 The quiver GLSM on the vortex worldline for 3D U(N) gauge theory with an adjoint

chiral multiplet satisfying BC2.

The matter content and the charge assignment are as follows. For each U(Na) or U(Ña)

gauge node, it has a vectormultiplet as well as an adjoint Fermi multiplet with m = −1 and

G = 2−r. Each pair of neighboring nodes has a bifundamental and an anti-bifundamental chiral

multiplets, and the latter has m = +1,G = r−2. In addition, the pair U(Ns−1)×U(Ñs) has one

bifundamental and one anti-bifundamental Fermi multiplets, the latter carrying m = −1 and

G = 2 − r. The FI couplings for U(Na) are all negative while those for U(Ña) are all positive.

As in the previous case of BC1, the model is free of global anomaly. The charge of the Wilson

line can be chosen the same way as (4.3.6), and the function V c2
β (σ̂) needs to be corrected by a

Wilson line factor e−2π
∑

i ρ̃iσ̂i . We will not go into the detail of the JK-residue evaluation as it

is somewhat simpler than the previous case.

In the limit m̂ → −∞ the massive matters turn into a Wilson line of appropriate U(1)p−1

charge and the model reduces to that for the quiver of Fig. 4.3. On the other hand, the 1D field

content is such that the supersymmetry enhances to N = 4 if m̂ is turned off and an appropriate

superpotential interaction is turned on. The m,G-charges of the adjoint Fermi multiplets were

chosen so that the superpotential terms are invariant. However, the enhanced N = 4 SUSY

here is qualitatively different from the one for BC1: they have different kind of multiplets and
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R-symmetries. Also, as we will see in the next section, the SUSY enhancement here does not

seem to be related to the enhancement of bulk 3D SUSY.

4.3.3 Fundamental representation

Next we consider vortex loops in 3D U(N) gauge theory with a fundamental chiral multiplet of

mass m and R-charge r. We regard that the matter is in a bifundamental of U(N) × U(1)m.

According to the result of section 2.1, the function Vβ(σ̂) is given by (4.3.4) with

V c1
β (σ̂) =

∏
βi<0

2 sinhπ
(
σ̂i − m̂+

irbQ

2

)
,

V c2
β (σ̂) =

∏
βi>0

(
2 sinhπ

(
σ̂i − m̂−

i(2− r)bQ
2

))−1
, (4.3.8)

depending on the choice of boundary condition. But a simple multiplication of these products

of sinh functions will lead to a global anomaly, so we also need a suitable Wilson line. It is also

known that the introduction of (anti-)fundamental chiral multiplets shifts the effective CS and

FI couplings [51].

As in the previous subsection, we construct the vortex worldline theory as a modification of

the quiver GLSM of Fig. 4.3. Let us also assume

β(s+1) < β(s) = 0 < β(s−1). (4.3.9)

Then it turns out that the necessary modification of the quiver is to add just one link connecting

a 1D gauge node and the flavor U(1)m node as shown in Fig. 4.8. Depending on the choice of

boundary condition, we introduce

(BC1) a Fermi multiplet in the bifundamental of U(1)m × U(Ñs) with G = −r,

(BC2) a chiral multiplet in the bifundamental of U(Ns−1)× U(1)m with G = r − 2.

The added links reproduce precisely the contribution of the 3D fundamental chiral multiplet to

Vβ(σ̂) (4.3.8), but the 1D theory now has global anomaly. It can be canceled by shifting the

charge of the Wilson line q̃s or qs−1 by ±1/2.
Under the interpretation of β(a) as position coordinates, the assumption (4.3.9) means that

the 3D gauge node is at β = 0. Note that this assumption is not mandatory. One may start with

a quiver realization in which the 3D gauge node is not at β = 0 and find necessary modifications,

though the answer will not be as simple as the one given above.

The vortex loops in 3D U(N) gauge theory with an anti-fundamental chiral multiplet can

be studied in the same way. Depending on the boundary condition, the function Vβ(σ̂) is given

by (4.3.4) with

V c1
β (σ̂) =

∏
βi>0

2 sinhπ
(
σ̂i − m̂−

irbQ

2

)
,

V c2
β (σ̂) =

∏
βi<0

(
2 sinhπ

(
σ̂i − m̂+

i(2− r)bQ
2

))−1
. (4.3.10)
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Ñs N

1

Ns−1 Ñs N

1

Ns−1

BC1 BC2

Figure 4.8 Quivers for the worldline theory of a vortex loop in 3D U(N) gauge theory with a

fundamental chiral multiplet satisfying BC1 or BC2. In both diagrams, the 3D

gauge and global symmetries U(N) × U(1)m are represented by shaded nodes and

the 3D fundamental chiral multiplet is represented by a thick link.

The corresponding vortex worldline theories are given by the two quivers of Fig. 4.9. They are

modifications of the quiver theory of Fig. 4.3 by adding

(BC1) a Fermi multiplet in the bifundamental of U(Ns−1)× U(1)m with G = −r,

(BC2) a chiral multiplet in the bifundamental of U(1)m × U(Ñs) with G = r − 2.

Also, the charge of the Wilson line needs to be modified to take care of global anomaly.

Ñs N

1

Ns−1 Ñs N

1

Ns−1

BC1 BC2

Figure 4.9 Addition of an anti-fundamental chiral multiplet to 3D U(N) theory and the cor-

responding modification of the GLSM on vortex worldline.

Let us explain how we determined the orientation of the arrows for the 1D matter multi-

plets just added. For the cases with BC2, the added 1D chiral multiplets contribute to the

denominator of ∆ (4.2.6) and give rise to more poles. But those new poles must not contribute

to the index. This determines the orientation of the arrow for the added chiral multiplets. For

the case with BC1, the orientation of the arrow for Fermi multiplets has been determined from

the consistency with SUSY enhancement. As we will discuss in the next section, when 3D bulk

theory has N = 4, the vortex worldline theory also has an enhanced N = 4 SUSY.
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Large mass limit. Integration of massive chiral multiplets in 3D sometimes yields an effective

CS coupling [52,53]. In the presence of vortex loop, it also gives rise to an effective Wilson line

for the worldline theory. Let us study this effect in a simple example.

Consider a 3D U(N)k CS theory with one fundamental and one anti-fundamental chiral

multiplets with the masses mf,ma and R-charges rf, ra. They contribute the following one-loop

determinant to the ellipsoid partition function (2.4.1):

∆c
1-loop =

N∏
i=1

sb

( i(1− rf)Q
2

− σ̂i + m̂f

)
sb

( i(1− ra)Q
2

+ σ̂i − m̂a

)
. (4.3.11)

By using the asymptotics of the double sine function

sb(x) ∼ exp
±iπ
2

(
x2 +

b2 + b−2

12

)
(Re(x)→ ±∞)

and comparing with (2.3.4), one finds that the integration of the heavy chiral multiplets in the

limit mf → ±∞, ma → ∓∞ shifts the CS and FI couplings by

δk = ±1, δζ = ±m̂f + m̂a

2
± i(rf − ra)Q

4
. (4.3.12)

Let us introduce a vortex loop with vorticity β and put the boundary condition BC1 for

the fundamental, BC2 for the anti-fundamental chirals. As explained above, the 1D theory has

an additional pair of chiral and Fermi multiplets in the anti-fundamental of U(Ñs). The added

matters do not produce anomaly, so the U(1)p−1 charge of the Wilson line may be chosen as

(4.2.13). The one-loop determinant ∆ of the worldline theory is modified by the factor

∏
βi<0

2 sinhπ(σ̂i − m̂f +
irfbQ
2 )

2 sinhπ(σ̂i − m̂a +
i(2−ra)bQ

2 )
−→ exp

(
∓2π

∑
βi<0

σ̂i

)
. (4.3.13)

This corresponds to the shift of the charge of the Wilson line q̃s by ∓1.
Here we recall that the charges (4.2.13) of the Wilson line was determined from the consis-

tency with the relation λi = kβi in pure CS theory. However, after the massive matters are

introduced and integrated out, the parameters k, qa, q̃a will get corrected and (4.2.13) will no

longer be satisfied. Taking account of this effect, perhaps one should regard λi or (qa, q̃a) as

more important label than β since they determine the value of BPS vortex loop observables

more directly. But β still has an important role to set the pattern of gauge symmetry breaking

and the orderings of unbroken gauge group factors.
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Chapter 5

N = 4 theories

In this chapter we extend our description of vortex loops to those in 3D N = 4 theories. We

will first find out the condition on the singular behavior of fields near 1/2 BPS vortex loops, and

then identify the corresponding worldline quantum mechanics with 1D N = 4 supersymmetry.

We begin by reviewing the basic properties of 3D N = 4 gauge theories. For the theories on

flat R3, the four sets of supercharges transform as a bispinor under the R-symmetry SU(2)C ×
SU(2)H. We denote its Cartan generators as J3C and J3H. A 3D N = 4 vectormultiplet is made

from an N = 2 vectormultiplet (Am, σ, λ, λ̄,D) and an adjoint chiral multiplet (ϕ, ψ, F ). The

three scalars (σ, ϕ, ϕ̄), three auxiliary scalars (D,F, F̄ ) and four spinors (λ, λ̄, ψ, ψ̄) form the

representations (3,1), (1,3) and (2,2) of SU(2)C × SU(2)H, respectively. In our convention ϕ

has J3C = 1 whereas F has J3H = 1. The charges of the fields are summarized in Table 5.1.

field Am σ ϕ ϕ̄ λ λ̄ ψ ψ̄ D F F̄

J3C 0 0 +1 −1 +1
2 −1

2 +1
2 −1

2 0 0 0

J3H 0 0 0 0 −1
2 +1

2 +1
2 −1

2 0 +1 −1

Table 5.1 R-charges of N = 4 vectormultiplet fields.

Let us turn to the theory on S3. The SYM Lagrangian for an N = 4 vectormultiplet is

given by the sum of LYM for the vectormultiplet and g−2Lmat for the adjoint chiral multiplet

in (1.3.14),(1.3.15). It is not SU(2)C × SU(2)H R-symmetric due to the coupling with the

background auxiliary field. But when ℓ = ℓ̃ = f and the adjoint chiral multiplet has r = 1 the

Lagrangian has a Z2 invariance:

L(Am ; σ, ϕ, ϕ̄ ; λ, λ̄, ψ, ψ̄ ; D,F, F̄ ; H)

= L(Am ; −σ, ϕ̄, ϕ ; ψ̄,−ψ,−λ̄, λ ; D,−F,−F̄ ; −H). (5.0.1)

This implies that L with r = 1 on a round S3 has an enhanced supersymmetry: in addition to

the original N = 2 SUSY corresponding to the four independent solutions of (1.2.28), it has the

second set of N = 2 SUSY corresponding to four independent solutions of the same equation
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(1.2.28) with H sign-flipped. The U(1) R-charge of the original N = 2 SUSY is identified with

J3C−J3H because the fields ϕ, ψ, F have the charges RU(1) = 1, 0,−1. Similarly, the U(1) R-charge

of the second N = 2 SUSY is identified as R′
U(1) = −J

3
C − J3H.

A hypermultiplet in a representation Λ of the gauge group consists of N = 2 chiral multiplets

in the representations Λ and Λ̄. We will denote the chiral scalars as q, q̃, and their spinor

superpartners as χ, χ̃. It is known that (q, ¯̃q) form a doublet of SU(2)H and (χ, ¯̃χ) form a

doublet of SU(2)C. On S3, these two chiral multiplets both need to have r = 1/2. Then the

Z2 symmetry (5.0.1) of the theory on S3 can be easily extended to hypermultiplet sector by

identifying it with an element of SU(2)C×SU(2)H. The charges of the hypermultiplet fields are

summarized in Table 5.2.

field q q̄ q̃ ¯̃q χ χ̄ χ̃ ¯̃χ

RU(1) +1
2 −1

2 +1
2 −1

2 −1
2 +1

2 −1
2 +1

2

R′
U(1) +1

2 −1
2 +1

2 −1
2 +1

2 −1
2 +1

2 −1
2

J3C 0 0 0 0 −1
2 +1

2 −1
2 +1

2

J3H −1
2 +1

2 −1
2 +1

2 0 0 0 0

Table 5.2 R-charges of hypermultiplet fields.

5.1 BPS boundary condition

Let us now turn to the definition of vortex loops. Consider first a vortex line stretching along

the x3-axis of flat R3. As in the cases with N = 2 SUSY, the gauge field behaves as

A ∼ βdφ, F12 = 2πβδ2(x1, x2) + · · · .

The vortex configuration can be made half-BPS by turning on the SU(2)H-triplet auxiliary

scalars Da = (F, F̄ ,D) appropriately. The unbroken SUSY then corresponds to solutions of the

BPS equation of the form

0 = QλAB̄ = F12γ
12ξAB̄ −DaξAC̄(σ

a)C̄B̄ , (5.1.1)

where A,B, · · · and Ā, B̄, · · · are doublet indices for SU(2)C and SU(2)H respectively, and σa

is Pauli’s matrix. It has nontrivial solutions if one sets, for example,

D3 = D = iF12 .

The Lorentz symmetry SU(2)Lorentz and the R-symmetry SU(2)C×SU(2)H are then broken to

U(1)M×SU(2)C×U(1)J3H
, where M generates the rotation about the x3-axis. Four of the eight

supercharges corresponding to the SUSY parameter ξAB̄ with γ3 = ±1 (M = ±1
2) and J3H = ∓1

2

remain unbroken.
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Let us next consider the theory on a round S3 with a half-BPS vortex loop along S1
(τ) at

θ = 0. Four of the eight supercharges are broken as in flat space. Two of the four unbroken

supercharges correspond to the Killing spinors ξ, ξ̄ of (1.2.32), and the other two correspond to

new Killing spinors

ξ′ = e
i
2
(φ−τ)

(
cos θ

2

−i sin θ
2

)
, ξ̄′ = e−

i
2
(φ−τ)

(
−i sin θ

2

cos θ
2

)
. (5.1.2)

These four Killing spinors satisfy

∇mξ =
i

2ℓ
γmξ, ∇mξ̄ =

i

2ℓ
γmξ̄, ∇mξ

′ = − i

2ℓ
γmξ

′, ∇mξ̄
′ = − i

2ℓ
γmξ̄

′.

One can check that the new Killing spinors ξ′, ξ̄′ have M = ±1
2 , so the flat space analysis implies

they have J3H = ∓1
2 . The quantum numbers of the four Killing spinors are thus determined as

in Table 5.3. The Z2 transformation (5.0.1) acts as

ξ ↔ ξ′, ξ̄ ↔ ξ̄′. (5.1.3)

Killing spinor RU(1) R′
U(1) J3C J3H −iL∂τ −iL∂φ

ξ +1 0 +1
2 −1

2 +1
2 +1

2

ξ̄ −1 0 −1
2 +1

2 −1
2 −1

2

ξ′ 0 +1 −1
2 −1

2 −1
2 +1

2

ξ̄′ 0 −1 +1
2 +1

2 +1
2 −1

2

Table 5.3 Quantum numbers of Killing spinors on S3.

Boundary condition on fluctuations. It remains to check if there is a set of boundary

conditions on the fluctuation of fields preserving 1/2 of the N = 4 SUSY. We continue to work

with a vortex loop in S3 winding along the S1
(τ) at θ = 0.

Let us first study the fluctuation of N = 4 vectormultiplet using the decomposition into

N = 2 multiplets. According to what we found in Section 2.1 for the fluctuation of N = 2

vectormultiplet fields, ξλ, ξ̄λ̄ may diverge mildly but ξλ̄, ξ̄λ must be finite near the vortex loop.

The boundary condition also preserves the SUSY corresponding to ξ′, ξ̄′ if it respects the Z2

invariance (5.0.1) and (5.1.3). So ξ′ψ̄, ξ̄′ψ may diverge but ξ′ψ, ξ̄′ψ̄ must be finite. Here one can

replace ξ′ by ξ (and similarly ξ̄′ by ξ̄) because they are proportional to each other along the

vortex loop. The resulting boundary conditions on ψ and ψ̄ imply that the N = 2 adjoint chiral

multiplet must obey BC1.

To be fully explicit, let us list the boundary condition for all the fields in an N = 4 vector-

multiplet near a BPS vortex loop:

ξγmξδAm, ξ̄γ
mξ̄δAm, ξλ, ξψ̄, ξ̄λ̄, ξ̄ψ, F, F̄ may diverge,

ξ̄γmξδAm, δσ, ϕ, ϕ̄, ξλ̄, ξψ, ξ̄λ, ξ̄ψ̄, δD must be finite. (5.1.4)
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This preserves the SUSY corresponding to ξ, ξ̄ as well as ξ′, ξ̄′.

The above form of boundary condition can also be used for a vortex line lying along, say,

the x3-axis of flat R3. In that case ξ, ξ′ are eigenspinors of γ3 = 1 and ξ̄, ξ̄′ are eigenspinors of

γ3 = −1. The above set of boundary conditions is clearly consistent with the unbroken SU(2)C

symmetry.

A hypermultiplet in a representation Λ consists of an N = 2 chiral multiplet q, χ in Λ and

another chiral multiplet q̃, χ̃ in Λ̄. To preserve the SUSY corresponding to ξ and ξ̄, each of the

two chiral multiplets must obey the boundary condition BC1 or BC2. Then, as in the previous

paragraph, one can argue that the unbroken SUSY enhances if the boundary condition respects

the SU(2)C symmetry. Recall that, whichever boundary conditions we choose, the fields in the

representation Λ are divided into four groups of cohomological variables as follows:

q, ξχ ∈ H
J−−−−−→←−−−−−
J̄

H′ ∋ ξ̄χ,

¯̃q, ξ̄ ¯̃χ ∈ H̃∗
(J̃ )†−−−−−→←−−−−−
( ¯̃J )†

H̃′∗ ∋ ξ ¯̃χ. (5.1.5)

Here the differential operators J̃ , ¯̃J are defined in the same way as J ≡ iξ̄γmξ̄∇m and J̄ ≡
−iξγmξ∇m using the covariant derivative for fields in Λ̄. So in fact (J̃ )† = J̄ and ( ¯̃J )† = J .
Hence one can preserve SU(2)C by imposing the same boundary condition on ξχ and ξ ¯̃χ, and

similarly on ξ̄χ and ξ̄ ¯̃χ, which form doublets. This leads us to conclude that there are the

following two BPS boundary conditions on a hypermultiplet:

• ξχ, ξ ¯̃χ are finite but ξ̄χ, ξ̄ ¯̃χ may diverge near the vortex loop. Namely, the chiral multiplet

(q, χ) obeys BC1 and (q̃, χ̃) obeys BC2.

• The opposite of the above. Namely, (q, χ) obeys BC2 and (q̃, χ̃) obeys BC1.

Note that our result is similar to the one obtained in [54]. There the fluctuation of fields with

more general (i.e. not necessarily mild) singular behavior near vortex lines is considered.

5.2 N = 4 SUSY quantum mechanics

Let us next turn to the study of the vortex worldline theories. For a straight vortex line in a flat

R3, the worldline theory has a global symmetry SU(2)C ×U(1)J3H
×U(1)M. The four unbroken

supercharges transform under its SU(2)×U(1) subgroup as two SU(2)-doublets of U(1) charge

±1. The 1D N = 4 SUSY with this R-symmetry is a dimensional reduction of the 4D N = 1

SUSY.

A 1D N = 4 vectormultiplet is made from an N = 2 vectormultiplet (At, σ, λ, λ̄,D) and an

adjoint chiral multiplet (ϕ, ψ). The quantum numbers of the fields are determined as in Table 5.4

from the fact that ϵ, ϵ̄ in the transformation rules (3.2.14) and (4.1.1) carry the same quantum

numbers as ξ, ξ̄. The U(1) R-charge of 1D N = 4 SUSY is identified with a linear combination

c1J
3
H + c2M. (c2 − c1 = 2)
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field At σ ϕ ϕ̄ λ λ̄ ψ ψ̄ D ϵ ϵ̄

J3C 0 0 +1 −1 +1
2 −1

2 +1
2 −1

2 0 +1
2 −1

2

J3H 0 0 0 0 −1
2 +1

2 +1
2 −1

2 0 −1
2 +1

2

M 0 0 0 0 +1
2 −1

2 −1
2 +1

2 0 +1
2 −1

2

Table 5.4 Quantum numbers of N = 4 vectormultiplet fields on the vortex worldline.

For the computation of Witten index, one chooses a pair of supercharges (such as the pair

we have been using in the previous chapter) that generate an N = 2 subalgebra. The index can

be generalized by twisting the periodic boundary condition of fields by global symmetries that

commute with the chosen supercharges. Of particular importance is the symmetry generated

by G ≡ J3C − J3H − 2M, as it shows up in the Witten index for vortex loops inside S3. This G

was already introduced in the previous chapter at (4.3.2) as a non-R global symmetry of N = 2

SUSY theories. One can easily find from Table 5.4 that N = 2 vectormultiplet has G = 0 while

the adjoint chiral multiplet has G = +1.

A 1D N = 4 chiral multiplet is made from an N = 2 chiral multiplet (q, χ) and a Fermi

multiplet (η, F ) in the same representation of the gauge group. The quantum numbers of fields

under J3H and M are constrained only by the requirement that the fermions (χ, η) form an SU(2)-

doublet, so generally they take values as summarized in Table 5.5. This implies that, if q and χ

have G = g, then η and F should have G = g + 1. We call such a set of fields an N = 4 chiral

multiplet of G = g.

field q χ η F

J3C 0 −1
2 +1

2 0

J3H a a+ 1
2 a+ 1

2 a+ 1

M b b− 1
2 b− 1

2 b− 1

Table 5.5 Quantum numbers of N = 4 chiral multiplet fields on the vortex worldline.

Ñp−1 Ñs N Ns−1 N1

Figure 5.1 1D N = 4 quiver diagram describing the GLSM for a vortex loop in 3D N = 4

U(N) pure SYM. The white nodes and solid lines represent 1D N = 4 vector and

chiral multiplets.
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Examples. As the most basic example of vortex loops in 3D N = 4 theories, let us consider

those in N = 4 U(N) pure SYM. The worldline theory is a special case (m = 0, r = 1 and BC1)

of the quiver GLSM studied in Section 4.3.2. In 1D N = 2 terminology, it is a gauge theory

with the 1D and 3D gauge groups

U(Ñp−1)× · · ·U(Ñs)× U(N)(3D) × U(Ns−1)× · · ·U(N1).

The N = 2 vectormultiplet for each 1D gauge group factor is paired with an adjoint chiral

multiplet with G = 1 to form an N = 4 vectormultiplet. For each pair of neighboring gauge

group factors one has a pair of bifundamental N = 2 chiral and Fermi multiplets of G = 0 and

1, which form an N = 4 chiral multiplet of G = 0. The theory also has a pair of a chiral and

Fermi multiplets of G = −1, 0 in the bifundamental of U(Ns−1)×U(Ñs), which form an N = 4

chiral multiplet with G = −1. The field content is described by the N = 4 quiver diagram of

Fig. 5.1. The FI couplings for U(Na) are all negative while those for U(Ña) are all positive.

The theory has no Wilson line since it is free of global anomaly and one cannot turn on 3D CS

coupling without breaking SUSY to N ≤ 3.

Ñs N

1

Ns−1 Ñs N

1

Ns−1

BC1 for fundamental chiral

BC2 for anti-fundamental chiral

BC2 for fundamental chiral

BC1 for anti-fundamental chiral

Figure 5.2 Addition of a fundamental hypermultiplet to 3D N = 4 U(N) theory and the

corresponding modification of the vortex worldline GLSM.

The next simplest are the vortex loops in 3D N = 4 U(N) gauge theory with a fundamental

hypermultiplet. The worldline theory is obtained by adding some more fields to the theory

described previously according to the discussion of Section 4.3.3. The corresponding quiver

diagram is presented in Fig. 5.2. As was explained in Section 5.1, there are two consistent

boundary conditions on the hypermultiplet, which result in two different modification of the

quiver diagram of Fig. 5.1. The added N = 4 chiral multiplet is either in the anti-fundamental

of U(Ñs) or in the fundamental of U(Ns−1), and it has G = −3/2 in both cases. Note that the

model agrees with the one discussed in [11, 20] if the 3D U(N) gauge node is at either end of

the linear quiver.

Background fields for vortex loops in S3. Let us explain what kind of background fields

appear on the worldline of vortex loops in 3D N = 4 gauge theories on S3.
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We recall that the 1D N = 2 SUSY of the vortex worldline theory was defined in accordance

with the 3D SUSY acting on cohomological variables. For vortex loops of N = 4 theory on S3,

the square of the supercharge is given by (here t is the worldline coordinate of period 2π)

Q2
(1D) ∼ −∂t + σ + iAt + i(J3C − J3H − 2M) + (3D vectormultiplet fields). (5.2.1)

N = 4 theories on S3 have the second set of N = 2 SUSY corresponding to the Killing spinors

ξ′, ξ̄′ (5.1.2). It can be used to define the second 1D supercharge Q′
(1D) which squares to

Q′2
(1D) ∼ −∂t − σ + iAt − i(−J3C − J3H − 2M) + (3D vectormultiplet fields)′, (5.2.2)

where the prime on the 3D vectormultiplet fields stands for the Z2 action defined in (5.0.1).

Here one needs to be careful for the fact that the two supercharges are defined by identifying

different sets of cohomological variables as 1D multiplets. The set of 1D variables on which

Q(1D) acts as (3.2.14) or (4.1.1) is therefore different from the set on which Q′
(1D) acts the same

way. But the two sets of variables are related by a simple “gauge transformation” as we now

explain.

Let Φ be a cohomological variable made of 3D fields and ξ, ξ̄ such as Ψ that we considered

in (4.3.1), and Φ′ the same cohomological variable with (ξ, ξ̄) replaced by (ξ′, ξ̄′). Using the

quantum number of Killing spinors listed in Table 5.3 and the fact that cohomological variables

are all 3D Lorentz scalar, one generally finds

∂τΦ = i(H−M)Φ, ∂τΦ
′ = i(H +M)Φ′. (5.2.3)

So the two cohomological variables are related by

Φ′ = e2iMτΦ. (5.2.4)

The gauge transformation relating the two sets of 1D variables explained above is given by the

same formula. Therefore, when considering the action of Q′2
(1D) on Φ instead of Φ′, the RHS

of (5.2.2) has to be shifted by −2iM due to the above gauge transformation. The value of the

background 1D vectormultiplet field is thus determined as follows.

σbg + iAbg
t = i(J3C − J3H − 2M),

−σbg + iAbg
t = −i(−J3C − J3H),

∴
Abg

t = J3C −M,

σbg = −iJ3H − iM.

Thus we recovered the result in Section 5.2 of [11] using a slightly different argument.
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Chapter 6

Conclusion

In this thesis we studied different descriptions of BPS vortex loops in 3D N = 2 gauge theories

and derived exact formulae for their expectation values on an ellipsoid.

In Chapter 1 and Chapter 2 we reviewed N = 2 SUSY gauge theories and the exact formula

for the partition function on 3D ellipsoid using localization techniques. The expectation value of

the vortex loop with the definition based on the singular gauge field were also computed there.

However, as discussed in Chapter 3, we realized that the result needed to be modified in order

to respect the well-known correspondence between Wilson and vortex loops [16]. We found that

our argument has to be modified with regard to the following two points.

(i) One was that we missed another boundary SQM, which is necessary so that the variation

principle lead to the equation of motion and the desired boundary condition. By employing

the coadjoint orbit quantization for the definition of Wilson loops, we demonstrated the

equivalence between Wilson and vortex loops, particularly in bosonic Pure CS theories.

(ii) The another point was that in N = 2 theories the rule of correspondence contains the

unwanted parameter shift λ → λ + ρ̃. We resolved this shift by relating it to the global

anomaly of 1D theory on vortex worldline and canceling it by Wilson lines.

On the other hand, our analysis of the boundary term revealed that vortex loops can also

be defined as a quantum mechanics on a loop interacting with the field theory in 3D space.

To extend the correspondence of the two definitions of vortex loops to a wider class of

N = 2 theories, we developed the descriptions of coadjoint orbit quantum mechanics as quiver

GLSMs. The index of the GLSM was computed by JK-residue prescription and we explicitly

confirmed the correspondence between the two descriptions. We also identified the extensions

of these GLSMs that incorporate the addition of various matter chiral multiplets on the vortex

background. This was done for the matters in the adjoint, fundamental and anti-fundamental

representations of U(N).

As another extension, we studied vortex loops in N = 4 theories consisting of vector and

hypermultiplets. By analyzing them using decomposition into N = 2 multiplets we found that,

in order for the vortex loop to preserve 1/2 SUSY, the adjoint chiral multiplet (which is a part
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of N = 4 vectormultiplet) must always obey BC1. And we identified the the corresponding

worldline quantum mechanics with 1D N = 4 supersymmetry.

However, there still remain some unclear points. Regarding the correspondence between

Wilson and vortex loops in terms of our description, (i) is much clear, whereas (ii) is not: what

the Wilson line corresponds to in the description specified by singular behavior of the field is

not clear. In Chapter 2 we performed exact path integration on singular vortex backgrounds,

but the result did not respect the relation [16] claimed by Moore and Seiberg and a parameter

shift that could be interpreted as an anomaly appeared. It might be interesting to understand

the source and resolutions of this anomaly without moving to the description in terms of 1D-3D

coupled systems.

As noted above, when analyzing N = 4 theories we found the N = 2 adjoint chiral multiplet

must always obey BC1, though the SUSY on the vortex worldline seems to enhance for both

choices of boundary conditions. It may be the case that the mechanism of SUSY enhancement

is different for vortex loops in the ABJM model (for a recent work, see [55]) or other CS-matter

theories with N ≥ 4 SUSY that were classified in [56,57].

Finally, it should be noted that we were able to reproduce the worldline theory for only a

part of the vortex loops that were identified in [11] as the mirror of Wilson loops. The main

limitation for our analysis arises from that the function Vβ(σ̂) has to be expressed as a sum

over elements of W/WK as in (4.2.2) or (4.3.4). This imposes a constraint on the set of poles

contributing to the JK-residue integral for the index I(σ̂). On the other hand, [11] has examples

of vortex loops for which the index receives contributions from more poles. Perhaps this means

there are more vortex loops defined by worldline quantum mechanics than those described by

singular behavior of fields. Or it might be the case that we could reproduce more vortex loops

in [11] by relaxing the assumption of small β (2.4.7). In either case, more thorough study of the

correspondence is needed for a full understanding.
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Appendix A

Killing spinors

A.1 R3

The simplest three-dimensional manifold is R3. The metric in cylindrical coordinate is

ds2 = dr2 + r2dφ2 + dt2, e1 = dr, e2 = rdφ, e3 = dt. (A.1.1)

This coordinate system is suited for studying vortex operators extending in t-direction at r = 0.

By using (1.2.19), it can be easily shown that the only non-zero component of the spin connection

is

Ω12 = −dφ. (A.1.2)

If the background fields Vm, H,Km are zero, the Killing spinor equations (1.2.28) become

∇mξ = 0,

∇mξ̄ = 0,
(A.1.3)

which mean that ξ, ξ̄ are covariantly constant. In this case, by substituting (A.1.2) into the

equations above, one finds the only nontrivial equations are the φ components:

∂φξ =
i

2
γ3ξ,

∂φξ̄ =
i

2
γ3ξ̄.

(A.1.4)

Each equation has two independent solutions, so (A.1.4) has four independent solutions. Two of

them will be of particular importance, since they correspond to the SUSY preserved by certain

1/2-BPS line operators. We choose them to be eigenspinors of γ3 = +1,−1. Their explicit form
is

ξ =

(
e

i
2
φ

0

)
, ξ̄ =

(
0

e−
i
2
φ

)
, (A.1.5)

Note that they are normalized so that ξ̄ξ = −1. The Killing vector is then

v = ξ̄γmξ∂m = −∂t. (A.1.6)

Note that the γ3-eigenvalues of ξ, ξ̄ are +1,−1, respectively, on the t-axis in which we intend to

insert a vortex. The same selection is made for the other examples discussed below.
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A.2 S3 and ellipsoid

Some characteristic properties of ellipsoid are described here. An ellipsoid is defined by its

embedding in R4 as follows [5]:

x21 + x22
ℓ̃2

+
x23 + x24
ℓ2

= 1, ds2 = dx21 + dx22 + dx23 + dx24. (A.2.1)

Moving from cartesian coordinate to polar coordinate by substituting (x1, x2, x3, x4) for (cos θ cosφ,

cos θ sinφ, sin θ cos τ , sin θ sin τ), a set of dreibein is expressed as follows:

e1 = f(θ)dθ, e2 = ℓ̃ sin θdφ, e3 = ℓ cos θdτ, f(θ) =

√
ℓ̃2 sin2 θ + ℓ2 cos2 θ. (A.2.2)

On ellipsoid, non-zero components of the spin connection are

Ω31 = − ℓ
f
sin θdτ, Ω12 = − ℓ̃

f
cos θdφ. (A.2.3)

To solve the Killing spinor equation (1.2.28), we begin by writing each of its component

separately as follows,

(∂θ − iVθ) ξ = i
f

2
γ1κ, (A.2.4)(

∂φ −
i

2

ℓ̃

f
cos θγ3 − iVφ

)
ξ =

i

2
ℓ̃ sin θγ2κ, (A.2.5)(

∂τ −
i

2

ℓ

f
sin θγ2 − iVτ

)
ξ =

i

2
ℓ cos θγ3κ. (A.2.6)

Here Vm is a suitable background U(1) gauge field. Let us, however, first solve the above

equations with gauge field Vm = 0 and f = ℓ̃ = ℓ. This is just looking for Killing spinors on

round S3, but we will need them later when finding supersymmetric ellipsoid background. For

this background one can solve (A.2.4) for κ:

κ = −2iℓ−1γ1∂θξ. (A.2.7)

Futhermore, we assume that ξ has definite φ- and τ -momenta.

ξ̂st = e
i
2
(sφ+tτ) · χ(θ) (s, t = ±1). (A.2.8)

Then (A.2.5) and (A.2.6) can be written as

χ = −2sγ3
(
1

2
cos θ − sin θ∂θ

)
χ (A.2.9)

χ = −2tγ2
(
1

2
sin θ + cos θ∂θ

)
χ. (A.2.10)

Taking the difference of the two equations and then multiplying (γ3s sin θ+γ2t cos θ) one obtains

∂θχ =
i

2
stγ1χ, (A.2.11)
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which is solved by

ξ̂st = e
i
2
(sφ+tτ)

(
Ae

i
2
θ +Be−

i
2
θ

st
(
Ae

i
2
θ −Be−

i
2
θ
) ) , (A.2.12)

for arbitrary A,B. Substituting this into (A.2.9) or (A.2.10) one finds an additional condition

A = −stB. Thus we obtain four independent solutions:

ξ̂++(A = B = 1/2) = e
i
2
(φ+τ)

(
cos θ

2

i sin θ
2

)
,

ξ̂−−(A = −B = 1/2) = e−
i
2
(φ+τ)

(
i sin θ

2

cos θ
2

)
,

(A.2.13)

ξ̂+−(A = B = 1/2) = e
i
2
(φ−τ)

(
cos θ

2

−i sin θ
2

)
,

ξ̂−+(A = −B = 1/2) = e−
i
2
(φ−τ)

(
−i sin θ

2

cos θ
2

)
,

(A.2.14)

where A,B are determined so that ξ̄ξ = ξ̄′ξ′ = −1. And the Killing vector is

ξ̄γaξ = (0,− sin θ,− cos θ), v = −1

ℓ
(∂φ + ∂τ ) . (A.2.15)

It is easy to confirm that ξ̂++, ξ̂−− are the solutions for H = 1
ℓ with Vm = Km = 0, whereas

ξ̂+−, ξ̂−+ are the solutions for H = −1
ℓ .

So far we have been looking at the Killing spinors for f = ℓ̃ = ℓ, i.e. round S3, but what we

actually need is that for ℓ̃ ̸= ℓ, i.e. squashed S3. For generic ℓ̃ ̸= ℓ the Killing spinor equation

has no solution unless background gauge field Vm = 0 is turned on. We determine Vm so that

(A.2.13) or (A.2.14) remain solutions even after ellipsoidal deformation. Solving (A.2.4) for κ

and using the result to eliminate κ in (A.2.5) and (A.2.6), one obtains

−2isf
ℓ̃

(
i
s

2
− iVφ

)
χ = −2sγ2

(
1

2
cos θ − sin θ(∂θ − Vθ)

)
χ (A.2.16)

−2itf
ℓ

(
i
t

2
− iVτ

)
χ = −2tγ1

(
1

2
sin θ + cos θ(∂θ − Vθ)

)
χ. (A.2.17)

By comparing these with (A.2.9) and (A.2.10) one finds that, for the Killing spinor on the round

S3 (A.2.12) to remains solutions, the coefficients of χ on the left-hand sides should be one, and

Vθ has to be zero. Therefore the background gauge field is

V st =
s

2

(
1− ℓ̃

f

)
dφ+

t

2

(
1− ℓ

f

)
dτ. (A.2.18)

This means that if one choose V ++ as the background gauge field, then ξ = ξ̂++ and ξ̄ = ξ̂−−

define the rigid SUSY on the ellipsoid. Throughout this thesis we work with this choice for the

supersymmetric ellipsoid background, namely we choose

V =
1

2

(
1− ℓ̃

f

)
dφ+

1

2

(
1− ℓ

f

)
dτ, H =

1

f
, Km = 0, (A.2.19)
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as the background fields. The Killing vector is

ξ̄γaξ = (0,− sin θ,− cos θ), v = −1

ℓ̃
∂φ −

1

ℓ
∂τ . (A.2.20)

If we chose instead V +− as the background gauge field, then the SUSY would be defined by

ξ = ξ̂+− and ξ̄ = ξ̂−+.

A.3 S2 × S1

Another important background with rigid supersymmetry is S2 × S1 which leads to the path

integral definition of the 3D superconformal index [31, 58]. S2 is parametrized by a spherical

polar coordinate θ, φ (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π) as usual. So the metric is

ds2 = ℓ̃2
(
dθ2 + sin2 θdφ2

)
+ dτ2, e1 = ℓ̃dθ, e2 = ℓ̃ sin θdφ, e3 = dτ, (A.3.1)

where τ ∼ τ + 2πℓ. Non-zero components of spin connections are

Ω12 = − cos θdφ, Ω23 = Ω31 = 0. (A.3.2)

In components, the Killing spinor equation is as follows:

(∂θ − iVθ) ξ =
i

2
ℓ̃γ1κ, (A.3.3)(

∂φ −
i

2
cos θγ3 − iVφ

)
ξ =

i

2
ℓ̃ sin θγ2κ, (A.3.4)

(∂τ − iVτ ) ξ =
i

2
γ3κ. (A.3.5)

Let us focus on the first two equations. If Vθ = Vφ = 0, (A.3.3) and (A.3.4) imply(
∂φ −

i

2
cos θγ3

)
ξ = −i sin θγ3∂θξ. (A.3.6)

Taking the ansatz

ξ̂s ≡ e
i
2
sφ · χ(θ) · ρ(τ), (s = ±1) (A.3.7)

the differential equation (A.3.6) is rewritten as

χ = 2sγ3
(
1

2
cos θ − sin θ∂θ

)
χ, (A.3.8)

which is solved by

χs =

 A
(
sin θ

2

) 1
2
(1−s) ·

(
cos θ

2

) 1
2
(1+s)

B
(
sin θ

2

) 1
2
(1+s) ·

(
cos θ

2

) 1
2
(1−s)

 . (A.3.9)

Thus the solution to (A.3.3),(A.3.4) is given by a linear combination of

ξ̂+ = e
i
2
φρ(τ)

(
A(+) cos

θ
2

B(+) sin
θ
2

)
, ξ̂− = e−

i
2
φρ(τ)

(
A(−) sin

θ
2

B(−) cos
θ
2

)
. (A.3.10)
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Let turn to the τ component of the Killing spinor equation (A.3.5). It does not have nontrivial

solution for Vτ = 0.15 Turning on non-zero Vτ and setting ρ = const., one finds that ξ̂+ satisfies

(A.3.5) if

Vτ

(
A(+)

B(+)

)
=

i

2ℓ̃

(
0 1

1 0

)(
A(+)

B(+)

)
, (A.3.11)

which is solved by Vτ = ± i
2ℓ and B(+) = ±A(+). In the same way, for ξ̂− one finds

Vτ

(
A(−)

B(−)

)
= − i

2ℓ̃

(
0 1

1 0

)(
A(−)

B(−)

)
, (A.3.12)

which is solved by Vτ = ∓ i
2ℓ̃

and B(−) = ±A(−). The Killing spinor equation for ξ̄ can be solved

in the same way by noticing that only the sign in front of Vτ is flipped. On S2 × S1 there are

two pairs of Killing spinors:

ξ = e
i
2
φ

(
cos θ

2

sin θ
2

)
, ξ̄ = e−

i
2
φ

(
sin θ

2

− cos θ
2

)
, for Vτ =

i

2ℓ̃
, (A.3.13)

ξ′ = e
i
2
φ

(
cos θ

2

− sin θ
2

)
, ξ̄′ = e−

i
2
φ

(
sin θ

2

cos θ
2

)
, for Vτ = − i

2ℓ̃
, (A.3.14)

which are normalized, so that ξ̄ξ = ξ̄′ξ′ = − cos θ． Note that (A.3.5) implies H−i /K = −2γ3Vτ ,
so the Killing spinors ξ, ξ̄ are for H = 0, /K = 1

ℓ̃
γ3, whereas ξ′, ξ̄′ are for H = 0, /K = −1

ℓ̃
γ3. If

the pair ξ, ξ̄ is chosen as the SUSY-preserving Killing spinors, the Killing vector is

ξ̄γaξ = (0, i sin θ,−1), v = −1

ℓ̃
∂φ − i∂τ . (A.3.15)

15Suppose ρ(τ) = e
i
2
qτ with q ∈ R, the differential equation of τ component (A.3.5):

∂θχ =
qℓ

2
γ2χ

has no solution except A = B = 0.
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Appendix B

Geometric Quantization

B.1 Prequantization

Let M be a symplectic manifold with a symplectic form ω = 1
2ωmndx

mdxn. Then for every

vector field X = Xm∂m such that £Xω = 0, there is a function f called moment map satisfying

df + ıXω = 0, (B.1.1)

or in components

∂nf +Xmωmn = 0. (B.1.2)

In what follows we denote the vector field corresponding to a function f by X(f).

The prequantization is defined as the following map from functions (f, g, h, . . .) on M to

differential operators (f̂ , ĝ, ĥ, . . .)

f̂ ≡ −iℏX(f)− ıX(f)ϑ+ f, (B.1.3)

acting on certain Hilbert space of wave functions. Here ϑ is a one-form satisfying ω = dϑ. One

can show that, under this map, the classical Poisson bracket {f, g} ≡ (ω−1)mn∂mf ∂ng = h

turns into the commutation relation:

[ f̂ , ĝ ] = iℏ ĥ. (B.1.4)

In order to show the above statement, it is enough to derive

[X(f), X(g)] = −X(h), (B.1.5)

−iℏX(f){g − ıX(g)ϑ}+ iℏX(g){f − ıX(f)ϑ} = iℏ{h− ıX(h)ϑ}. (B.1.6)

First, note that the Poisson bracket can be written in terms of X(f) by using (B.1.2).

{f , g} = −X(f) · g (B.1.7)
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We thus obtain, for any function ϕ on M ,

[X(f) , X(g)]ϕ = X(f)X(g) · ϕ−X(g)X(f) · ϕ

= {f, {g, ϕ}} − {g, {f, ϕ}}

= {{f, g}, ϕ}

= −X(h) · ϕ.

(B.1.8)

thereby proving (B.1.5). Here we used the Jacobi identity at the third equality. Second, the

LHS of (B.1.6) is expanded as

(LHS)

iℏ
= 2h+X(f)mX(g)n(∂mϑn − ∂nϑm) + (X(f)m∂mX(g)n −X(g)m∂mX(f)n)ϑn. (B.1.9)

The second term is −{f, g} = −h, and the third term is ı[X(f),X(g)]ϑ = −ıX(h)ϑ, thus (B.1.6)

has been proved.

An Example: M = R2, ω = dp dq This example is a two-dimensional phase space which

occur in classical mechanics for a single particle moving in one-dimension. The variables p, q

stand for the position and the momentum. The vector fields which generate translations on M

are given by

X(q) = −∂p, X(p) = ∂q. (B.1.10)

Here we used wpq = (w−1)qp = 1. Then we implement the prequantization as discussed above

and obtain
q̂ = −iℏX(q)− ıX(q)ϑ+ q = iℏ∂p + q,

p̂ = −iℏX(p)− ıX(p)ϑ+ p = −iℏ∂q,
(B.1.11)

where we set ϑ = pdq. These are familiar results of one-dimensional quantum mechanics except

the term iℏ∂p appearing in q̂. The polarization, the second step of the geometric quantization,

settles this issue by restricting the quantum wavefunctions to depend only on q.

B.2 Complex structure

A manifoldM is said to have a complex structure ifM has an almost complex structure which is

integrable. In that case, M can be covered by complex coordinate patches. An almost complex

structure Jm
n on M is a tensor field satisfying J2 = −1. Since a real matrix J satisfying

J2 = −1 must have eigenvalues ±i with equal multiplicities, M must be a real even-dimensional

manifold. The complexified tangent space TxM
C can be decomposed into the eigenspace TxM

±

of eigenvalues J(x) = ±i.
TxM

C = TxM
+ ⊕ TxM−. (B.2.1)

Vector fields V (V̄ ) are called holomorphic(anti-holomorphic) if JV = +iV (JV̄ = −iV̄ ), where

the action of J on vector fields is defined as follows.

J : V = V i∂i 7−→ JV = V iJ j
i∂j . (B.2.2)
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As an example, let us consider the tangent space of a complex manifold M of dimCM = k.

The tangent space TpM is spanned by 2k vectors{
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xk
;
∂

∂y1
,
∂

∂y2
, . . . ,

∂

∂yk

}
. (B.2.3)

With the same coordinates, T ∗
pM is spanned by{
dx1,dx2, . . . ,dxk ; dy1, dy2, . . . ,dyk

}
. (B.2.4)

Suppose that the coordinate xm, ym are chosen such a way that J(p) satisfies

J(p)

(
∂

∂xm

)
=

∂

∂ym
, J(p)

(
∂

∂ym

)
= − ∂

∂xm
, (B.2.5)

so that J(p)2 = −idTpM . Then by defining a set of 2k vectors by

∂

∂zm
≡ 1

2

(
∂

∂xm
− i ∂

∂ym

)
,

∂

∂z̄m
≡ 1

2

(
∂

∂xm
+ i

∂

∂ym

)
,

(B.2.6)

one can check that the almost complex structure J(p) acts on the complex basis (B.2.6) as

J(p)

(
∂

∂zm

)
= i

∂

∂zm
, J(p)

(
∂

∂z̄m

)
= −i ∂

∂z̄m
. (B.2.7)

Then zm = xm+ iym is the complex coordinate on M . In fact the action of J(p) is independent

of the chart. Let zm = xm + iym and ωm = um + ivm be two charts overlapping at p. As the

function zm = zm(ω) satisfy the Cauchy-Riemann relations on this overlap, one finds

J(p)

(
∂

∂um

)
= J(p)

(
∂xn

∂um
∂

∂xn
+
∂yn

∂um
∂

∂yn

)
=

∂

∂vm
, (B.2.8)

and likewise,

J(p)

(
∂

∂vm

)
= − ∂

∂um
. (B.2.9)

Therefore, J(p) takes the form

J(p) =

(
0 −Ik
Ik 0

)
, (B.2.10)

with respect to the coordinates xm, ym as well as um, vm, where Ik is the k × k unit matrix.

An almost complex structure J is integrable if the Nijenhuis tensor N i
jk defined by

Nk
ij ≡ J l

i(∂lJ
k
i − ∂jJk

l)− J l
j(∂lJ

k
i − ∂iJk

l) (B.2.11)

vanishes. This condition is actually equivalent to that the Lie bracket of two holomorphic vector

fields be holomorphic. That is to say, for arbitrary vector fields V,W , the following equation

holds:

(J − i)[(J + i)V, (J + i)W ] = 0 (B.2.12)
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Using J2 = −1 and then i(J − i) = −J(J − i), the LHS of (B.2.12) can be written as

LHS = (J − i) {[JX, JV ]− [V,W ]− J [JX, V ]− J [X, JV ]} . (B.2.13)

The expression inside the big parenthesis above is rewritten in component notation.

{· · · } = (JV )i∂i(JW )k − (JW )i∂i(JV )k − V i∂iW
k +W i∂iV

k

− Jk
l

{
(JV )i∂iW

l − (JW )i∂iV
l + V i∂i(JW )l −W i∂i(JV )l

}
= (JV )i∂iJ

k
l ·W l − (JW )i∂iJ

k
l · V l − Jk

l

{
V i∂iJ

l
m ·Wm −W i∂iJ

l
m · V m

}
= V jW l

{
J i

j∂iJ
k
l − J i

j∂iJ
k
l − Jk

l∂jJ
i
l + Jk

i∂lJ
i
j

}
= V jW lNk

jl.

So the condition (B.2.11) is equivalent to Nk
ij = 0 as claimed.

Now let us make some comments on the case M = AdG(λ) = G/K in Section 3.2.1. If

g = Lie(G) is decomposed as g = k ⊕ n such that [k, n] ⊂ n, then n is identified with TλM . An

almost complex structure (B.2.1) thus corresponds to a decomposition

nC = n+ ⊕ n−, (B.2.14)

where n± are the eigenspaces of J = ±i. This almost complex structure is integrable if n± are

closed under Lie bracket relations, namely

[n+, n+] ⊂ n+, [n−, n−] ⊂ n−. (B.2.15)

The adjoint orbit M then has a complex structure: in other words, there exist a system of local

complex coordinate (zI , z̄J̄) on M .

Let g(zI , z̄J̄) be the map from M to G introduced in Section 3.2, expressed as a function of

the complex coordinate. The the tangent space of M at (zI , z̄J̄) is given by

TC
(zI ,z̄J̄ )

M = Adg(zI ,z̄J̄ )(n
C) = Adg(zI ,z̄J̄ )(n

+)⊕Adg(zI ,z̄J̄ )(n
−), (B.2.16)

where Adg(zI ,z̄J̄ )(n
C) ≡ {gξg−1|ξ ∈ nC}. This implies a relation of the form Eq. (3.2.6) between

the holomorphic tangent vectors ∂
∂zI

and the elements of Adg(zI ,z̄J̄ )(n
+).

∂g(zI , z̄J̄)

∂zJ
= ξJ · g(zI , z̄J̄) + g(zI , z̄J̄) · ηJ (ξJ ∈ Adg(zI ,z̄J̄ )(n

+))

= g(zI , z̄J̄)(ξ̃J + ηJ) (ξ̃J ∈ n+)

and similarly for the antiholomorphic counterpart. Equivalently, if we denote d = ∂ + ∂̄, one

has

g−1∂g ∈ kC ⊕ n+, g−1∂̄g ∈ kC ⊕ n−. (B.2.17)

87



Then we find that KKS 2-form (3.2.7) is of type (1, 1) with respect to this complex structure.

ω = −2iTr[λ
(
(g−1∂g)2 + (g−1∂̄g)2 + g−1∂g · g−1∂̄g + g−1∂̄g · g−1∂g

)
]

= −2iTr[λ(∂g−1 · ∂̄g + ∂̄g−1 · ∂g)]

Here the first and second terms of first line vanish due to (B.2.17). Let g−1∂g = µiHi + µαEα,

where Hi ∈ k, Eα ∈ n+ and µi, µα are one-forms. Then the first term can be rewritten as follows.

Tr[λ(g−1∂g)2] = Tr
[
λ(µiHi + µαEα)

2
]

= Tr [λ([Hi, Hj ]µiµj + [Eα, Eβ]µαµβ + (HiEα − EαHi)µiµα)]

One can show each term is indeed zero by using the fact that Tr[AB] is nonzero only if A ∈
n±, B ∈ n∓ or A,B ∈ k. Likewise, the second term λ(g−1∂̄g)2 is zero. Thus the KKS symplectic

form is of type (1, 1), so M is Kähler manifold.
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Appendix C

Jeffrey-Kirwan residue

C.1 Basic idea

Here we review the basic idea of Jeffrey-Kirwan(JK) residue to understand the detail of the

computation of indices for N = 2 SQMs discussed in Section 4.2. We mainly follow [50].

Let us consider the Gaussian path integral of a chiral multiplet (4.1.3) in a representation

Λc of a gauge group G:

Lc = (ϕ̄ , ψ̄)

(
−D2

t + σ2 − iD −iλ
−iλ̄ −iDt − iσ

)(
ϕ

ψ

)
.

We regard the vectormultiplet fields At, σ, λ, λ̄,D here as Cartan valued constants. The one-loop

determinant for the chiral multiplet is then given by

∏
n∈Z

sdet

(
(n− u)(n− ū)− iD −iλ

−iλ̄ n− ū

)

=
∏
n∈Z

∏
qi∈Λc

qiaū
a − n

|qiaua − n|2 − iqiaDa − (qiaua − n)−1qiaλaqiaλa
, (C.1.1)

where qi is the charge of the i-th chiral multiplet component and a = 1, 2, . . . , r = rank(G). We

rewrite this infinite product further by introducing the fermions ξ, η defined by

ξ ≡ i(ϵλ̄+ ϵ̄λ), η ≡ 1

2
(ϵλ̄− ϵ̄λ).

These are linear combinations of λ, λ̄ such that ξη = λλ̄ and Q acts on the vectormultiplet

variables as

Qu = 0, Qū = ξ, Qξ = 0, Qη = D, QD = 0. (C.1.2)

We denote the linear function of ua that appear in the denominator of (C.1.1) collectively as ui,

so that ∏
n∈Z

∏
qi∈Λc

(qiau
a − n) =

∏
i

ui.
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Similar notation will be used for their complex conjugate ū and the other variables D, ξ, η as

well. The infinite product (C.1.1) becomes∏
i

ūi
|ui|2 − iDi + iξiηi(ūi)−1

, (C.1.3)

thus the integral of our interest for rank-r gauge theory is written as follows.∫
drudrūdrξdrηdrD · e−

D2

2e2
−iζD

∏
i

ūi
|ui|2 − iDi + iξiηi(ūi)−1

· (· · · ). (C.1.4)

Here (· · · ) is the contribution to the determinant form vector and fermi multiplets.

In order to avoid problems of divergence we will encounter later, at this point we remove

the tubular neighborhood of ui = 0 for each i from the u-integration domain. Also, we shift the

D-integration contour off the real axis so that Da ∈ R− iδa (a = 1, 2, . . . , r) .

Rank-1 case. For simplicity we first consider the rank-1 case, assuming that ui is the following

linear function of u.

ui = qiu− ni

For simplicity, we focus on the jth factor of infinite product (C.1.4) and consider whether to

pick the residue of the pole ui = 0 (u = ini/qi). Expanding it with respect to ξiηi,

ūi
|ui|2 − iDi

− iξiηi
(|ui|2 − iDi)2

+ · · · ,

one can integrate these fermions out, and the integral we want to evaluate is then,∫
dudūdξdηdD

ūi
|ui|2 − iDi + iξiηi(ūi)−1

=
1

|qi|

∫
M

duidūidDi

i(|ui|2 − iDi)
(C.1.5)

=
1

|qi|

∫
R−iqiδ

dDi

Di

∫
M

duidūi∂̄i

(
ūi

|ui|2 − iDi

)
=

1

|qi|

∫
R−iqiδ

dDi

Di

∫
∂M

ūidui
|ui|2 − iDi

(C.1.6)

Here M denote the complex ui-plane with the origin removed. In the third equality, we applied

the Stokes theorem to the uh-integral, and then rewrote it as a contour integral along ∂M . Also,

the contour of Di-integral is deformed from the real axis to R − iqiδ. There is a simple pole

at Di = 0 in (C.1.6), even though Di = 0 was perfectly regular in (C.1.5). That is why we

deformed Di contour in advance. Now we evaluate the integral above in each components of

∂M . First, we focus on one of ∂M , the one going around the hole. Another one at infinity will

be discussed later.

Whether the boundary component contributes to the integral depends on the sign of qiδ.

• If qiδ < 0, then Re(|ui|2 − iDi) = |ui|2 − qiδ > 0. The radius of the ui contour can be

shrunk as one likes. In this case, there is no contribution to the integral from contour

around ui = 0.
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• If qiδ > 0, then Re(|ui|2 − iDi) can vanish. To evaluate this contribution, we deform the

Di contour that is below the real axis to be above it. In this deformation, it hits the

pole at Di = 0, then we find that one should integrate over the Di contour along a line

above the real axis plus a circle going around the origin counterclockwise. Similarly to

the previous case, when Di takes value on a line above the real axis, the ui contour can

be shrunk without any problem. The Di contour over this line thus contributes nothing.

The contribution from the circle can be evaluated easily, and leaves us with a ui-contour

integral that goes around the pole at ui = 0 clockwise. One obtains,

1

|qi|

∮
ccw

dDi

Di

∮
cw

ūidui
|ui|2 − iDi

=
2πi

|qi|

∮
cw

dui
ui

=
4π2

|qi|
. (C.1.7)

In summary, the whole contribution of the bulk poles are expressed as follows.

Ibulk =



∑
i(qi>0)

Resu=ni/qi

(
du∏

i(qiu− ni)

)
(δ > 0)

−
∑

i(qi<0)

Resu=ni/qi

(
du∏

i(qiu− ni)

)
(δ < 0)

. (C.1.8)

Let us next consider the contribution of the boundary of ∂M at infinity. In this case, since

the FI parameter ζ plays significant role, we study the following integral with ζ restored.

I ≡ 1

4π2

∫
dudūdξdηdDe−

D2

2e2
−iζD

∏
i

ūi
|ui|2 − iDi + iξiηi/ūi

=
1

4π2

∫
R−iδ

dD

D
e−

D2

2e2
−iζD

∫
∂M

du
∏
i

qiū− ni
|qiu− ni|2 − iqiDi

When ui are on the circle at infinity, one may integrate over D first. If ζ > 0 (or ζ < 0), one can

close the D-integration contour in the lower (or upper) half-plane. Besides D = 0, there seem to

be many poles at D = |qiu− ni|2/iqi. But it was argued in [18] that the limit e→ 0 should be

taken with ζ ′ ≡ ζe2 and D′ ≡ D/e2 held fixed. So all the poles of the integrand except D′ = 0

are at a distance ∼ e−2 from the origin and negligible. As a result, the D-contour contains only

the pole at D = 0 for ζδ < 0. After the D-integral one obtains a u-contour integral which picks

up all the bulk pole residues.

I∞ =



−
∑
all i

Resu=ni/qi

(
du∏

i(qiu− ni)

)
(δ > 0, ζ < 0)

∑
all i

Resu=ni/qi

(
du∏

i(qiu− ni)

)
(δ < 0, ζ > 0)

0 (otherwise)

, (C.1.9)

The sum of the bulk pole and infinity contribution depends on the sign of ζ but not on the

regularization parameter δ.
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• ζ > 0

I ≡ Ibulk + I∞ =



∑
i(qi>0)

Resu=ni/qi

(
du∏

i(qiu− ni)

)
+ 0 (δ > 0)

−
∑

i(qi<0)

Resu=ni/qi

(
du∏

i(qiu− ni)

)
+
∑
all i

Resu=ni/qi

(
du∏

i(qiu− ni)

)
(δ < 0)

=
∑

i(qi>0)

Resu=ni/qi

(
du∏

i(qiu− ni)

)
. (C.1.10)

• ζ < 0

I ≡ Ibulk + I∞ =



∑
i(qi>0)

Resu=ni/qi

(
du∏

i(qiu− ni)

)
−
∑
all i

Resu=ni/qi

(
du∏

i(qiu− ni)

)
(δ > 0)

−
∑

i(qi<0)

Resu=ni/qi

(
du∏

i(qiu− ni)

)
+ 0 (δ < 0)

= −
∑

i(qi<0)

Resu=ni/qi

(
du∏

i(qiu− ni)

)
. (C.1.11)

So it is convenient to choose δ = ζ so that one can ignore the contribution from infinity. Then

we should take poles at ui = 0 such that qiζ > 0 only.

Rank-r case. For the case with general rank r, one has

ui = ni − iqiaua, ūi = ni + iqiaūa,

ξi = qiaζa, ηi = qiaηa, Di = qiaDa,
(C.1.12)

where a = 1, . . . , r. Let us first consider whether or not the intersection of r hyperplanes

u1 = u2 = · · · = ur = 0 (C.1.13)

contributes to the integral for simplicity. As in the previous analysis, we extract only the relevant

factors from the full integrand.

I =

∫ r∏
a=1

duadūadξadηadDa

r∏
i

ūi
|ui|2 − iDi + ξiηi(ūi)−1

=
1

|det(qia)|

∫
dru

r∏
i=1

dūidDi

i(|ui|2 − iDi)2
.

(C.1.14)

Since this is the product of r copies of the rank-1 problem (C.1.6), one may well think that

this pole contributes to the integral if qaiδa > 0 for all i. However, this is not the correct JK

prescription for a general rank-r. Nevertheless, let us continue the discussion based on this

regularization for a while.

92



In the rank-1 case, a d2u integral was transformed into a contour du-integral using Stokes

theorem. Generalization of this to rank-r case a little involved. Let us first consider the integral

(C.1.14) with the domain of u-integration

M ≡ {(u1, u2, . . . , ur) ∈ Cr
∣∣ |ui| ≥ ϵ for all i}. (C.1.15)

The boundary of M and that of ∂M are given by

∂M = −
∑
i

Si, Si ≡ {|ui| = ϵ; |uj | ≤ ϵ for all other j},

∂Si = −
∑
j ̸=i

Sij , Sij ≡ {|ui| = |uj | = ϵ; |uk| ≤ ϵ for all other k} = Si ∩ Sj ,

...

(C.1.16)

where we ignored the boundary at infinity for simplicity. Moreover, there is a cell decomposition

of M of the form

M =
∑
i

Ci, ∂Ci =
∑
j ̸=i

Cij − Si, ∂Cij =
∑
k ̸=i,j

Cijk − Sij , . . . . (C.1.17)

The integral we consider (C.1.14) is rewritten using a 3r-form µ,

I =
1

|det(qia)|

∫
M×Γ

µ, µ ≡
r∏

i=1

dūidDi

i(|ui|2 − iDi)2
∧ dru, (C.1.18)

where Γ is the D-contour. The exterior derivative with respect to ūi: ∂̄ ≡ dui
∂

∂ūi
raises the

degree of differential form by one. As an example one has

∂̄µi = µ, (C.1.19)

where the (3r − 1)-form µi is given by

µi =
ūidDi

Di(|ui|2 − iDi)
∧

r∏
j ̸=i

dūjdDj

i(|uj |2 − iDj)2
∧ dru. (C.1.20)

More generally, one can define the (3r − p)-form satisfying the decent relation as follows.

µi1i2···ip =
∏

j∈{i1,i2,...,ip}

ūidDi

Di(|ui|2 − iDi)

r∏
j /∈{i1,i2,...,ip}

dūjdDj

i(|uj |2 − iDj)2
∧ dru,

∂̄µi1i2···ip = µi2i3···ip − µi1i3···ip + · · ·+ (−)p−1µi1i2···ip−1

(C.1.21)

By applying Stokes theorem to the integral (C.1.18) once, one obtains∫
M
µ =

∑
i

∫
Ci

∂̄µi

=
∑
i

∑
j ̸=i

∫
Cij

µi −
∫
Si

µi


=
∑
i<j

∫
Cij

(µi − µj)−
∑
i

∫
Si

µi.

(C.1.22)
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In the second equality, we used the cell decomposition (C.1.17). The first term on the last line

is the integral over a cell Cij of the differential form ∂̄µij . By r times repeated use of Stokes

theorem, the result is as follows.

∫
M
µ = · · · =

∑
i1<i2<···<ir

 ∑
j ̸=i1,i2,...,ir

∫
Ci1i2···ir

µi1i2···ir −
∫
Si1i2···ir

µi1i2···ir


−

r−1∑
p=1

∑
i1<i2<···<ip

∫
Si1i2···ip

µi1i2···ip

= −
r∑

p=1

∑
i1<i2<···<ip

∫
Si1i2···ip

µi1i2···ip (C.1.23)

Let us now integrate also with respect to Di over Γ = {Di ∈ R− iδi}, where δi ≡ qiaδa. We take

the D-integral into account and consider an integral, a part of (C.1.23).∫
Si1i2···ip×Γ

µi1i2···ip (C.1.24)

The integral vanishes if δj > 0 for some j ∈ {i1, i2, . . . , ip}, because Si1i2···ip can then be shrunk

without problem. If δj > 0 for all j ∈ {i1,i2,...,ip}, then we move the integration contour for

Di1 , Di2 , . . . , Dip to the other side of the origin as in the rank-1 case. We thus find

I ≡
∫
M×Γ

µ = −
r∑

p=1

∑
i1<i2<···<ip

∫
Si1i2···ip×Γ

µi1i2···ip

= −
r∑

p=1

∑
i1<i2<···<ip

∏
j∈{i1,i2,...,ip}

Θ(δj) · Ii1i2···ip (C.1.25)

where Θ(x) is the step function, equal to one if x > 0 and zero otherwise, and

Ii1i2···ip ≡
∫
Si1i2···ip×Γi1i2···ip

µi1i2···ip , (C.1.26)

Γi1i2···ip ≡ S1
Di1
× S1

Di2
× · · ·S1

Dip
×

∏
j /∈{i1,i2,...,ip}

(R− iδj). (C.1.27)

Note that Ii1i2···ip is a (3r − p)-dimensional integral, of which the integration with respect to

(u1, u2, . . . , up; D1, D2, . . . , Dp) can be performed straightforwardly. The resulting 3(r − p)-

dimensional integral is the rank-(r − p) version of the same problem, so that by repeatedly

applying Stokes theorem to it one obtains

Ii1i2···ip = −
r∑

q=p+1

∑
ip+1<···<iq

∫
Si1i2···iq×Γi1i2···iq

µi1i2···iq

= −
r∑

q=p+1

∑
ip+1<···<iq

∏
j∈{ip+1,...,iq}

Θ(δj) · Ii1i2···iq . (C.1.28)
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The relation (C.1.25) can be thought of as the case p = 0 of the (C.1.28).

By using (C.1.28) repeatedly, one can prove the following formula by induction.

Ii1i2···ip = (−)r−p

 ∏
j /∈{i1,i2,...,ip}

Θ(δj)

 · Ii1i2···ir , (C.1.29)

This implies that, for the special case p = 0, the regularized integral

I = (−1)r
[

r∏
i=1

Θ(δi)

]
· Ii1i2···ir (C.1.30)

picks up the residue of the pole u1 = u2 = · · · = ur = 0 if δi = qiaδa > 0 for all i.

Genelarization. The above argument can be generalized to the cases where the integrand

consists of more than r factors so that the domain of u-integration has a collection of k(> r)

hyperplanes. One can show that the following differential forms

µi1i2···ip =
∏
k

ūk
|uk|2 − iDk

∏
j∈{i1,i2,...,ip}

dDj

Dj
∧ 1

(r − p)!

(∑
ℓ

dūℓdDℓ

iuℓ(|uℓ|2 − iDℓ)

)r−p

∧dru (C.1.31)

satisfy the decent relation (C.1.21). The proof goes as follows. Let us first introduce the notation∏
k

ūk
|uk|2 − iDk

≡ g,
∑
ℓ

dūℓdDℓ

iūℓ(|uℓ|2 − iDℓ)
= dūahabdD

b = hbdD
b, (C.1.32)

and then (C.1.31) is rewritten as

µi1i2···ip = g

 ∏
j∈{i1,i2,...,ip}

dDj

Dj

 ∧ 1

(r − p)!
(hadD

a)r−p ∧ dru. (C.1.33)

Using the relation

∂̄g ≡ dūa
∂g

∂ūa
= g

∑
ℓ

dūℓDℓ

iūℓ(|uℓ|2 − iDℓ)
= ghbD

b, (C.1.34)

one can expand ∂̄µi1i2···ip explicitly as follows.

∂̄µi1i2···ip = g (hbD
b)
qi1a1 · · · qipap dDa1 · · · dDap

Di1 · · ·Dip

∧ 1

(r − p)!
(hap+1dD

ap+1 · · ·hardDar) ∧ dru

(C.1.35)

In the RHS, the indices a1 · · · ar must be all different and, since ha’s anticommute, the index b

of hbD
b has to agree with one of {a1, . . . , ap}. For example b = a1,

RHS(b = a1) = gha′1D
a′1 · qi1a1dD

a1

Di1

·
qi2a2 · · · qipap dDa2 · · · dDap

Di2 · · ·Dip

∧ 1

(r − p)!
(hadD

a)r−p ∧ dru

= g

 ∏
j∈{i2,...,ip}

dDj

Dj

 ∧ 1

(r − p+ 1)!
(hadD

a)r−(p−1) ∧ dru

= µi2···ip .
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So the summation of the all b follows (C.1.21). As in the rank-1 case we remove from the

domain M of u-integration the tubular neighborhood of the singular hyperplane uk = 0 for each

k. Denoting the surface of the k-th tube by Sk we have as (C.1.16),

∂M = −
∑
k

Sk, ∂Sk = −
∑
l ̸=k

Skl, · · · . (C.1.36)

Moreover, M can be cell-decomposed into the form (C.1.17) by defining Ck as the set of points

of M whose nearest boundary component is Sk. Then the repeated application of the Stokes’

theorem works in the same way as the before.

C.2 The rule of JK-residue

One of the regularization prescription introduced above, namely the rule of the shift of the D-

integration contour, needs to be reconsidered here. In (C.1.27) we defined Γi1···ip as a product

of a p-torus, |qj · D| ≡ |qjaDa| = ϵ for j ∈ {i1, i2, . . . , ip}, and (r − p)-dimensional hyperplane

Im(qj ·D) = −qj · δ for j /∈ {i1, i2, . . . , ip}. As long as one considers the problem for which the

integrand has exactly r singular hyperplanes intersecting at a point (C.1.13), the definition of

Γi1i2···ip (C.1.27) dose not cause any problem. However, in general one needs to consider many

poles if there are more than r hyperplanes as noted above.

In this general case, the imaginary shift of the contour Γi1···ip should be specified by a vector

δi1i2···ip such that

qi1 · δi1i2···ip = · · · = qip · δi1i2···ip = 0. (C.2.1)

Given a δ and {qi1 , qi2 , . . . , qip}, there is no way to determine such a δi1i2···ip uniquely. Therefore

it seems that, as was explained in [50], the only thing we can do is to introduce an independent

shift parameter δi1i2···ip for each of Γi1···ip .

The JK-residue prescription begins by choosing a reference vector η ∈ h∗. For each D-

integration contour Γi1···ip , the shift parameter δi1i2···ip has to be chosen so that

η · δi1i2···ip > 0 (C.2.2)

is satisfied in addition to (C.2.1). Then the rest of the computation is much the same as before.

One obtains a set of recursion relations

I = −
r∑

p=1

∑
i1<i2<···<ip

∏
j∈{i1,i2,...,ip}

Θ(qj · δ) · Ii1i2···ip ,

Ii1i2···ip = −
r∑

q=p+1

∑
ip+1<···<iq

∏
j∈{ip+1,...,iq}

Θ(qj · δi1i2···iq) · Ii1i2···iq ,

which are solved by [50]

Ii1i2···ip = (−)r−p
∑

ip+1<···<ir

 ∏
j∈{ip+1,...,ir}

Θ(qj · δi1··· ȷ̂ ···ir)

 · Ii1i2···ir , (C.2.3)
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where ȷ̂ stands for the omission of j. In particular,

I = (−1)r
∑

i1<i2<···<ir

 ∏
j∈{i1,i2,...,ir}

Θ(qj · δi1··· ȷ̂ ···ir)

 · Ii1i2···ir . (C.2.4)

So the pole ui1 = ui2 = · · · = uir = 0 contributes to the JK-residue integral I if qj · δi1··· ȷ̂ ···ir > 0

for all j ∈ {i1, i2, . . . , ir}. We can rephrase the above result into the main rule of JK-residue

prescription as follows.

• The pole ui1 = ui2 = · · · = uir = 0 contributes to the JK-residue integral I if η is contained

in a cone spanned by the r charge vectors qi1 , qi2 , . . . , qir , or equivalently if

η =

r∑
k=1

ckqik , c1, c2, . . . , cr > 0. (C.2.5)

One can easily confirm that this is equivalent to what is concluded after (C.2.4). From (C.2.1)

and (C.2.2), we have

0 < η · δi1··· ȷ̂ ···ir =
r∑

k=1

ckqik · δi1··· ȷ̂ ···ir = cjqj · δi1··· ȷ̂ ···ir , (C.2.6)

thus Θ(δi1··· ȷ̂ ···ir) = Θ(cj).
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