鋼製透過型砂防堰堤の損傷分析 に対する個別要素法適用に関する研究

防衛大学校理工学研究科後期課程

装備基盤工学系専攻 防災工学教育研究分野

嶋川 理

令和5年3月

第1章 序 論

1.1	矿	· ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	1
1.2	被	b災事例 ······	2
	.2.1	長野県南木曽町の例	2
]	.2.2	新潟県根知川の例	3
1	.2.3	山梨県大武川の例	4
1.3	Ŧ	石流荷重に関する既往研究	4
1.4	\pm		5
1.5	鎁	製透過型砂防堰堤の現行設計荷重	6
1.6	鎁	管の破壊に関する既往研究	7
1.7	鎁	製透過型砂防堰堤を扱った全体応答解析	7
1.8	個		8
1.9	 本	≍論文の目的と構成	10

第2章 本研究で用いる個別要素法の基本式と手順

2.1	緒	言
2.2	全体	本座標系における要素の初期位置と姿勢
2.2	.1	球形要素
2.2	.2	円柱形要素
2.2	.3	三角形要素
2.3	位間	置と姿勢の更新
2.3	.1	位置座標
2.3	.2	姿勢マトリクス
2.4	運動	助方程式の解法
2.4	.1	並進運動
2.4	.2	回転運動
2.5	ばオ	a要素の局所座標系への座標変換
2.5	.1	球形要素間
2.5	.2	円柱形要素~球形要素
2.5	.3	三角形要素~球形要素
2.6	接触	独判定,つり合い条件および変形適合条件19
2.6	.1	球形要素間
2.6	.2	円柱形要素~球形要素(typeA)
2.6	.3	円柱形要素~球形要素(typeB)
2.6	.4	円柱形要素~球形要素 (typeC)
2.6	.5	球形要素~平面要素

2.7 一般座標系での変形適合条件およびつり合い条件 2
2.7.1 球形要素間
2.7.2 円柱形要素~球形要素(typeA) 2
2.7.3 円柱形要素~球形要素(typeB)
2.7.4 円柱形要素~球形要素(typeC)
2.8 構成則および一般座標系でのつり合い条件 2
2.9 集合体要素の解析手法
2.9.1 集合体要素の局所座標系と構成要素
2.9.2 集合体要素の質量と慣性モーメント 2
2.9.3 慣性モーメントと姿勢
2.9.4 集合体要素の動きと構成要素間の物理量の展開と集約
2.10 構成則
2.10.1 接触ばね
2.10.2 連結ばね
2.11 流速分布モデルを用いた土石流モデルのアプローチ
2.12 解析手順
2.13 結 言

第3章 個別要素法による前面傾斜角の荷重低減効果解析

3.1	緒	言
3.2	実題	険の概要
3.	2.1	実験装置
3.	2.2	堰堤モデル
3.	2.3	土石流モデル
3.	2.4	実験ケース
3.3	実題	険結果 38
3.	3.1	堆積形状
3.	3.2	衝突過程
3.	3.3	荷重~時間関係
3.	3.4	衝擊荷重~前面角関係
3.4	解枯	斤モデル
3.	4.1	水路モデルおよび堰堤モデル
3.	4.2	捕捉領域における流速分布モデル
3.5	解枯	斤結果
3.	5.1	堆積形状
3.	5.2	荷重~時間関係 44
3.6	荷国	重低減メカニズム
3.	6.1	運動量~時間関係
3.	6.2	デッドゾーンの比較
3.7	結	言 49

第4章 個別要素法による上流置減勢工の荷重低減効果解析

4.1	緒	言
4.2	既往	主の研究の概要
4	.2.1	実験装置
4	.2.2	上流置減勢工
4	.2.3	実験ケース
4.3	実際	険結果
4	.3.1	衝突過程
4	.3.2	荷重~時間関係 51
4.4	解枯	斤諸元
4	.4.1	解析モデル
4	.4.2	解析ケース
4.5	解枕	所結果
4	.5.1	衝突過程
4	.5.2	荷重~時間関係
4.6	荷重	重低減メカニズム
4	.6.1	運動量~時間関係
4	.6.2	デッドゾーンの比較
4	.6.3	上流置減勢工に作用する荷重
4.7	結	言

第5章 南木曽における堰堤破壊の原因究明のための縮小モデル衝突実験

5.1	緒	言
5.2	実験	険諸元
5	.2.1	実験装置60
5	.2.2	土石流モデル
5	.2.3	堰堤モデル
5	.2.4	先行堆積礫
5	.2.5	破壊に関する相似則検討
5	.2.6	事前実験
5	.2.7	実験ケース
5.3	実験	険結果
5	.3.1	堰堤形状の影響
5	.3.2	先行堆積礫高の影響
5	.3.3	継手強度の影響
5	.3.4	押し込み変形の影響
5	.3.5	堰堤モデルの損傷状況
5	.3.6	実験結果の総括
5.4	結	言

第6章 南木曽における堰堤破壊の原因究明への個別要素法解析

6.1	緒	言	78
6.2	縮小	トモデル実験の再現解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	78
6.2	2.1	解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	78
6.2	2.2	流速分布モデル	78
6.2	2.3	連結ばねの構成則	80
6.3	解材	「結果	81
6.3	5.1	堰堤形状および継手強度の影響	81
6.3	5.2	押し込み変形の影響	82
6.3	3.3	破壊現象の考察・・・・・・	83
6.4	結	言	87

第7章 南木曽における実規模透過型砂防堰堤の損傷メカニズム解析

7.1	緒	言
7.2	流返	 を分布モデルの提案
7.	2.1	被災事例の概要
7.	2.2	流速分布モデルの概要
7.3	解机	Fの設定条件と流下確認解析
7.	3.1	解析モデル
7.	3.2	構成則
7.	3.3	流下確認解析
7.	3.4	解析ケース
7.4	解机	所結果
7.	4.1	衝突過程
7.	4.2	各種パラメータの破壊への影響
7.5	結	言

第8章 個別要素法解析を用いた補強対策効果分析

8.1	緒	言
8.2	補強	á対策の概要
8.2	.1	上流置減勢工設置
8.2	.2	継手部ボルト本数増加100
8.2	.3	継手部補強カバー設置101
8.3	解材	〒モデルと解析ケース101
8.3	.1	解析モデル101
8.3	.2	解析ケース101
8.4	解材	行結果と補強対策の評価
8.4	.1	上流置減勢工設置
8.4	.2	継手部ボルト本数増加

8.4	4.3	継手部補強カバー設置	6
8.6	結	言10	7

第9章 結 論

9.1	緒 言]	108
9.2	本研究の成果	108
9.3	今後の課題と展望	111
9.	3.1 今後の課題	111
9.	3.2 今後の展望	111
謝	辞	112
参考	文献	113
本研	「究に関連して発表した論文等	119

第1章 序 論

1.1 研究背景

我が国の国土は急峻かつ脆弱であり、土砂災害が頻発している.特に近年は、短期的かつ局所的な強雨に より土砂災害の発生件数は増加傾向にある¹⁾. 図-1.1に1時間降水量50 mm以上の年間発生回数²⁾を示す.短 期間での強雨が頻発し、かつその発生回数は線形的に増加していることが確認できる. 図-1.2に近年の土砂 災害の発生件数を示す.平成30年の土砂災害発生数は3459件であり¹⁾,過去最多件数を記録した.土砂災害 の中でも石礫型土石流は先頭部に巨礫が集中し住宅等の大規模な破壊を招く恐れがあるため、対策工の設計 において衝撃荷重として考慮する必要が高まってきた.写真-1.1に鋼製透過型砂防堰堤(以下,透過型)を 示す.透過型は、通常時は自然環境を考慮し土砂を通過させ、土石流発生時には土石流のフロント部の巨礫 を捕捉し、不透過状態にすることで後続流を塞ぎ止めるものである.常に上流側のパケットが空にしてある ことから除石の必要性がないという利点はあるものの、土石流先端部が直接堰堤(鋼製部分)に衝突する. このため、透過型は頑強で冗長性を持たせるべく設計されているが、近年の降雨傾向に伴い堰堤の設計想定 を上回る土石流が発生し、透過型が被災し破壊に至る例も確認されている.このような透過型の損傷事例に 伴い、現行の設計荷重より大きなレベルII荷重が提案されている.しかし、その規模や適用範囲はいまだに 検討が進んでいない.

8000

7000

■土石流等
 ■地すべり
 ■がけ崩れ

図-1.1 1時間降水量 50 mm 以上の年間発生回数²⁾

写真-1.1 鋼製透過型砂防堰堤

写真-1.2 梨子沢第1砂防堰堤

1.2 被災事例

近年の透過型の被災事例として,以下に3つの事例を挙げる.いずれの被災事例も巨礫を含む石礫型土石 流により,透過型に想定を超える土石流荷重が作用し,堰堤の一部または全体の破壊・流出に至ったもので ある.本研究における礫は,国土交通省の策定した砂防基本計画策定指針(土石流・流木対策編)解説³お よび土石流・流木対策設計技術指針解説⁴に基づき,堰堤に衝突した際の衝撃力を考慮する巨礫を対象とし た.砂防基本計画策定指針(土石流・流木対策編)解説³では,堰堤に衝突する最大礫径D₉₅を決定するため に,堰堤計画地点周辺で粒径が大きいものから順に200個以上の巨礫を対象として礫径調査が行われるとさ れている.一方で,巨礫が200個存在しない場合は玉石(大礫)や砂利(中礫・細礫)など径の小さい礫も 対象としてよいとされており,被災事例の検証を行う際は礫径調査の結果を参照する.

1.2.1 長野県南木曽町の例⁵⁾

平成26年長野県南木曽町読書に所在する梨子沢で,台風8号の影響により,時間雨量50 mm/h,連続雨量 100 mmを超える短期的な強雨によって土石流が発生した⁵⁾. この土石流では,死者1名・軽傷者3名,住宅全 壊10棟・一部損壊3棟などの被害が生じた.写真-1.2にこの土石流で被災した梨子沢第1砂防堰堤を示す. 梨 子沢第1砂防堰堤は巨礫を含む土石流が衝突した結果,その上部が破壊・流出している.梨子沢流域砂防堰 堤に関する検討会の報告書⁶⁾(以下,報告書と呼ぶ.)では,現地の被災状況から梨子沢第1砂防堰堤の破壊 メカニズムが推定された.図-1.3に推定された破壊メカニズムを示す.すなわち,図-1.3(a)に示すように, 先行して堰堤に衝突した礫が先行堆積礫となった.図-1.3(b)では先行堆積礫の上部において,衝突した土 石流が堰堤の上流側捕捉面の継手部を破断させた.その後,図-1.3(c)では,越流した礫により堰堤上部の 水平材が破壊され,図-1.3(d)では堰堤上流面が下流側に倒れこみ上部が流下した.つまり,継手部の損傷 と堰堤の水平材および斜材の一部または全部の損傷が堰堤上部の流出につながったと推定されている.

土石流荷重の大きさは、土石流ピーク流量³から求める.土石流ピーク流量は、100年再現確率降雨によるものと、流出土砂量によって求めるもの、被災後の流下断面やビデオ映像から求める手法があり、設計時

2

第1章 序 論

写真-1.3 根知川第 10 砂防堰堤(竣工時)

写真-1.4 根知川第10砂防堰堤(被災後)

(a) 継手部の破断

(b) 曲げ破断継手

写真-1.5 流下した継手部分

の計算結果のうち、より大きいものを用いる.南木曽における土石流ピーク流量は、流出土砂量から、 167.9m³/sと推定され、流速7.0 m/s、土石流水深2.0 m、土石流流体力163.9 kN/mと推定されていた.一方で、 被災後に行われた現地調査では土石流ピーク流量730 m³/s、流速9.7 m/s、土石流水深3.3 m、土石流流体力520 kN/mと推定された.つまり想定していた設計荷重の約3倍もの規模の流体力が生じたと考えられる.また、 被災前に行われた礫径調査では最大礫径D₉₅は1.1 mとされていたが、被災後の礫径調査の結果D₉₅は1.6 mとな り、最大転石径D_{max}は3.0 mとなった.また、梨子沢第1砂防堰堤の上流面の鋼管に生じたへこみ変形からは、 9.7 m/sで礫が衝突したと仮定した場合、その礫径は3.8 mとなると推定されている.

1.2.2 新潟県根知川の例⁷⁾

平成30年4月長野県根知川上流に位置する根知川第10砂防堰堤が破壊・流出していることが確認された. 写真-1.3および写真-1.4に竣工時の根知川第10砂防堰堤と被災した状況を示す.この堰堤は平成29年9月ま でその存在が確認されていたため、平成29年9月~平成30年4月の間に破壊したものと考えられる.この期間 に台風21号が日本列島を通過しており、現地の総雨量は411 mmを観測しているが、この時間雨量は過去8年 間と比較して特筆して大きいわけではなく、台風通過後は健全な状態の堰堤が確認されている.また、現地 は積雪地帯であり、融雪等の影響も考えられるが、透過型が破壊に至った際の気象条件は不明確である.

写真-1.5に破壊して流下した継手部分を示す.**写真-1**.5(a)のボルト部の破断状況から曲げによる引張が 原因で破断したとも、せん断で破壊したとも考えられる.しかし、**写真-1**.5(b)の継手部の上面からは、半

写真-1.6 損傷した朴の木堰堤

写真-1.7 朴の木堰堤の下部水平材

面のボルトが抜け落ちており、圧縮側と引張側で応力に差が生じ、引張側のボルトのみが破断したと考えられる.

設計時に計算された土石流ピーク流量は、流出土砂量から529.4 m³/sと推定され、流速8.6 m/s、土石流水深 3.0 m、土石流流体力384.8 kN/mと推定されていた.一方で、被災後に行われた現地調査では土石流ピーク流 量537 m³/s、流速10.5 m/s、土石流水深2.6 m、土石流流体力524 kN/mと推定された.また、設計時よりも大き な土石流流体力に加え、被災前の調査では最大礫径D₉₅は2.0 mとされていたが、被災後の現地調査の結果、 最大転石径D_{max}として4.6 mを超える礫が確認されている.最大礫径の礫が推定された流速で衝突した際の衝 突エネルギーを比較すると設計時の約17倍の衝突エネルギーが生起した可能性がある.

1.2.3 山梨県大武川の例⁸⁾

山梨県大武川流域では、令和元年10月に発生した土石流によって、透過型である第5砂防堰堤と朴の木堰 堤の鋼製部材が損傷・流出した⁷.大武川第5砂防堰堤は天端まで礫を捕捉し、そのうえで下流側の支保斜材 が多数破壊・流出した.周囲には礫径が5.0 mを超える巨礫が多数確認されており、捕捉面に損傷はなかっ た.このことから、満砂となったのち巨礫を含む土石流が越流・衝突したことにより、下流側の部材が破 壊・流出したと見られている.写真-1.6に損傷した朴の木堰堤の下流からの写真を示す.朴の木堰堤は満砂 となっており、天端に巨礫が乗っている様子が確認できる.大武川第5砂防堰堤と同様に、捕捉面に大きな 損傷はなかったが、天端の一部が損傷・流出した.写真-1.7に朴の木堰堤の下部水平材を示す.継手部には 大きく損傷は見受けられないが、直接礫が衝突したと考えられる鋼管のへこみ変形が生じている.捕捉面で このようなへこみ変形が見られず、下部水平材に見られるのは、透過型の現行設計⁹から直接礫衝突を受け ない鋼管の径厚比が大きい(鋼管の厚さが薄い)ことが原因であると推察される.

1.3 土石流荷重に関する既往研究

土石流に関する既往の研究として、芦田¹⁰は土石流の発生から流動、堆積までの運動形態を被災事例と既 往の研究をもとに整理した.高橋ら¹¹¹は土石流の形態が石礫型や土砂型などに区分できることを示し、その うえで土石流の流速分布を示した.土石流の運動形態として、和田ら¹²⁰は大粒子と細粒子が混合して流下す ると偏析が生じ、土石流先頭部に大粒子が集まることを示した.下田ら¹³⁰は、大型のコンクリート製片持ち はり模型に対して鋼球を衝突させた実験に対する衝撃解析モデルを用いて被災事例のシミュレーションを行 い、コンクリート堰堤の袖部破壊が土石流の動水圧ではなく、巨礫の衝突によりもたらされたことを明らか にした.尾崎ら¹⁴⁰は流木が混入した土石流の捕捉形態について、実験と現地による堆砂断面の調査から流木 が土石流の先頭部に集中することを示した.前項で述べた被災事例においても、1.0 mを超える巨礫が堰堤 に捕捉されており、透過型が破壊した被災事例を検証するにあたって、土石流全体を流体とみなした場合の 流体力とは別に巨礫の衝突の影響を検証する必要がある.

土石流の衝突荷重に関する研究では、圧縮性流体と非圧縮性流体に分けて衝撃荷重を算定している¹⁵⁻¹⁷. 大同ら¹⁵,水山ら¹⁷はこの現象論を整理し、土石流の設計流体力式を提案した.一方で、個々の巨礫による 衝撃荷重は、ヘルツの式をもとに個々の礫による集中荷重としている^{4,17}.土石流を流体として荷重を算定 するには、土石流の速度と単位体積重量が必要となるが、大坂ら¹⁸は、荷重計と水位計測システムを用いた 土石流の単位体積重量の計測方法を整理した.鈴木ら¹⁹は、土石流荷重を計測する装置として、シート状の 圧電素子を用いることで、荷重の面的評価が可能であることを検証した.三好ら¹⁵は実験により、土石流の 流速、密度、段波形状に基づいて土石流衝突荷重を推定する手法を示した.松澤ら²⁰はコンクリート砂防堰 堤の袖部と本堤部それぞれに礫が衝突した際の応答の検証と安全性照査を行った.山本ら²¹は不透過型と透 過型の複数の堰堤模型を用いて土石流モデルを衝突させ、荷重〜時間関係のパターンを分類し、衝撃力の算 定式を整理した.そのうえで、2次元個別要素法を用いて実験結果を再現可能であることを確認した.水山 ら²²、小松ら²³は転倒限界を確認できる実験方法を考案し、透過型および不透過型の堰堤模型に作用する土 石流の衝突荷重を比較し、透過型に作用する水平荷重が不透過型より小さくなる傾向を確認した.

不透過型に対する巨礫や鋼球の衝突を扱った実験や解析は,既往の研究としてある程度整理がなされてい る.一方で,現在,渓流に主として設置されている透過型に対しては,実験規模での荷重~時間関係や荷重 分布を整理した研究はあるが,実規模の透過型に巨礫が衝突することによる衝撃荷重については整理がなさ れておらず,不透過型に対する礫衝突荷重の式を準用し,部材単位の照査を行っているのが現状である.被 災事例における堰堤の破壊メカニズムを検証するためには,外力として多数の巨礫が一体となって透過型に 衝突する際の荷重分布を得ることが望ましいが,実規模の荷重計測は困難であり,土石流の規模に応じて荷 重分布を再現することのできる解析手法が望まれる.

1.4 土石流に関する相似則

土石流において実規模での実験は困難であり,多くの縮小模型実験が行われている.縮小に伴う相似則は 種々あるが,現地の構造物の縮尺的相似を再現した縮小模型実験では一般的にフルード則に従うことが明ら かになっている²⁴⁾.フルード則²⁴⁾は縮小の前後で重力と慣性力の比が等しい条件での相似則である.また, その他の相似則に,慣性力と粘性力の相似を企図するレイノルズ数²⁴⁾,実規模と縮小模型で同一材料を用い る場合に誘導されるレプリカ則²⁵⁾などがある.

高橋ら¹⁰は、土石流の分類において石礫型土石流は水深と礫径の比である相対水深が大きくレイノルズ数 が小さい層流であると述べている. 江頭ら²⁶は、掃流砂、浮遊砂、泥流、土石流間の遷移を検討しており、 砂礫の移動が始まった掃流砂から勾配が大きくなると水流層が少なくなり砂礫層が大半を占める土石流に至 ると述べている. 高橋ら¹⁰, 江頭ら^{26, 27)}の定義では、石礫型土石流は層流であり、粘性力の影響が大きい と考えられる. このことから、宮本ら²⁸⁾は数値シミュレーションを通してフルード則とレイノルズ数の関係 について整理し、実験に用いる流体の密度やひずみなどの条件によってはレイノルズ相似がフルード相似に 一致することを示した.

相似を考慮した模型実験に関する既往の研究として,政枝ら²⁹⁾は1/5と1/2の鋼製セルダム模型に対して重 錘を衝突させた場合に,得られた衝撃荷重を実規模に換算し,フルード則とレプリカ則ではフルード則の適 用性が高いことを明らかにした.一方で,フルード則において縮小に伴って,実規模実験と比較して完全に 物理現象が再現できるわけではない.手嶋ら³⁰⁾は,フルード則において同一材料を用いた1/n縮小模型を作製 した場合に,縮小模型の剛性が1/nとなり変形を相似とするためには縮小模型実験の外力が1/n²とならなけれ ばならないと指摘し,この相似則のゆがみを緩和する手法について提案している.下迫ら³¹⁾はRCはりに作

5

図-1.4 透過型の荷重作用図

用する波力の計測実験を例に挙げて、水理模型実験における相似則の適用法とその縮尺効果について整理した。その際、縮尺効果の一例として材料の強度が同じ縮小模型では、構造物の破壊現象は再現できないことを述べている。つまり、透過型の縮小模型を対象とした破壊実験では、材料を鋼材よりも弱いものを使用する、または、外力をフルード相似則による相似率よりも大きくするといった相似則のゆがみの緩和が必要であることが示唆される。

1.5 鋼製透過型砂防堰堤の現行設計荷重

透過型に作用する設計外力は、図-1.4に示すように堰堤の下部には堆砂圧が、上部に流体力が作用するものとして設定されている¹⁰. 流体力は国土交通省の定める砂防基本計画策定指針により、式(1.1)で示されている.

$$F = K_{\rm h} \frac{\gamma_{\rm d}}{c} D_{\rm d} U^2 \tag{1.1}$$

ここで、F:単位幅当たりの土石流流体力(kN/m)、U:土石流の流速(m/s)、 D_d :土石流水深(m)、 K_h :係数、 γ_d :土石流の単位体積重量(kN/m^3)である.また、個々の礫や流木の衝突荷重は、ヘルツの式をもとに式(1.2)で示される⁷⁾.

$$P = \beta n \alpha^{1.5} \tag{1.2}$$

$$n = \frac{16R}{9\pi^2(K_1 + K_2)^2} \tag{1.3}$$

$$K_1 = \frac{1 - v_1^2}{\pi E_1} \tag{1.4}$$

$$K_2 = \frac{1 - v_2^2}{\pi E_2} \tag{1.5}$$

ここで、P:衝突礫による外力(N)、 $\beta:$ 実験定数、n:最大礫径を元に求められる係数、 $E_1, E_2:$ コンクリート及び礫の弾性係数、 $v_1, v_2:$ コンクリート及び礫のポアソン比、 $\alpha:$ へこみ量(m)である.土石流の最大 礫径は現地調査により、現地の砂防堰堤計画地点から上下流の200 m間に存在する巨礫の頻度分布に基づく 累積値の95%に相当する粒径(D_{95})が最大粒形となる.これらの設計外力は不透過型のものが準用されて おり、透過型は各部材及び接合部に対しては、設計外力に応じて許容応力度を1.5倍に割り増しして設計さ

れる.

1.6 鋼管の破壊に関する既往研究

星川ら32)は鋼管固定はりに対して重錘を落下させ、載荷速度や鋼管径が荷重〜局部変形関係に与える影響 を明らかにした.このとき,載荷位置およびスパン長は局部変形に影響を与えないことが明らかになってい る.一方で、菅沼ら33は埋設パイプラインに対し、建造後に行われた他の工事による損傷で局部変形が生起 した鋼管の曲げ変形特性を検証するために、デントを与えた実験と有限要素法による再現解析を行った.こ のとき、曲げ座屈に対しては、デントによる残留ひずみの影響が大きくなることがわかった、一方で、地中 パイプラインに用いられている鋼管の径厚比が曲げ強度に及ぼす影響について、有限要素法解析によって検 討されている34).また,水山ら35)は中空鋼管に対して重錘を落下させ,へこみ変形量と衝撃力の評価式につ いて検討した. 図-1.5に径厚比D/tを変化させた場合の鋼管杭の $M/M_{p-\phi}/\phi_p$ 関係を示す. 径厚比D/tが100を 超えると全塑性モーメントに到達する前に鋼管に局部座屈が発生し、耐力低下が発生することがわかってい る. また, 径厚比D/tが50以下の鋼管杭では, 降伏後に緩やかに曲げモーメントが増加し, 耐力低下が生じ ていない. 弓削ら³⁰の実験においては,鋼管柱とH形はり接合部の終局強度を実験および有限要素法コード を用いた再現解析で検討した.図-1.6に弓削ら30が行った解析結果を示す.解析が行われた径厚比D/tが, 20.8 < D/t <53.1の範囲では、鋼管は接合部で局部圧壊し、D/t = 10.6では鋼管ではなく接合されたH形はりが 局部座屈を生じた.一方で、継手部の破壊を扱った既往の研究として、國領ら37,380は鋼管はりへの動的載荷 実験および有限要素法解析によって、礫の衝突位置および載荷方法の違いが耐荷性能に与える影響を解析的 に検討した.このとき,礫の載荷位置によって継手部の破壊モードは異なり,継手部は引張側の断面におい てボルトの破断が生起した.

文献32)-38)までの内容を総括すると、礫衝突による母材鋼管の破壊を検証するにあたって、径厚比は鋼管 の破壊モードや終局強度に影響を及ぼすことがわかっている.現行設計⁹では、礫衝突を想定する鋼管の板 厚は22 mm以上、かつ腐食しろと余裕しろを見込んだ径厚比D/t < 30としなければならない.また、礫衝突を 想定しない鋼管はD/t < 80、礫衝突エネルギーを吸収する目的の機能部材はD/t < 60としている.っまり、前 項の被災事例で述べた透過型では30 < D/t < 80程度の鋼管が用いられおり、直接の礫衝突を受けない下流側 の鋼管では、局部座屈による強度低下が生じる可能性はある.総じて径厚比が小さく、厚い鋼管においては 母材ではなく、継手部で破断が生起しており、継手部と母材それぞれの構成則を考慮した検討が必要である と考えられる.

1.7 鋼製透過型砂防堰堤を扱った全体応答解析

部材単位ではなく、構造物としての透過型の損傷・破壊を取り扱った既往の研究としては、園田ら39は有

限要素法を用いて継手を有する鋼管はりの部材長と構造形式の違いが破壊モードに与える影響を検討した. 國領ら⁴⁰は土石流のレベルII荷重に対する設計法として保有耐力照査法を提案し,ラーメン,トラスおよび それらの複合形式の3つの構造形式の透過型を対象に非線形有限要素法による弾塑性解析を行い,保有耐力 照査法の適用性を検討した.嶋ら⁴¹は透過型の現行設計に基づき,堰堤の断面形状に対して安定計算におけ る極めて大きな土石流荷重を求め,その荷重を再現できるよう3.0 mの巨礫を透過型と不透過型に衝突させ る有限要素法解析を行った.小松ら⁴²は,現行の設計荷重を基準として,荷重係数を乗じて荷重を大きくし た場合に対する弾塑性解析を行った.

いずれの既往研究においても、透過型において損傷する部材やその応答を検証できており、構造物の全体 応答解析を行うにあたっては、有限要素法のように連続体を対象とした解析が優れていることがわかる.し かし、前述のように、解析にあたって実規模の土石流の荷重分布は不透明な部分があり、有限要素法におけ る土石流荷重の設定方法が問題となる.

1.8 個別要素法の概要

前項で述べたように、有限要素法のような連続体を対象とした解析では、構造物の応答の再現性が優れて いる反面、土石流による堰堤の破壊メカニズムを検証するにあたっては土石流荷重を適切に設定する必要が ある.一方で、個別要素法⁴³は元々が個々の要素を対象とした離散体の解析手法であり、土石流のように大 小様々な礫を含んで流下し、衝突する現象の解析に効果が期待される.個別要素法は時々刻々、要素が接触 状態にあるかを判定し、接触したならば要素間に接触ばねを設け、そのばね力を集成することで運動方程式 を解き要素の運動を計算する手法である.個々の要素の接触力を計算することが可能であることから、個々 の礫が衝突した際の荷重の再現性が期待できる.個別要素法には様々な剛体要素が用いられており、球形要 素⁴³⁾や円柱形要素、複数の要素を組み合わせたクラスター要素⁴⁴⁾などがある.クラスター要素は複数の要素 を組み合わせることで複雑な形状を再現できる一方で、要素数が増えることで計算負荷が増大するという問 題もある.そこで、計算負荷を抑えるために球形要素に対して転がり摩擦⁴⁵⁾や回転剛性⁴⁶⁾を与えることで、 実現象を再現するという試みもなされてる.

個別要素法に関する既往の研究として、山本ら⁴⁷⁾は2次元個別要素法を用いた解析により、不透過型と4種 類の透過型に作用する衝撃荷重を推定した. Hakunoら⁴⁸⁾は礫を円盤要素で表現した2次元の個別要素法によ って、土石流の流下形態や偏析について明らかにした. また水野ら⁴⁹⁾は、個別要素法を用いて透過型の土石 流捕捉メカニズムについて検討した. 別府ら⁵⁰⁾はMPS法と個別要素法を組み合わせた解析を行い、石礫型土 石流の段波形成について検討した. 内藤ら⁵¹⁾は敷砂緩衝材の底面境界剛性を変化させ、落石衝突時に生じる 衝撃力を個別要素法によって検討した. 森口ら⁵²⁾は大規模土砂流動実験を対象として、個別要素法による土 砂の衝撃力評価における適用条件を整理した.

土石流を対象とした個別要素法の解析において,実験規模の荷重は既往の研究でも多く検証がなされてお り,実規模の土石流荷重の推定にも効果が発揮される可能性はある.一方で,個別要素法において,破壊を 伴う構造物の応答を検証するには,要素同士を接触判定によらない常設の連結ばねで結合する手法が用いら れている.

連結ばねを用いた個別要素法の既往の研究として,原木ら⁵³⁾は円柱形要素を連結ばねで結合することで, 落石防護網の衝撃応答解析を行い,重錘衝突実験の結果の挙動との比較によりその妥当性を検討した.小泉 ら⁵⁴⁾は連結ばねを用いた落石防護網に対して,複数の要素を剛結した集合体要素モデルを提案し,張力と応 答の様子から実験の再現性や落石防護網における波の伝播について検討した.片桐ら⁵⁵⁾は個別要素法と有限 要素法を組み合わせ,連結ばね間に三角形有限要素を挿入することで高レベル地震動を想定した不整形地盤

8

の動的破壊解析を行った.所⁵⁰は要素に生じた内力に応じて,個々の要素が複数の小要素に分離する個別要 素法の粒子置換モデル(PRM)の中で,FBMと呼ばれる手法を用いて,高圧粉砕ロールによる鉱石の粉砕 を実験と解析で比較し,その適用性を検討した.古川ら⁵⁷は,要素表面をセグメントに分割して,セグメン トごとにばねを配置した改良版個別要素法により,無筋コンクリート橋脚の地震時被災メカニズムについて 検討した.

以上のような既往の研究から、パラメータの工夫次第で連結ばねを用いて構造物の破壊を伴う解析において個別要素法の適用が期待できる.

9

1.9 本論文の目的と構成

本研究は、レベルII荷重の導入にあたって、堰堤の破壊事例の検証,終局限界の評価および大規模土石流 の荷重評価が可能な解析手法を提案する.具体的には、個別要素法を用いて、透過型の縮小模型に作用する 土石流荷重の再現性を確認する.そのうえで、縮小模型を用いて堰堤の破壊メカニズムを検証するとともに、 解析における縮小模型の破壊傾向の再現性を検討する.その後、南木曽の実破壊事例において得られている 基本条件を基にして個別要素法の解析を行い、破壊メカニズム推定に対する適用性を確認する.鋼管および その継手部の強度を実部材の強度特性と断面形状に基づいて断面分割法により曲げモーメント〜曲率関係を 求め、曲げ変形に対する構成則として用いる.この解析により、梨子沢第1砂防堰堤の被災状況の再現性と その破壊メカニズムを分析するものである.実規模での解析手法の適用性を確認したのち、レベルII荷重が 導入された際に既存不適格となる構造物に対する補強効果の比較検討を行う.

図-1.7に本研究の構成を示す.本研究は9章で構成されており,各章の概要を以下に示す.

第1章では,近年の我が国における気象条件の変化に伴う土砂災害について取り上げ,そのうえで土石流 に関する既往の研究について整理した.現行の設計法による透過型が被災あるいは破壊した事例から設計荷 重の見直しが図られていること,また堰堤の破壊事例の検証,終局限界の評価および大規模土石流の荷重評 価が可能な解析手法が必要であることを示した.

第2章では、本研究で用いる個別要素法、すなわち球形要素、円柱形要素、三角形要素を構成要素とし、 構造応答を表現するための円柱形要素を連結ばねで常時連結するモデルを概説する.加えて、本研究の特徴 である連結ばねの構成則に破壊条件を導入して構造破壊をシミュレーション可能な個別要素法について述べ る.

第3章では、南木曽で起きた土石流が前面傾斜角の異なる2つの透過型に捕捉された事例をもとにした実 験⁵⁸⁾について個別要素法を用いて再現解析を行い、縮小実験規模での解析における荷重の再現性と堰堤の前 面傾斜角が土石流衝突荷重に与える荷重低減メカニズムについて検討する.

第4章では、新たな設計荷重が導入された際に既存不適格となる堰堤に対する荷重低減策について個別要素法によって検討する.具体的には、堰堤の上流側に減勢工と呼称する副堤を設置した際の荷重低減メカニズムについて、既往の実験⁵⁹⁾の再現解析を行いその荷重低減メカニズムを明らかにする.

第5章では、平成26年南木曽で発生した梨子沢第1砂防堰堤の損壊事例を対象として、縮小モデル実験を 行う.このとき、報告書4)の推定破壊メカニズムに基づき、支保斜材の先行損傷と2列目柱部材に対する水平 材の押し込み変形が堰堤の損傷に与える影響を考察する.

第6章は、実験で生起した継手部の破壊を支配する断面力に焦点を当てて分析するものである.その際に、 個別要素法の連結ばねモデルを用いて、材料試験から得られたパラメータで再現シミュレーションを行い、 その破壊メカニズムについて分析する.

第7章では、南木曽の実破壊事例において得られている基本条件を基にして個別要素法の解析を行い、破壊メカニズム推定に対する適用性を確認する.そのうえで、梨子沢第1砂防堰堤の被災状況の再現性とその破壊メカニズムを分析する.

第8章では,第7章において破壊した解析ケースを対象に,現在検討がなされている補強効果の比較検討 を行い,その有効性について検証する.

第9章では、本研究で得られた成果を総括し、今後の課題について述べる.

第2章 本研究で用いる個別要素法の基本式と手順

2.1 緒 言

個別要素法¹では,個々の要素は剛体形状を有し,それらが離散状態で空間に存在し,運動するものとする.この際,各要素が接触状態にあるか否かを判別し,接触したならば要素間に設定した要素間ばねの接触力を算定する.これらの接触外力と自重等を積算したうえで,運動方程式を解くことにより要素の微小時間内の変位を時々刻々,追跡するものである.

本章では、球形、円柱形、三角形の剛体形状を有する要素を構成要素としたうえで、骨組み構造の応答を 表現するための円柱形要素を連結ばねで常時連結する個別要素法を提案するものである.その際、本研究の 特徴である連結ばねの構成則に破壊条件を導入して構造破壊をシミュレーション可能な個別要素法について 述べる.また、土石流中の固体要素に働く周辺の流体力を支配する流速分布モデルについても記述する.

2.2 全体座標系における要素の初期位置と姿勢

2.2.1 球形要素

まず全体座標系(X, Y, Z)の中で、1 個の球形要素は、要素 *i* の密度を ρ_{sph-i} 、半径を r_{sph-i} とすると、要素 *i* の質量マトリクス \mathbf{m}_{sph-i} と、慣性モーメントマトリクス \mathbf{I}_{sph-i} は、次式で与えられる.

$$\mathbf{m}_{sph-i} = \begin{bmatrix} m_{sph-i} & \mathbf{0} \\ m_{sph-i} & \\ \mathbf{0} & m_{sph-i} \end{bmatrix}_{3\times 3}$$
(2.1a)

$$m_{sph-i} = \frac{4}{3}\rho_{sph-i}\pi r_{sph-i}^{3}$$
 (2.1b)

$$\mathbf{I}_{sph-i} = \begin{bmatrix} \frac{2}{5}m_{sph-i}r_{sph-i}^{2} & \mathbf{0} \\ & \frac{2}{5}m_{sph-i}r_{sph-i}^{2} \\ \mathbf{0} & & \frac{2}{5}m_{sph-i}r_{sph-i}^{2} \end{bmatrix}_{3\times 2}$$
(2.2)

図-2.1 に球形要素の局所座標系を示す. ここでは,球形要素の中心を座標原点とする局所座標系 (\tilde{x}_{sph-i} , \tilde{y}_{sph-i} , \tilde{z}_{sph-i})を設定する. 全体座標系(X,Y,Z)における初期の重心点位置を \mathbf{L}_{sph-i}^{0} とし,初期の局所座 標系 \tilde{x}_{sph-i} , \tilde{y}_{sph-i} , \tilde{z}_{sph-i} 軸の姿勢は全体座標系の座標軸と平行に設定する.

$$\mathbf{L}_{i}^{0} = \begin{bmatrix} x_{0} \\ y_{0} \\ z_{0} \end{bmatrix}$$
(2.3)

$$\mathbf{A}_{sph-i}^{0} = \begin{bmatrix} \begin{bmatrix} \mathbf{a}_{sph-i-x}^{0} \end{bmatrix}^{\mathrm{T}} \\ \begin{bmatrix} \mathbf{a}_{sph-i-y}^{0} \end{bmatrix}^{\mathrm{T}} \\ \begin{bmatrix} \mathbf{a}_{sph-i-z}^{0} \end{bmatrix}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(2.4)

ここで、 \mathbf{A}_{sph-i}^{0} :要素 *i* の姿勢を表す方向余弦マトリクス(以下、本論文では姿勢マトリクスと呼ぶ²⁾)、 \mathbf{a}_{ix}^{0} , \mathbf{a}_{iy}^{0} , \mathbf{a}_{iz}^{0} : それぞれ要素 *i* の局所座標 \tilde{x}_{sph-i} , \tilde{y}_{sph-i} , \tilde{z}_{sph-i} 軸方向を表す初期状態の方向余弦ベクトルである. 2.2.2 円柱形要素

図-2.2 に円柱形要素の局所座標系を示す. 座標原点を重心点に置き \tilde{x} 軸が円柱の中心軸を通る局所座標系 (\tilde{x}_{cyl-i} , \tilde{y}_{cyl-i} , \tilde{z}_{cyl-i})を設定する. このとき, 密度を ρ_{cyl-i} , 円柱半径を r_{cyl-i} , 円柱長を l_{cyl-i} とすると, 質 量 \mathbf{m}_{cyl-i} および慣性モーメントマトリクス $\hat{\mathbf{l}}_{cyl-i}$ は次式で与えられる.

図-2.1 球形要素の全体座標系と局所座標系

$$\mathbf{m}_{cyl-i} = \begin{bmatrix} m_{cyl-i} & \mathbf{0} \\ & m_{cyl-i} \\ \mathbf{0} & & m_{cyl-i} \end{bmatrix}_{3\times 3}$$
(2.5a)

$$m_{cyl-i} = \rho_{cyl-i} \pi r_{cyl-i}^2 l_{cyl-i}$$
(2.5b)

$$\hat{\mathbf{I}}_{cyl-i} = \begin{bmatrix} \frac{1}{2}m_{cyl-i}r_{chy-i}^{2} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \frac{1}{12}m_{cyl-i}(3r_{cyl-i}^{2} + l_{cyl-i}^{2}) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \frac{1}{12}m_{cyl-i}(3r_{cyl-i}^{2} + l_{cyl-i}^{2}) \end{bmatrix}_{3\times3}$$
(2.6)

円柱形要素については、全体座標(X,Y,Z)における初期重心点の位置を \mathbf{L}_{cyl-i}^{0} とし、これらの初期設定は次のように与える.1個の円柱形要素の中心座標 \mathbf{L}_{cyl-i}^{0} および長さ l_{cyl-i} は次式で表される.

$$\mathbf{L}_{cyl-i}^{0} = \frac{1}{2} \left(\mathbf{L}_{cyl-left-i} + \mathbf{L}_{cyl-right-i} \right)$$
(2.7)

$$l_{cyl-j} = \left| \mathbf{L}_{cyl-left-i} - \mathbf{L}_{cyl-right-i} \right|$$
(2.8)

ここで、 $\mathbf{L}_{cyl-left-i}$ 、 $\mathbf{L}_{cyl-right-i}$: 円柱形要素底面の座標である.

図-2.2 に示すように、局所座標系の \tilde{x}_{cyl} 軸は、円柱の中心軸に設定されるので、そのベクトル \mathbf{a}_{ix}^{0} は次式により与えられる.

$$\mathbf{a}_{ix}^{0} = \frac{\mathbf{L}_{cyl-right-i} - \mathbf{L}_{cyl-left-i}}{\left|\mathbf{L}_{cyl-right-i} - \mathbf{L}_{cyl-left-i}\right|}$$
(2.9)

また、 \tilde{x}_{cyl-i} に直交する \tilde{y}_{cyl-i} は、全体座標系の $x \sim y$ 平面に平行するものとする.この単位ベクトル \mathbf{a}_{iy}^0 を求めるために、まずy軸への回転座標変換の基本値 α_{iy} 、 β_{iy} 、 γ_{iy} をそれぞれ次式により設定する.

$$\alpha_{iy} = 0 \tag{2.10a}$$

$$\beta_{iy} = \tan^{-1} \left(\frac{\mathbf{L}_{cyl-right-iz} - \mathbf{L}_{cyl-left-iz}}{\sqrt{\left(\mathbf{L}_{cyl-right-ix} - \mathbf{L}_{cyl-right-ix}\right)^2 - \left(\mathbf{L}_{cyl-right-ix} - \mathbf{L}_{cyl-left-iy}\right)^2}} \right)$$
(2.10b)

$$\gamma_{iy} = \tan^{-1} \left(\frac{\mathbf{L}_{cyl-right-iy} - \mathbf{L}_{cyl-left-iy}}{\mathbf{L}_{cyl-right-ix} - \mathbf{L}_{cyl-left-ix}} \right)$$
(2.10c)

そこで, **a**_i⁰は次のように設定される.

$$\mathbf{a}_{iy}^{0} = \begin{bmatrix} \cos(\gamma_{iy})\sin(\beta_{iy})\sin(\alpha_{iy}) + \sin(\gamma_{iy})\cos(\alpha_{iy}) \\ \cos(\gamma_{iy})\cos(\alpha_{iy}) + \sin(\gamma_{iy})\sin(\beta_{iy})\cos(\alpha_{iy}) \\ \cos(\beta_{iy})\sin(\alpha_{iy}) \end{bmatrix}$$
(2.11)

 \mathbf{a}_{iz}^{0} は $\tilde{\mathbf{x}}_{cyl-i}$ および $\tilde{\mathbf{y}}_{cyl-i}$ に直交するように、 \mathbf{a}_{ix}^{0} と \mathbf{a}_{iy}^{0} の外積によって与える.

図-2.3 要素の位置と姿勢の変位

$$\mathbf{a}_{iz}^{0} = \mathbf{a}_{ix}^{0} \times \mathbf{a}_{iy}^{0} \tag{2.12}$$

以上の式(2.9)~(2.12)の式を用いて、円柱形要素の初期の姿勢マトリクスA⁰を次式のように表す.

$$\mathbf{A}_{cyl-i}^{0} = \begin{bmatrix} \begin{bmatrix} \mathbf{a}_{ix}^{0} \end{bmatrix}^{\mathrm{T}} \\ \begin{bmatrix} \mathbf{a}_{iy}^{0} \end{bmatrix}^{\mathrm{T}} \\ \begin{bmatrix} \mathbf{a}_{iz}^{0} \end{bmatrix}^{\mathrm{T}} \end{bmatrix}$$
(2.13)

なお, 姿勢マトリクスは回転座標変換マトリクスとして使用できるので, 全体座標系における要素重心点 まわりの円柱形要素の慣性モーメントマトリクスĨ_{cvl-i}は, 次式で表される.

$$\tilde{\mathbf{I}}_{cyl-i} = \begin{bmatrix} \mathbf{A}_{cyl-i}^0 \end{bmatrix}^{\mathrm{T}} \hat{\mathbf{I}}_{cyl-i} \mathbf{A}_{cyl}^0$$
(2.14)

2.2.3 三角形要素

本研究においては、三角形要素は固定して動かないものとして取り扱うため、局所座標系、質量マトリクス、ならびに慣性マトリクスは定義しない.

2.3 位置と姿勢の更新

2.3.1 位置座標

図-2.3 に示すように、3 次元空間において個々の要素は、時々刻々に動き、初期位置の姿勢に対して変位 または回転角によって要素の位置と姿勢が変化する.この要素の初期位置からの並進方向の変位をu_iとして 時々刻々の位置を次式で与える.

$$\mathbf{L}_i = \mathbf{L}_i^0 + \mathbf{u}_i \tag{2.15}$$

ここで,L_i:要素 iの重心における全体座標系に対する位置ベクトル, u_i:要素 iの変位ベクトルである.

2.3.2 姿勢マトリクス

同様に姿勢マトリクスの更新は次式によってなされる.

$$\mathbf{A}_i = \widehat{\mathbf{A}}_i \mathbf{A}_i^0 \tag{2.16}$$

ここで、 \mathbf{A}_i :要素 *i* の任意の時刻における姿勢マトリクス、 $\widehat{\mathbf{A}}_i$:初期の姿勢マトリクス \mathbf{A}_i^0 から任意の時刻における姿勢マトリクス \mathbf{A}_i^- の座標変換マトリクスである.

ただし、集合体要素や円柱形要素においては、複雑な形状となるため単位ベクトル化とそれぞれの直交性 を保たせるため式(2.16)のように初期位置に対する座標変換処置ではなく以下に示す時々刻々の微小な回転

変差処理を行う.一般に,あるベクトル $\mathbf{a}(t)$ を角速度 $\boldsymbol{\omega}$ で微小時間 Δt だけ回転させる場合,回転後のベクト $\lambda \mathbf{a}(t + \Delta t)$ は次のように表される.

$$\mathbf{a}(t + \Delta t) = \mathbf{a}(t) + (\mathbf{\omega} \times \mathbf{a}(t))\Delta t \tag{2.17}$$

しかし,式(2.17)は角速度を接線方向の並進運動に置き換えたものであるため,集合体要素のような複雑 な形状では十分な精度を確保できない.

ところで、角速度ベクトルωは、ωベクトルを回転軸(または、オイラー回転軸)とし、その軸回りに|ω| 回転させるものである.これより、姿勢マトリクスを構成する各軸ベクトルをωベクトルにより回転させる ことで、姿勢の更新が行われるものとする.

まず、 ω ベクトルと同じ方向の単位ベクトルを局所の x'軸とする局所座標系(以下、回転の局所座標系と 呼ぶ.)を考えると、a ベクトルは図-2.4 のように表される. これより、あるベクトル a が ω ベクトルにも とづき微小時間 Δt 間において回転するときは、 ω ベクトルを中心軸とし、a が作る側面を持つ円錐の回転と 同じように考えることができる. ここではまず、a ベクトルを回転の局所座標系に変換する.

$$\mathbf{a}'(t) = \begin{bmatrix} x_a'(t) \\ y_a'(t) \\ z_a'(t) \end{bmatrix} = \mathbf{A}_{\omega} \mathbf{a}(t)$$
(2.18)

ここで、 $\mathbf{a}'(t)$:回転の局所座標系における $\mathbf{a}(t)$ ベクトル、 $x_a'(t)$ 、 $y_a'(t)$ 、 $z_a'(t)$: それぞれ $\mathbf{a}'(t)$ ベクトルの x'、 y'、z'軸方向成分、 \mathbf{A}_{α} :回転の局所座標系に変換する座標変換マトリクスである.

また, a'(t)ベクトルを次のように置き換える.

$$\mathbf{a}'(t) = \begin{bmatrix} x_a'(t) \\ r(t)\cos\phi \\ r(t)\sin\phi \end{bmatrix}$$
(2.19a)

$$\begin{cases} r(t) = \sqrt{(y_a'(t))^2 + (z_a'(t))^2} \\ \phi = \cos^{-1}\left(\frac{z_a'(t)}{y_a'(t)}\right) \end{cases}$$
(2.19b)

 ω ベクトルの定義より、回転の局所座標系における回転後のベクトル $\mathbf{a}'(t + \Delta t)$ は、次のように表すことができる.

$$\mathbf{a}'(t + \Delta t) = \begin{bmatrix} x_a'(t) \\ r(t)\cos(\phi + |\boldsymbol{\omega}|\Delta t) \\ r(t)\sin(\phi + |\boldsymbol{\omega}|\Delta t) \end{bmatrix}$$
(2.20)

これにより,全体座標系における回転後のベクトルa(t + Δt)は次のように表される.

$$\mathbf{a}(t + \Delta t) = \mathbf{A}_{\omega}^{\mathrm{T}} \mathbf{a}^{2}(t + \Delta t)$$
(2.21)

以上の方法により、姿勢マトリクスを構成する各軸ベクトルを回転させると、単位ベクトルとそれぞれの 直交性を保ったまま、姿勢マトリクスが更新される.

2.4 運動方程式の解法

2.4.1 並進運動

全要素の運動方程式は、次のように表される.

$$\mathbf{M}\ddot{\mathbf{u}}(t) + \mathbf{D}\dot{\mathbf{u}}(t) + \mathbf{K}\mathbf{u}(t) = \mathbf{f}_{ex}$$
(2.22)

ここで、**M**:質量マトリクス、**D**:減衰マトリクス、**K**:接触ばねや連結ばねによる剛性マトリクス、**u**:変 位ベクトル、 f_{ex} :外力ベクトル、(`)、(``):それぞれ時間に関する1階微分および2階微分を表す.

後述するようにばね力は、接触によって発生したり消失したりすることを含めて非線形なので、時々刻々のばね力を重心点等価力ベクトル fkによって表現すると、次のようになる.

$$\mathbf{M}\ddot{\mathbf{u}}(t) + \mathbf{D}\dot{\mathbf{u}}(t) + \mathbf{f}_{\mathrm{K}}(\mathbf{u}(t)) = \mathbf{f}_{\mathrm{ex}}$$
(2.23)

続いて、外力マトリクスは次式で表される¹⁾.

$$\mathbf{f}_{ex} = \mathbf{f}_{g} + \mathbf{f}_{Drag} + \mathbf{f}_{B} \tag{2.24}$$

ここで、 \mathbf{f}_{g} :重力ベクトル、 \mathbf{f}_{Drag} :要素周辺の水流によって生じる動圧力ベクトル、 \mathbf{f}_{B} :要素に生じる浮力 ベクトルである.

fgは、通常z方向を鉛直方向に設定するので、次のようになる.

$$\mathbf{f}_{g} = \begin{bmatrix} 0\\0\\-mg \end{bmatrix}$$
(2.25)

また,動圧力ベクトルは,

$$\mathbf{f}_{\text{Drag}} = C_D A_i \rho_w |\mathbf{v}_i - \mathbf{v}_w|^2 \begin{bmatrix} \cos \tilde{\theta}_x \\ \cos \tilde{\theta}_y \\ \cos \tilde{\theta}_z \end{bmatrix}$$
(2.26)

$$|\mathbf{f}_{\mathrm{B}}| = \rho_w g V \tag{2.27}$$

ここで、g:重力加速度、m:要素の質量、 C_D :抗力係数、 ρ_w :周辺水の密度、 A_i :要素の流下方向への投影面積、 V_i :要素の速度ベクトル、 V_w :周辺水流の速度ベクトル、 $\tilde{\theta}_x$ 、 $\tilde{\theta}_y$ 、 $\tilde{\theta}_z$:水路モデル底面との角度、V:要素の体積である.

なお、要素間ばねに並行して設置したダッシュポットにより生じる力は、重心点等価力ベクトル foによって表されるものとして、式(2.28)を次のように表す.

$$\mathbf{M}\ddot{\mathbf{u}}(t) + \left\{ \sum \mathbf{f}_{D}(\dot{\mathbf{u}}(t)) + \sum \mathbf{f}_{K}(\mathbf{u}(t)) \right\} = \mathbf{f}_{ex}$$
(2.28)

式(2.28)の運動方程式の解法は、厳密性に劣るものの陽解法で計算効率の良い中心差分法を用いた.ただし、速度に対しては、後進差分法を用いた²⁾.

$$\ddot{\mathbf{u}}(t) = \frac{\mathbf{u}(t + \Delta t) - 2\mathbf{u}(t) + \mathbf{u}(t - \Delta t)}{\Delta t^2}$$
(2.29)

$$\dot{\mathbf{u}}(t) = \frac{\mathbf{u}(t) - \mathbf{u}(t - \Delta t)}{\Delta t}$$
(2.30)

さらに、 $\mathbf{f}_{\mathbf{K}}(\mathbf{u}(t - \Delta t))$ を使用して式(2.29)~(2.30)を式(2.28)に代入して整理することにより、時間($t+\Delta t$)における変位 $\mathbf{u}(t+\Delta t)$ は、次式により求められる.

$$\mathbf{u}(t + \Delta t) = \Delta t^2 \mathbf{M}^{-1} \left\{ \mathbf{f}_{\text{ex}} - \sum \mathbf{f}_{\text{D}} \left(\dot{\mathbf{u}}(t) \right) - \sum \mathbf{f}_{\text{K}} \left(\mathbf{u}(t) \right) \right\} + 2\mathbf{u}(t) - \mathbf{u}(t - \Delta t)$$
(2.31)

2.4.2 回転運動

回転運動の方程式は、要素の慣性主軸座標系(または、固有値軸系³⁾)で解くものとする.全要素のオイラーの回転運動方程式は、次のように与えられる.

図-2.6 球形要素 i の局所座標系

$$\left\{\hat{\widetilde{\mathbf{I}}}\hat{\widetilde{\mathbf{\omega}}}(t) - \hat{\widetilde{\mathbf{P}}}(t) \times \hat{\widetilde{\mathbf{\omega}}}(t)\right\} + \sum \hat{\widetilde{\mathbf{M}}}_{D}(t) + \sum \hat{\widetilde{\mathbf{M}}}_{K}(t) = \hat{\widetilde{\mathbf{M}}}_{ex}$$
(2.32)

ここで、 ω :角速度ベクトル、P:角運動量ベクトル、 M_D 、 M_K :それぞれのばね力およびダッシュポット より生ずる力の重心点等価モーメントベクトル、 M_{ex} :外モーメントベクトルの総和、(^):慣性主軸座標系 である.

並進運動における差分と同様に、回転角は中心差分法、角速度は後進差分法を用いて与えるものとした⁴⁾.

$$\dot{\widetilde{\omega}}(t) = \frac{\widetilde{\widetilde{\Theta}}(t + \Delta t) - \widetilde{\widetilde{\Theta}}(t)}{\Delta t^2}$$
(2.33)

$$\widehat{\widetilde{\mathbf{\omega}}}(t) = \frac{\widehat{\widehat{\mathbf{\theta}}}(t)}{\Delta t}$$
(2.34)

ここで、 $\theta(t)$:時刻(t- Δt)から(t)間の回転角の増分ベクトルである.

時刻(*t*)から(*t* + Δt)間での慣性主軸回りの回転角の増分ベクトル $\hat{\hat{\theta}}(t + \Delta t)$ は,式(2.31)および式(2.32)を整理することにより,次式で与えられる.

$$\hat{\tilde{\boldsymbol{\theta}}}(t+\Delta t) = \hat{\tilde{\mathbf{I}}}^{-1} \left\{ \left(\widehat{\tilde{\mathbf{M}}}_{\text{ex}} + \widehat{\tilde{\mathbf{P}}}(t) \times \widehat{\tilde{\boldsymbol{\omega}}}(t) \right) - \sum \hat{\tilde{\mathbf{M}}}_{D}(t) - \sum \hat{\tilde{\mathbf{M}}}_{k}(t) \right\} \Delta t^{2} + \hat{\tilde{\boldsymbol{\theta}}}(t)$$
(2.35)

また、要素の局所座標系での回転角の増分ベクトルは、次式によって与えられる.

$$\tilde{\mathbf{\Theta}}(t + \Delta t) = \mathbf{A}_{i}^{\mathrm{T}}(t)\hat{\tilde{\mathbf{\Theta}}}(t + \Delta t)$$
(2.36)

各要素の慣性主軸を表す姿勢マトリクス $\mathbf{A}_{j}^{\mathrm{T}}$ は、その単位ベクトル化とそれぞれの独立性を保つように、上 式より求まる $\tilde{\mathbf{\theta}}(t + \Delta t)$ を使って、式(2.36)の要領により更新した.

2.5 ばね要素の局所座標系への座標変換

2.5.1 球形要素間

図-2.5 に全体座標系における球形要素 *i* と*j*を示す.このとき,まず,*j* 要素の局所座標系へ移す.**図-2.6** に球形要素 *i* の局所座標系を示す.すなわち,各中心点座標を次式とする.

$$\tilde{\mathbf{L}}_{sph-i} = 0 \tag{2.37}$$

$$\tilde{\mathbf{L}}_{sph-i} = \mathbf{A}_{sph-i}^{1} \left(\mathbf{L}_{sph-j} - \mathbf{L}_{sph-i} \right)$$
(2.38)

この後,式(2.5)~(2.14)で述べた円柱形要素の座標変換マトリクスの求め方に準じて,図-2.7 に示すばねの局所座標系へ転換する.

図-2.8 ばねの局所を繋げる座標系における球形要素の接触

$$\hat{\mathbf{\hat{L}}}_{sph-i} = 0 \tag{2.39}$$

$$\hat{\tilde{\mathbf{L}}}_{sph-i} = \mathbf{A}_{sph-j} \tilde{\mathbf{L}}_{sph-i} \mathbf{A}_{sph-j} \tilde{\mathbf{L}}_{sph-i}$$
(2.40)

ここで, $\hat{\mathbf{A}}_{sph-j}$: i 要素を回転中心として要素 i, j 間の接触ばねの法線が $\hat{\hat{x}}_{sph-j}$ となる局所座標系への座標変 換マトリクス.

図-2.8に示す接触ばねは、接触点において、引張圧縮方向を $\hat{\hat{x}}_{sph-ij}$ とし、これに直交する2方向を $\hat{\hat{y}}_{sph-ij}$, \hat{z}_{sph-ij} とするばねの局所座標系を設ける.

2.5.2 円柱形要素~球形要素

まず,円柱形要素 i の局所座標に球形要素 j も含めて図-2.9 にように転換する. すなわち一般座標系の位 置座標は次式のように変換される.

$$\tilde{\mathbf{L}}_{cyl-i} = \mathbf{A}_{cyl-i} \mathbf{A}_{cyl-i}^{\mathrm{T}} \mathbf{L}_{cyl-i}$$
(2.41)

$$\tilde{\mathbf{L}}_{sph-j} = \mathbf{A}_{sph-i} \mathbf{A}_{cyl-i}^{\mathrm{T}} \left(\mathbf{L}_{sph-j} - \mathbf{L}_{cyl-i} \right)$$
(2.42)

そのうえで、球形要素jの位置により typeA, B, C のいずれかに分類する.

(typeA)
$$-\frac{1}{2}l_{cyl-i} \le \hat{x}_{sph-j} \le \frac{1}{2}l_{cyl-i}$$
 (2.43a)

(typeB)
$$|\hat{x}_{sph-j}| \ge \frac{1}{2} l_{cyl-i} \cap \hat{y}_{sph-j}^2 + \hat{z}_{sph-j}^2 \le r_{sph-j}^2$$
 (2.43b)

(typeC)
$$|\hat{x}_{sph-j}| \ge \frac{1}{2} l_{cyl-i} \cap \hat{y}_{sph-j}^2 + \hat{z}_{sph-j}^2 \ge r_{sph-j}^2$$
 (2.43c)

(1) typeA のばね座標系

円柱形要素の \hat{y}_{cyl-i} を中心に回転させた後に \mathbf{z}'_{cyl-i} を回転させて図-2.10のように $(\hat{\hat{x}}_{cyl-i}, \hat{\hat{y}}_{cyl-i}, \hat{\hat{z}}_{cyl-i})$ の局 所座標系を作り、これを \tilde{z}_{cyl-i} 方向に l_c だけ移動させて \hat{x}_{spr-ij} が \hat{x}_{cyl-ij} と平行でばね軸上にあり、 \hat{y}_{cyl-i} 、 \hat{z}_{cyl-i} と 平行な局所座標系を作る. すなわち,任意の図-2.6 における位置座標 \mathbf{L}_{cvl-i} は次式のように変換される.

$$\widehat{\mathbf{L}}_{cyl-k} = \widehat{\mathbf{A}}_{cyl-i} \mathbf{L}_{cyl-i} - \begin{bmatrix} \boldsymbol{r}_{sph-j} \\ \boldsymbol{0} \\ -\boldsymbol{l}_c \end{bmatrix}$$
(2.44)

(2) typeBのばね座標系

ばねの方向は、円柱形要素に並行するようにして(図-2.9 で左端に接触する場合は2cyl-jまわりに 180 °回 転する) 図-2.11 のように図-2.9 の原点を \tilde{x}_{cyl-i} 方向に $\frac{1}{2}I_{cyl}$ だけ平行移動した局所座標系を作る.すなわち,

$$\hat{\mathbf{L}}_{spr-ij-k} = \hat{\mathbf{L}}_{cyl-i} - \begin{bmatrix} \frac{1}{2} l_{cyl} \\ 0 \\ 0 \end{bmatrix}$$
(2.45)

図-2.9 円柱形要素 i の局所座標系における球形要素座標 図-2.10 ばね要素の局所座標系と平行 する円柱形要素局所座標系(typeA)

する円柱形要素局所座標系(typeB)

J-2.12 はね要素の局所座標系と平行 する円柱形要素局所座標系(typeC)

(3) typeC のばね座標系

図-2.12 に示すようにばねの接触角 θ_{spr-ij} に合わせて円柱形要素を中心に \hat{y}_{cyl-i} 軸回りに $\hat{\tilde{A}}_{cyl-j}$ を用いて回転 させて $\left(\frac{1}{2}l_{cyl-i}\cos\theta_{spr-ij}, \frac{1}{2}l_{cyl-i}\sin\theta_{spr-ij}\right)$ 平行移動する.すなわち,

$$\hat{\mathbf{\hat{L}}}_{spr-ij-k} = \hat{\widetilde{\mathbf{A}}}_{cyl-i} \hat{\mathbf{L}}_{cyl-k} - \begin{bmatrix} -\frac{1}{2}l_{cyl-i}\cos\theta_{spr}\\ 0\\ -\frac{1}{2}l_{cyl-i}\sin\theta_{spr} \end{bmatrix}$$
(2.46)

2.5.3 三角形要素~球形要素

まず、三角形要素 iの表面の平面を次式で表すものとする.

$$\mathbf{N}_{\mathrm{or}-xi}x + \mathbf{N}_{\mathrm{or}-yi}y + \mathbf{N}_{\mathrm{or}-zi}z + \mathbf{C}_{N-i} = 0$$
(2.47)

 N_{or} ベクトルは、たとえば図-2.13(a)において、例えば点aからbへの単位方向ベクトルを e_{b-a} 、同じく点cからaを e_{c-a} とするとその外積によって求められる.

$$\mathbf{e}_{b-a} = \frac{\mathbf{L}_{i-b} - \mathbf{L}_{i-a}}{|\mathbf{L}_{i-b} - \mathbf{L}_{i-a}|}$$
(2.48)

$$\mathbf{e}_{c-a} = \frac{\mathbf{L}_{i-c} - \mathbf{L}_{i-a}}{|\mathbf{L}_{i-c} - \mathbf{L}_{i-a}|}$$
(2.49)

$$\mathbf{N}_{\rm or} = \begin{bmatrix} \mathbf{N}_{\rm or-xi} x \\ \mathbf{N}_{\rm or-yi} y \\ \mathbf{N}_{\rm or-zi} z \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{b-a-y} \cdot \mathbf{e}_{c-a-z} - \mathbf{e}_{b-a-y} \cdot \mathbf{e}_{b-a-yz} \\ \mathbf{e}_{b-a-z} \cdot \mathbf{e}_{c-a-x} - \mathbf{e}_{c-a-x} \cdot \mathbf{e}_{b-a-z} \\ \mathbf{e}_{b-a-x} \cdot \mathbf{e}_{c-a-y} - \mathbf{e}_{b-a-y} \cdot \mathbf{e}_{b-a-x} \end{bmatrix}$$
(2.50)

$$\mathbf{C}_{N-i} = -\mathbf{N}^{\mathrm{T}}_{\mathrm{or}-i} \cdot \mathbf{L}_{i-a} \tag{2.51}$$

この N_{or} ベクトルを図-2.4 で述べた円接中心線のベクトルとして取り扱うと三角形要素に直交する方向を \hat{x}_{s} とする局所座標系への直交マトリクス A_{i} が求まり、次式のように変換すると図-2.13(b)のようになる.この後、ばね系の局所座標系へ \hat{x}_{i} 軸を α_{i} 回転させる A_{Si} を用いると図-2.13(c)のようになる.

$$\tilde{\mathbf{L}}_{i-a} = \mathbf{0} \tag{2.52}$$

$$\tilde{\mathbf{L}}_{i} = \mathbf{A}_{i} \cdot \left(\mathbf{L}_{j} - \mathbf{L}_{i-a}\right) \tag{2.53}$$

$$\hat{\tilde{\mathbf{L}}}_{i-q} = \mathbf{0} \tag{2.54}$$

$$\tilde{\mathbf{L}}_{Sj} = \mathbf{A}_{Sj} \tilde{\mathbf{L}}_j \tag{2.55}$$

2.6 接触判定, つり合い条件および変形適合条件

個々の要素は重心点の並進移動の自由度に加えて重心点回りの回転自由度を有するので,要素の変位 u と ばねの変形 δ_s との変形適合条件を幾何的に求めるのはやや複雑である.そこで,時間差分 Δt 内における変 位差分や変形増分が微少であると仮定して,微少変形理論で成立する反傾定理つり合いマトリクスと適合マ トリクスが転置関係となることを活用して,適合マトリクスを求める.

2.6.1 球形要素間

まず,球形要素間の接触判定について述べる.球形要素の接触判定は局所座標系での判定を行う以前に一 般座標系で可能であるほか、座標変換の途中過程で可能であるが、判定式の意味が簡明であるので,統一し た座標系で述べる.また,前述の回転座標変換について,いくつかの過程を経るが総合的に次式のように表 す.

$$\tilde{\hat{\mathbf{u}}}_{spr-i} \le \mathbf{A}_{spr-ij} \mathbf{A}_{ele-i}^{\mathrm{T}} \mathbf{u}_{i}$$
(2.56)

ここで、 $\tilde{\mathbf{u}}_{spr-i}$: ばね座標系における i 要素の変位、 \mathbf{A}_{spr-ij} : 要素 i、j間におけるばねの局所座標系への変形 マトリクス、 $\mathbf{A}_{ele-i}^{\mathrm{T}}$: 球形もしくは円柱形要素 iに対する転置マトリクスである.

接触判定は次式に基づいて行われる.

第2章 本研究で用いる個別要素法の基本式と手順

$$\mathbf{\hat{L}}_{x-j} \le r_{sph-i} + r_{sph-j} \dots \text{ (2.57a)}$$

$$\tilde{\mathbf{L}}_{x-j} > r_{sph-i} + r_{sph-j} \dots 非接触$$
(2.57b)

ここで、 $\hat{\mathbf{L}}_{x-j}$:要素*i*,*j*の重心点間の距離、 r_{sph-i} :球形要素*i*の半径、 r_{sph-j} :球形要素*j*の半径である. そのうえで、接触している場合には次のつり合い条件式が成立する.

$$\hat{\mathbf{f}}_{i} = \begin{bmatrix} \hat{f}_{Sxi} \\ \hat{f}_{Syi} \\ \hat{f}_{Szi} \\ \hat{f}_{MSxi} \\ \hat{f}_{MSyi} \\ \hat{f}_{MSzi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -r_{sph-j} \\ 0 & r_{sph-j} & 0 \end{bmatrix} \begin{bmatrix} S_{x} \\ S_{y} \\ S_{z} \end{bmatrix}$$
(2.58a)

$$\hat{\mathbf{f}}_{j} = \begin{bmatrix} \hat{f}_{Sxj} \\ \hat{f}_{Syj} \\ \hat{f}_{Szj} \\ \hat{f}_{MSxj} \\ \hat{f}_{MSyj} \\ \hat{f}_{MSzi} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & r_{sph-j} \\ 0 & -r_{sph-j} & 0 \end{bmatrix} \begin{bmatrix} S_{x} \\ S_{y} \\ S_{z} \end{bmatrix}$$
(2.58b)

2.6.2 円柱形要素~球形要素 (typeA)

図-2.10の状態においても同様に次のように接触判定をする.

$$\hat{\tilde{\mathbf{L}}}_{x-j} \le r_{cyl-i} - r_{sph-j} \dots \text{ if } \text{ the }$$

$$(2.59a)$$

$$\tilde{\mathbf{L}}_{x-j} > r_{cyl-i} - r_{sph-j} \dots$$
非接触 (2.59b)

つり合い条件式は次式のようになる.

$$\hat{\mathbf{f}}_{i} = \begin{bmatrix} \hat{f}_{Sxi} \\ \hat{f}_{Syi} \\ \hat{f}_{Szi} \\ \hat{f}_{MSxi} \\ \hat{f}_{MSyi} \\ \hat{f}_{MSzi} \\ \hat{f}_{MSzi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & l_{c} & 0 \\ -l_{c} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{S}_{x} \\ \tilde{S}_{y} \\ \tilde{S}_{z} \end{bmatrix}$$
(2.60a)

$$\hat{\mathbf{f}}_{j} = \begin{bmatrix} \tilde{f}_{Sxj} \\ \hat{f}_{Syj} \\ \hat{f}_{Szj} \\ \hat{f}_{MSxj} \\ \hat{f}_{MSyj} \\ \hat{f}_{MSzj} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & r_{sph-j} \end{bmatrix} \begin{bmatrix} \tilde{S}_{x} \\ \tilde{S}_{y} \\ \tilde{S}_{z} \end{bmatrix}$$
(2.60b)

2.6.3 円柱形要素~球形要素 (typeB)

Typeの接触判定を次式で示す.

$$\hat{\tilde{\mathbf{L}}}_{x-j} \le l_c + r_{sph-j} \dots \overleftarrow{\mathbf{g}} \bigstar$$
(2.61a)

$$\tilde{\mathbf{L}}_{x-j} > l_c + r_{sph-j} \dots \# \notin \mathbb{R}$$
(2.61b)

図-2.11 のようになるので、つり合い条件は次式となる.

$$\hat{\mathbf{f}}_{i} = \begin{bmatrix} \hat{f}_{Sxi} \\ \hat{f}_{Syi} \\ \hat{f}_{Szi} \\ \hat{f}_{MSxi} \\ \hat{f}_{MSyi} \\ \hat{f}_{MSzi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -l_{c} \\ 0 & l_{c} & 0 \end{bmatrix} \begin{bmatrix} \tilde{S}_{x} \\ \tilde{S}_{y} \\ \tilde{S}_{z} \end{bmatrix}$$
(2.62a)

$$\hat{\mathbf{f}}_{j} = \begin{bmatrix} \tilde{f}_{Sxj} \\ \hat{f}_{Syj} \\ \hat{f}_{Szj} \\ \hat{f}_{MSxj} \\ \hat{f}_{MSyj} \\ \hat{f}_{MSzj} \\ \hat{f}_{MSzj} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & r_{sph-j} \\ 0 & -r_{sph-j} & 0 \end{bmatrix} \begin{bmatrix} \tilde{S}_{x} \\ \tilde{S}_{y} \\ \tilde{S}_{z} \end{bmatrix}$$
(2.62b)

2.6.4 円柱形要素~球形要素 (typeC)

TypeCの接触判定を次式で示す.

$$\left(\mathbf{L}_{sph-x} - \frac{l_{cyl}}{2}\right)^2 + \left(\mathbf{L}_{sph-x} - r_{cyl}\right)^2 \le r_{sph-j}^2 \dots \text{ if } \text{ the }$$

$$(2.63a)$$

$$\left(\mathbf{L}_{sph-x} - \frac{l_{cyl}}{2}\right)^2 + \left(\mathbf{L}_{sph-x} - r_{cyl}\right)^2 > r_{sph-j}^2 \dots \# \dot{\mathcal{K}} \dot{\mathcal{K}}$$
(2.63b)

図-2.12のようになるので、つり合い条件は次式となる.

.

$$\hat{\mathbf{f}}_{i} = \begin{bmatrix} \tilde{f}_{Sxi} \\ \hat{f}_{Syi} \\ \hat{f}_{Szi} \\ \hat{f}_{MSxi} \\ \hat{f}_{MSyi} \\ \hat{f}_{MSzi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -\frac{l_{cyl}}{2} \sin\theta_{ij} \\ 0 & \frac{l_{cyl}}{2} \sin\theta_{ij} & 0 \end{bmatrix} \begin{bmatrix} \tilde{S}_{x} \\ \tilde{S}_{y} \\ \tilde{S}_{z} \end{bmatrix}$$
(2.64a)

$$\hat{\mathbf{f}}_{j} = \begin{bmatrix} \hat{f}_{Sxj} \\ \hat{f}_{Syj} \\ \hat{f}_{Szj} \\ \hat{f}_{MSxj} \\ \hat{f}_{MSyj} \\ \hat{f}_{MSzj} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & r_{sph-j} \\ 0 & -r_{sph-j} & 0 \end{bmatrix} \begin{bmatrix} \tilde{S}_{x} \\ \hat{S}_{y} \\ \tilde{S}_{z} \end{bmatrix}$$
(2.64b)

2.6.5 球形要素~平面要素

$$\tilde{\hat{\mathbf{L}}}_{x-j} \le r_{sph-j} \dots \text{ if } \text{ the }$$

$$(2.65a)$$

$$\hat{L}_{x-j} > r_{sph-j} \dots$$
 非接触 (2.65b)

つり合い条件式は次式となる.

$$\hat{\mathbf{f}}_{i} = \begin{bmatrix} \hat{f}_{Sxi} \\ \hat{f}_{Syi} \\ \hat{f}_{Szi} \\ \hat{f}_{MSxi} \\ \hat{f}_{MSyi} \\ \hat{f}_{MSzi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -r_{sph-j} \end{bmatrix} \begin{bmatrix} S_{x} \\ S_{y} \\ S_{z} \end{bmatrix}$$
(2.66a)
$$\hat{\mathbf{f}}_{j} = \begin{bmatrix} \hat{f}_{sxj} \\ \hat{f}_{syj} \\ \hat{f}_{Szj} \\ \hat{f}_{MSyj} \\ \hat{f}_{MSyj} \\ \hat{f}_{MSyj} \\ \hat{f}_{MSyj} \\ \hat{f}_{MSyj} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & r_{sph-j} \end{bmatrix} \begin{bmatrix} S_{x} \\ S_{y} \\ S_{z} \end{bmatrix}$$
(2.66b)

2.7 一般座標系での変形適合条件およびつり合い条件

式(2.58)~(2.66)のばね局所座標系でのつり合い条件に反傾定理を用いて,一般座標系での変形適合条件は 次式となる.

2.7.1 球形要素間

$$\begin{bmatrix} \Delta \delta_{Sx} \\ \Delta \delta_{Sy} \\ \Delta \delta_{Sz} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & r_{sph} & 0 & -1 & 0 & 0 & 0 & -r_{sph} \\ 0 & 0 & 1 & 0 & -r_{sph} & 0 & 0 & 0 & -1 & 0 & r_{sph} & 0 \end{bmatrix} \begin{bmatrix} \Delta \tilde{u}_{xi} \\ \Delta \tilde{u}_{Mxi} \\ \Delta \tilde{u}_{Myi} \\ \Delta \tilde{u}_{xj} \\ \Delta \tilde{u}_{yj} \\ \Delta \tilde{u}_{zj} \\ \Delta \tilde{u}_{Mxj} \\ \Delta \tilde{u}_{Mxj} \\ \Delta \tilde{u}_{Mxj} \\ \Delta \tilde{u}_{Mxj} \end{bmatrix}$$
(2.67)

局所座標系での変位ãと全体座標系でのuとの関係は2.6項より次式となる.

$$\begin{bmatrix} \Delta \tilde{\mathbf{u}}_i \\ \Delta \tilde{\mathbf{u}}_j \end{bmatrix} = \begin{bmatrix} \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathrm{T}} & \mathbf{0} \\ \mathbf{0} & \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u}_i \\ \Delta \mathbf{u}_j \end{bmatrix}$$
(2.68)

これを代入すると

$$\begin{bmatrix} \Delta \delta_{Sx} \\ \Delta \delta_{Sy} \\ \Delta \delta_{Sz} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & r_{sph} & 0 & -1 & 0 & 0 & 0 & -r_{sph} \\ 0 & 0 & 1 & 0 & -r_{sph} & 0 & 0 & -1 & 0 & r_{sph} & 0 \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} & \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} \\ \cdots & \cdots \\ \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} & \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u}_{i} \\ \Delta \mathbf{u}_{j} \end{bmatrix}$$
(2.69)

2.7.2 円柱形要素~球形要素(typeA)

$$\begin{bmatrix} \Delta \delta_{Sx} \\ \Delta \delta_{Sy} \\ \Delta \delta_{Sz} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & -l_{c} & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_{c} & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -r_{sph} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & r_{sph} & 0 \end{bmatrix} \begin{bmatrix} \Delta \tilde{u}_{xi} \\ \Delta \tilde{u}_{Mxi} \\ \Delta \tilde{u}_{Mxi} \\ \Delta \tilde{u}_{Xj} \\ \Delta \tilde{u}_{xj} \\ \Delta \tilde{u}_{zj} \\ \Delta \tilde{u}_{Mxj} \end{bmatrix}$$
(2.70)

となり,

$$\begin{bmatrix} \Delta \tilde{\mathbf{u}}_i \\ \Delta \tilde{\mathbf{u}}_j \end{bmatrix} = \begin{bmatrix} \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} & \mathbf{0} \\ \mathbf{0} & \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u}_i \\ \Delta \mathbf{u}_j \end{bmatrix}$$
(2.71)

_

を代入すると

$$\begin{bmatrix} \Delta \delta_{Sx} \\ \Delta \delta_{Sy} \\ \Delta \delta_{Sz} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & -l_c & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_c & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -r_{sph} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & r_{sph} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} & \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} \\ \vdots & \vdots & \vdots \\ \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} & \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u}_{i} \\ \Delta \mathbf{u}_{j} \end{bmatrix}$$
(2.72)

2.7.3 円柱形要素~球形要素 (typeB)

$$\begin{bmatrix} \Delta \delta_{Sx} \\ \Delta \delta_{Sy} \\ \Delta \delta_{Sz} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -l_{c} & 0 & -1 & 0 & 0 & 0 & -r_{sph} \\ 0 & 0 & 1 & 0 & l_{c} & 0 & 0 & 0 & -1 & 0 & r_{sph} & 0 \end{bmatrix} \begin{bmatrix} \Delta \tilde{\hat{u}}_{xi} \\ \Delta \tilde{\hat{u}}_{Mxi} \\ \Delta \tilde{\hat{u}}_{Mxi} \\ \Delta \tilde{\hat{u}}_{xj} \\ \Delta \tilde{\hat{u}}_{zj} \\ \Delta \tilde{\hat{u}}_{xj} \\ \Delta \tilde{\hat{u}}_{mxj} \\ \Delta \tilde{\hat{u}}_{Mxj} \\ \Delta \tilde{\hat{u}}_{Mxj} \\ \Delta \tilde{\hat{u}}_{Mxj} \end{bmatrix}$$
(2.73)

となり,

$$\begin{bmatrix} \Delta \tilde{\hat{\mathbf{u}}}_i \\ \Delta \tilde{\hat{\mathbf{u}}}_j \end{bmatrix} = \begin{bmatrix} \widetilde{\hat{\mathbf{A}}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathrm{T}} & \mathbf{0} \\ \mathbf{0} & \widetilde{\hat{\mathbf{A}}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u}_i \\ \Delta \mathbf{u}_j \end{bmatrix}$$
(2.74)

を代入すると

第2章 本研究で用いる個別要素法の基本式と手順

$$\begin{bmatrix} \Delta \delta_{Sx} \\ \Delta \delta_{Sy} \\ \Delta \delta_{Sz} \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -l_{c} & 0 & -1 & 0 & 0 & 0 & -r_{sph} \\ 0 & 0 & 1 & 0 & l_{c} & 0 & 0 & 0 & -1 & 0 & r_{sph} & 0 \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} & \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} \\ \cdots & \cdots \\ \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} & \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u}_{i} \\ \Delta \mathbf{u}_{j} \end{bmatrix} (2.75)$$

2.7.4 円柱形要素~球形要素 (typeC)

$$\begin{bmatrix} \Delta \delta_{Sx} \\ \Delta \delta_{Sy} \\ \Delta \delta_{Sz} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & \frac{l_{cyl}}{2} \sin\theta_{ij} & 0 & -1 & 0 & 0 & 0 & -r_{sph} \\ 0 & 0 & 1 & 0 & \frac{-l_{cyl}}{2} \sin\theta_{ij} & 0 & 0 & 0 & -1 & 0 & r_{sph} & 0 \end{bmatrix} \begin{bmatrix} \Delta \tilde{u}_{xi} \\ \Delta \tilde{u}_{Mxi} \\ \Delta \tilde{u}_{Mxi} \\ \Delta \tilde{u}_{xj} \\ \Delta \tilde{u}_{zj} \\ \Delta \tilde{u}_{Mxj} \end{bmatrix}$$
(2.76)

となり,

$$\begin{bmatrix} \Delta \tilde{\mathbf{u}}_i \\ \Delta \tilde{\mathbf{u}}_j \end{bmatrix} = \begin{bmatrix} \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} & \mathbf{0} \\ \mathbf{0} & \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u}_i \\ \Delta \mathbf{u}_j \end{bmatrix}$$
(2.77)

$$\begin{bmatrix} \Delta \delta_{Sx} \\ \Delta \delta_{Sy} \\ \Delta \delta_{Sz} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & \frac{l_{cyl}}{2} \sin\theta_{ij} & 0 & -1 & 0 & 0 & 0 & -r_{sph} \\ 0 & 0 & 1 & 0 & \frac{-l_{cyl}}{2} \sin\theta_{ij} & 0 & 0 & 0 & -1 & 0 & r_{sph} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} & \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} \\ \vdots & \vdots & \vdots \\ \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} & \widetilde{\mathbf{A}}_{spr-ij} \mathbf{A}_{ele-i}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u}_{i} \\ \Delta \mathbf{u}_{j} \end{bmatrix} (2.78)$$

2.8 構成則および一般座標系でのつり合い条件

式(2.56)より次式が成立する.

$$\mathbf{f}_i = \mathbf{A}_{ele-i}^{\mathrm{T}} \mathbf{A}_{spr-ij}^{\mathrm{T}} \hat{\mathbf{f}}_i \tag{2.79}$$

変形適合条件により、各ばねの変形量は次式によって与えられる.

$$\boldsymbol{\delta}_t = \boldsymbol{\delta}_{t-\Delta t} + \Delta \boldsymbol{\delta} \tag{2.80}$$

これを用いて、次に述べる構成則を用いるとばね力が次式のように求まる.

$$\Delta \mathbf{S}_i = \hat{\mathbf{K}}_i + \Delta \hat{\mathbf{\delta}}_i \tag{2.81}$$

ここで、 $\hat{\mathbf{K}}_i$: $\Delta \hat{\mathbf{\delta}}_i$ 間の要素 *i* の弾塑性を含む接触剛性マトリクス.これを式(2.56)~(2.66)のばね局所座標系の つり合い条件式に代入して $\hat{\mathbf{f}}_i$ を求めると式(2.58)により一般座標系における各要素中心点に作用するばね力ベ クトルとなる.

2.9 集合体要素の解析手法

前述した円柱形要素を導入した個別要素法を基礎として,複数の球形もしくは円柱形要素を任意の形に剛 結させた集合体要素モデルを導入する際の解析手法について示す.ここでは,複数の要素を剛結させて1個 の要素として振舞うものを集合体要素と呼び,集合体要素を構成する個々の球形もしくは円柱形要素を構成

図-2.14 集合体要素の座標系

要素と呼ぶ.解析では、各要素の接触判定および接触力の計算は構成要素を用いて計算し、要素の運動は 時々刻々,集合体要素の運動を解くことで,その変位と回転角を求める.

2.9.1 集合体要素の局所座標系と構成要素

集合体要素 i は一つの質量 magri, 一つの慣性モーメント I agr-i を有するものとして運動方程式を解く. この ため, nai 個の構成要素 (j=1,… nai) から成る集合体要素の重心点を原点とする局所座標系を図-2.14のよ うに設ける.

まず、集合体要素の重心位置に任意の局所座標系 $(\tilde{\tilde{x}}_{agr-i}, \tilde{\tilde{y}}_{agr-i}, \tilde{\tilde{z}}_{agr-i})$ を設ける. 通常 $\tilde{\tilde{x}}_{agr-i}$ の方向は、 構成要素のうちの1つと一致させる,集合体要素iと,その構成要素jの位置ベクトルは,図-2.14のよう に、 $\tilde{\mathbf{L}}_{aer-i}$ 、 $\tilde{\mathbf{L}}_{ei}$ として表される.また、全体座標系における構成要素の位置ベクトル \mathbf{L}_{ei} は次式となる.

$$\mathbf{L}_{ej} = \mathbf{L}_{agr-i} + \tilde{\mathbf{\tilde{L}}}_{ej} \tag{2.82}$$

なお、全体座標系における集合体要素の重心位置ベクトルL⁰_{agr-i}は次式によって与えられる.

$$\mathbf{L}_{agr-i}^{0} = \begin{bmatrix} \sum_{j=1}^{n_{ai}} \mathbf{L}_{xej} m_{ej} \\ \sum_{j=1}^{n_{ai}} \mathbf{L}_{yej} m_{ej} \\ \sum_{j=1}^{n_{ai}} \mathbf{L}_{zej} m_{ej} \end{bmatrix}$$
(2.83)

また,図-2.15の座標系における関係より各種の集合体局所座標系において

$$\widetilde{\widetilde{\mathbf{A}}}_{ej} = \begin{bmatrix} \widetilde{\widetilde{x}}_{agr-i} \\ \widetilde{\widetilde{y}}_{agr-i} \\ \widetilde{\widetilde{z}}_{agr-i} \end{bmatrix}$$
(2.84)

全体座標系との関係を表すために、図-2.15 に示すように集合体要素および構成要素に姿勢マトリクスを 設定する.

$$\mathbf{A}_{ai} = \begin{bmatrix} \tilde{\mathbf{a}}_{agr-xi} \\ \tilde{\mathbf{a}}_{agr-yi} \\ \tilde{\mathbf{a}}_{agr-zi} \end{bmatrix}_{33}$$
(2.85)

よって、全体座標系における各要素の姿勢マトリクスは次式となる.

$$\mathbf{A}_{ej} = \mathbf{A}_{ai} \widetilde{\widetilde{\mathbf{A}}}_{ej} \tag{2.86}$$

2.9.2 集合体要素の質量と慣性モーメント

集合体要素の質量および慣性モーメントは、構成要素の情報をもとに、次式により表される.

(a) 法線方向接触ばねの構成則

図-2.16 接触ばねの構成則

$$m_{ai} = \begin{bmatrix} \sum_{i=1}^{i} m_{i} & 0 \\ \sum_{i=1}^{i} m_{i} & \\ 0 & \sum_{i=1}^{i} m_{i} \end{bmatrix}_{3 \times 3}$$
(2.87)

$$\mathbf{I}_{ai} = \sum_{j=1}^{n_{aj}} \begin{bmatrix} \mathbf{I}_{ej-x} + m_j l_{ex}^2 & 0 \\ & \mathbf{I}_{ej-y} + m_j l_{ey}^2 & \\ 0 & & \mathbf{I}_{ej-z} + m_j l_{ez}^2 \end{bmatrix}_{3\times 3}$$
(2.88)

ここで、 m_{ej} : それぞれ集合体要素 j の質量、 \mathbf{I}_{agr-k} : 集合体要素の慣性モーメント、 \mathbf{I}_{ej-x} 、 \mathbf{I}_{ej-y} 、 \mathbf{I}_{ej-z} : それぞれj要素のx、y、z軸まわりの慣性モーメント、 n_{aj} : 集合体要素jの構成要素の数である.

2.9.3 慣性モーメントと姿勢

構成要素の慣性主軸回りの慣性モーメントは,式(2.88)で与えられる.よって構成要素座標系における慣 性モーメントは次式となる.

$$\hat{\mathbf{I}}_{agr-i} = \sum_{j=1}^{n_{ak}} \left[\tilde{\mathbf{I}}_{ej} + m_{ej} \begin{bmatrix} \left(\hat{\widetilde{L}}_{ejy}\right)^2 + \left(\hat{\widetilde{L}}_{ejz}\right)^2 & -\hat{\widetilde{L}}_{ejx}\hat{\widetilde{L}}_{ejy} & -\hat{\widetilde{L}}_{ejx}\hat{\widetilde{L}}_{ejz} \\ -\hat{\widetilde{L}}_{ejy}\hat{\widetilde{L}}_{ejx} & \left(\hat{\widetilde{L}}_{ejx}\right)^2 + \left(\hat{\widetilde{L}}_{ejz}\right)^2 & -\hat{\widetilde{L}}_{ejy}\hat{\widetilde{L}}_{ejz} \\ -\hat{\widetilde{L}}_{ejz}\hat{\widetilde{L}}_{ejx} & -\hat{\widetilde{L}}_{ejz}\hat{\widetilde{L}}_{ejy} & \left(\hat{\widetilde{L}}_{ejx}\right)^2 + \left(\hat{\widetilde{L}}_{ejy}\right)^2 \end{bmatrix} \right]$$
(2.89)

よって集合体要素座標系における慣性モーメントは、平行軸の定理より次式によって与えられる.

$$\tilde{\mathbf{I}}_{ej} = \mathbf{A}_{ej}^{\mathrm{T}} \hat{\tilde{\mathbf{I}}}_{ej} \mathbf{A}_{ej}$$
(2.90)

ここで、 $\hat{\tilde{L}}_{ejx}$ 、 $\hat{\tilde{L}}_{ejy}$ 、 $\hat{\tilde{L}}_{ejz}$: それぞれ集合体要素座標系における構成要素の位置ベクトル $\tilde{\mathbf{L}}_{ej}$ の $\tilde{\mathbf{x}}_{j-A}$ 、 $\tilde{\mathbf{y}}_{j-A}$ 、 $\tilde{\mathbf{z}}_{j-A}$ 軸方向成分である.

2.9.4 集合体要素の動きと構成要素間の物理量の展開と集約

集合体要素は、その重心点に働く力 \mathbf{f}_{agr-i} とモーメント \mathbf{M}_{agr-i} を用いて、既述の個別要素と同様に Δt 間の 運動による変位と姿勢変化を解くが、 \mathbf{f}_{agr-i} と \mathbf{M}_{agr-i} は次式によって与えられる.

$$\mathbf{f}_{agr-i} = \sum_{i=1}^{n_{ak}} \mathbf{f}_{ej} \tag{2.91}$$

$$\mathbf{M}_{agr-i} = \sum_{j=1}^{n_{ak}} \mathbf{M}_{ej} + \sum_{j=1}^{n_{ak}} \tilde{\mathbf{\tilde{L}}}_{aj} \times \mathbf{f}_{ej}$$
(2.92)

なお、 \mathbf{f}_{ej} および \mathbf{M}_{agr-i} はその要素ごとに既述の接触判定を行い、その後接触力を要素 jの重心点への変換処理を行った併進方向の力とその要素重心点まわりのモーメントである.

2.10 構成則

2.10.1 接触ばね

接触ばねの構成則は,図-2.16 に示すように法線方向に引張力を生じない線形モデルを,せん断方向(滑り方向)にモール・クーロンの滑動限界に対するバイリニアモデルを用いる.法線方向ばねは次式で示される.

$$\mathbf{S}_{CN}(t) = 0 \ (\mathbf{q}_{CN}(t) < 0) \tag{2.93}$$

$$\mathbf{S}_{CN}(t) = \mathbf{S}_{CN}(t - \Delta t) + \mathbf{k}_{CN} \Delta \mathbf{q}_{CN}(t) \quad (\mathbf{q}_{CN}(t) \ge 0)$$
(2.94)

ここで、 $S_{CN}(t)$:時刻 t における要素間ばねの内力ベクトル、 $\Delta q_{CN}(t)$: $S_{CN}(t)$ ベクトルに対応する要素間ばねの局所の姿勢マトリクス A_s に従う Δt 間の増分変形量ベクトル、 \mathbf{k}_{CN} :増分間の剛性マトリクスである. せん断ばねは次式で示される.

$$S_{CS}(t) = S_{CS}(t - \Delta t) + \mathbf{k}_{CS} \Delta \mathbf{q}_{CS}(t) \quad (|S_{CS}(t)| \ge \mathbf{C}_S + S_{CN}(t) \tan \varphi_e)$$
(2.95)

$$S_{CS}(t) = \mathbf{C}_S + S_{CN}(t) \tan \varphi_e \tag{2.96}$$

ここで, $S_{CS}(t)$:時刻 t における要素間ばねの局所の姿勢マトリクス A_s の \tilde{y} , \tilde{z} 方向成分ベクトルを合成した もののスカラー, C_s :粘着力, $\tan \varphi_e$:要素間摩擦係数である.

なお,要素間ばねの構成則である法線方向ばねは,圧縮に対して弾性挙動を示し,接触ばねであるので引 張には抵抗しないものとした.以下のような制約条件を付加した.

2.10.2 連結ばね²⁾

連結ばねは軸方向1つ, せん断方向2つ, 曲げモーメント3つの計6か所のばねを設置する. このとき, 各ばねは独立して計算を行う.

(1) 軸 力

図-2.17 に連結ばねのうち、軸方向ばねの概要を示す.本解析における連結ばねは、インプットデータとして軸剛性 *EA*,降伏荷重 P_{yield} ,硬化率 R_h ,破断変形量 $\delta_{x-failure}$ を与える.そのうえで連結ばねによって結合される要素長と軸剛性は次式で表される.

$$l_{ij} = \frac{1}{2} \left(l_i + l_j \right)$$
(2.97)

$$k = \frac{EA}{l_{ij}} \tag{2.98}$$

軸剛性が連結された要素の要素長で算出されたうえで、図−2.17(b)に示すように連結ばねの内力と変形の 関係は次式で表される.

$$S_{xij} = \begin{cases} \frac{EA}{l_{ij}} \delta_x & \left(0 \le \delta_x \le \delta_{x-yield}\right) \\ P_{yield} + R_h \frac{EA}{l_{ij}} \left(\delta_x - \delta_{xyield}\right) & \left(\delta_{x-yield} \le \delta_x \le \delta_{x-failure}\right) \\ 0 & \left(\delta_{x-failure} \le \delta_x\right) \end{cases}$$
(2.99)

ばねの内力は、連結ばねの変形量が破断変形量 δ_{xf} を超えると0となり以降は要素間の連結が失われる. (2) せん断力

図-2.18 にせん断方向の構成則の概要を示す. せん断力は, 軸力と同様に次式で示す. せん断ばねは軸方向と平行に2方向連結する.

$$\tau_{xij} = \begin{cases} \frac{GA}{l_{ij}} \delta_y & \left(0 \le \delta_y \le \delta_{y-yield}\right) \\ \tau_{yield} + R_h \frac{GA}{l_{ij}} \left(\delta_y - \delta_{y-yield}\right) & \left(\delta_{y-yield} \le \delta_y \le \delta_{y-failure}\right) \\ 0 & \left(\delta_{y-failure} \le \delta_y\right) \end{cases}$$
(2.100)

図-2.19 曲げモーメントばねの構成則

せん断力についてもバイリニアで表す. せん断力は, 連結ばねの変形量が破断変形量 $\delta_{y-failure}$ を超えると0となり以降は要素間の連結が失われる.

(3) 曲げモーメント

図-2.19に曲げの構成則の概要を示す.曲げモーメントは次式で示す.

$$M_{xij} = \begin{cases} \frac{EI}{l_{ij}} \theta \ \left(0 \le \theta \le \theta_{yield}\right) \\ M_{yield} + R_h \frac{EI}{l_{ij}} \left(\theta - \theta_{yield}\right) \ \left(\theta_{yield} \le \theta \le \theta_{failure}\right) \\ 0 \ \left(\theta_{failure} \le \theta\right) \end{cases}$$
(2.101)

曲げモーメントについてもバイリニアで表す.曲げモーメントは,連結ばねのたわみ角が破断角θ_{failure}を 超えると0となり以降は要素間の連結が失われる.実験の再現解析においては,部材の強度を材料試験によ って求め,実規模の解析においては,実堰堤の鋼管部材の強度を断面分割法で推定した.その詳細は第6章 と第7章で述べる.

2.11 流速分布モデル⁴⁾を用いた土石流モデルのアプローチ

本研究において個別要素法を用いて土石流モデルの解析を行うにあたって,まず初期配置を行う.図-2.20 に初期配置の要領を示す.初期配置は落下法⁵⁾と呼ばれる方法を用いる.当初,粒径分布に応じた礫を 水路モデルの上部にランダムに配置し,その後,計算を行い,礫を落下・堆積させる.礫が停止し,初期配 置が完了したのち,礫に流体力を作用させて土石流モデルを流下させる.本来であれば,解析において水と 礫の相互作用を解かなければならないが,本研究においては流速分布モデルを用いて礫と流速分布の相対速 度差から礫に流体力を作用させる.

本項では、土石流モデルが初期配置から堰堤モデルの捕捉面に到達する直前までのアプローチについて流 速分布モデルの計算手法と計算の流れを示す.

流体力の基本式は、球形要素が受ける流体力は速度と流水の速度との相対速度から算出し、重心点に作用 する流体力として評価した.要素 *i* の重心に作用する流体力 **f**_w は、前述の式(2.26)、(2.27)を組み合わせ次式 により表す.

$$\mathbf{f}_{\mathrm{W}i} = C_D A_i \rho_w |\mathbf{v}_i - \mathbf{v}_w|^2 \begin{bmatrix} \cos \tilde{\theta}_x \\ \cos \tilde{\theta}_y \\ \cos \tilde{\theta}_z \end{bmatrix} + \rho_w g V$$
(2.102)

図-2.21 に示すように,流速分布モデルの仮定として,①河底勾配と水面勾配が等しく河川断面を礫と流 水が流れる.また,②流下断面内において礫は不規則に流下する.流速分布の向きは,水路底面の勾配と等 しい.このときの流速は,上流側の礫モデルの後端から下流側の礫モデルの先端に向かって低減され,次式 で示される.

$$v_{\mathrm{T}}(l) = \left(\frac{L - C_1 l_i}{L}\right) v_0 \tag{2.103}$$

ここで、 $v_{\rm T}(l)$: 図-2.21(a) に示す l_i の各要素の流速、L: 礫塊の全長、 l_i : 礫塊の後端からの距離、 C_1 : 流速 低減率 (= 0.2)、 v_0 : 初期流速である.

このように前方の流速を相対的に小さくするのは、底面摩擦の影響により礫塊が流下とともに伸長するの を防止し、段波形状を維持するためである⁴.

さらに、水深方向の流速分布は本来非線形となると思われるが簡略モデルとした.このとき、礫に作用させる流速は水面の流速に水深方向の低減係数*C*2をかけて、河底から水面に向かって線形的に大きくさせる. また、基準となる初期流速ベクトルv0と初期水深h0を与えたとき、水面上の流速v0を水路床上の流速をその8 割の速度となるように、水深に応じて線形的に低下させた.各要素の積分点の高さziに応じた流速viの式を 以下に示す.

$$\begin{cases} \mathbf{v}_i = \left(\frac{h_0 - C_2 z_i}{h_0}\right) \mathbf{v}_0 & (0 \le z_i \le h_0) \\ \mathbf{v}_i = 0 & (z_i > h_0) \end{cases}$$
(2.104)

図-2.21(b)に流速の分解について示す.流速は底面となる三角形要素の水路勾配と平行の向きに与えられ, 各要素に生じる流体力を計算する際には鉛直成分と水平成分の速度ベクトルに分解し,相対速度を求める.

このとき,図-2.21(a)で示したアプローチ中の流速分布では,先頭から後端に至るまでの平均流速が一定 に保たれながら流下する.流速分布モデルの流量は,次式で示す連続の式に基づいて上流側からの流水流入 量と土石流モデル先頭部からの流水流出量が釣り合うように着意する. 圧縮性流体において一般的な連続の 式は次式で表される.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \tag{2.105}$$

図-2.22 土石流モデルのアプローチの計算の流れ

ここで、**∂**: 偏微分記号, *ρ*: 流水の密度, *t*: 時間である. しかし, 流速分布モデルは要素と流水の相対速 度に応じて要素の重心点に直接流体力を作用させる簡易なモデルであるため, 流水の密度変化は考慮してい ない. つまり,本研究においては流速と流水断面の変化のみを考慮する.

このため、連続の式は次式で表される.

$$\nabla \cdot \mathbf{v} = 0 \tag{2.106}$$

アプローチ完了から堰堤に衝突する過程における流速と水深の変化は、各章ごと異なるモデルを用いているため、詳細は各章で述べる.

図-2.22 に土石流モデルの初期配置から堰堤衝突までの計算過程を示す.前述した落下法による初期配置 を完了したのち,流速分布モデルを用いて堰堤直前まで流下させ,一度解析を止める.この時点での礫モデ ルの座標と流速を取り出し,堰堤モデル等のパラメータを変えたうえで以降の解析に用いる.これは,アプ ローチ中の解析は堰堤モデルや事前に堆積した礫に影響を受けないことと,計算時間の短縮のためである.

2.12 解析手順

図-2.23 に解析手順のフローチャートを示す.解析手順は,計算を開始し,入力した初期値を読み取る. 各要素の初期座標から,周辺の接触候補範囲内にある接触候補要素を抽出する.当初,常時連接している連
第2章 本研究で用いる個別要素法の基本式と手順

結ばねのばね力の計算を行い,その後,各要素の接触候補要素との接触判定を行い,接触したならば接触力 の計算を行う.その時点でのばね力・外力を集成して運動方程式を解き,各要素の速度・変位を更新する. 土石流モデルの各要素の位置や堆積量に応じて流速分布モデルの水深・流速を更新し,各要素に作用する流 体力を求める.最後に,更新した各要素の速度・変位等を新たな入力値として用いて,周辺の抽出された接 触候補範囲内の接触候補要素を抽出し,次のタイムステップの計算を行う.

第2章 本研究で用いる個別要素法の基本式と手順

図-2.23 フローチャート

2.13 結 言

本章では、本研究で用いる個別要素法の基本式と計算手順について整理した.以下にその内容を示す.

- 1) 球形,円柱形,三角形の剛体形状を有する要素を構成要素としたうえで,複雑な形状を表現するための 集合体要素を提案した.
- 2) 骨組み構造の応答を表現するため円柱形要素および集合体要素を連結ばねで常時連結できる個別要素法 について提案した.
- 本研究の特徴である構成則に破壊条件を導入して構造破壊をシミュレーション可能な連結ばねモデルを 導入した.
- 4) 土石流中の剛体要素に働く周辺流体力を支配する流速分布モデルについて示した.
- 5) 本研究で行う個別要素法による土石流モデルの構成要素と流下のアプローチについてその解析手順を整 理した.

第3章 個別要素法による前面傾斜角の荷重低減効果解析

3.1 緒 言

透過型の現行の設計荷重は、堰堤の形状に依らず、堆砂圧荷重と土石流流体力を静的に作用させている. しかし、平成26年の南木曽における土石流災害¹⁾では、巨礫の衝突が原因とみられる透過型の破壊が生起した.**図-3**.1に南木曽地域の略図を示す.この土石流災害では2つの支川それぞれに土石流が流下し透過型に 衝突・捕捉された.**写真-3**.1および**写真-3**.2に、それぞれ被災した梨子沢第1砂防堰堤および梨子沢第2砂防 堰堤を示す.この2つの堰堤が設置されたのは異なる河川ではあるが、小梨子沢にある梨子沢第1砂防堰堤は 上部が破壊したのに対して、約1 km離れた大梨子沢にあった梨子沢第2砂防堰堤は右岸側上部の軽微な損傷 で直径 2.0 m近くの巨礫を捕捉した.河川が異なるので、まったく同条件の土石流衝突とは言えないが、こ れらの損傷の違いを生じさせた原因は、2つの堰堤の上流面が梨子沢第1砂防堰堤は直立しているのに対して、 梨子沢第2砂防堰堤は30度ほど下流に向かって傾斜していることが影響している可能性がある.

透過型の形状が土石流衝突荷重に及ぼす影響について、小松ら²⁾は南木曽の被災事例を参考にして、直線 水路を用いて堰堤モデルの前面傾斜角を変化させた場合の土石流衝突荷重を検討し、前面傾斜角を与えると、 土石流の衝突荷重が低減されることを示した.しかし、その生起メカニズムは定量的に分析されていない.

そこで本章は、小松ら²⁾の実験を個別要素法によって再現解析し、実験の荷重~時間関係をシミュレーションした上で、透過型の前面傾斜角の土石流衝突荷重の低減効果について先行停止領域(以降、デッドゾーン³⁾という.)に着目して、その荷重低減メカニズムを検討する.また、個別要素法解析による土石流衝突荷重の再現性について検討するものである.

図-3.1 南木曽地域の略図

写真-3.1 梨子沢第1砂防堰堤

写真-3.2 梨子沢第2砂防堰堤

3.2 実験の概要²⁾

3.2.1 実験装置

実験装置の概要を図-3.2に示す.この水路の諸元は、水路長4.5 m、水路幅300 mm、深さ500 mmであり、 水路勾配($\theta = 0 \sim 20^{\circ}$)は任意に設定ができる.なお、実験では河床勾配を梨子沢第1砂防堰堤設計諸元に示 されている $\theta = 11.3^{\circ}$ に固定した.土石流を発生させる流水は、上流に置いた礫塊の後方から電動ポンプによ って流している.また、足立ら4の研究を参考に底面粗度と呼ばれる底面形態を与え、土石流の先端部に段 波を形成しやすくさせた.なお、底面粗度は、間隔 30 mm、高さ 6 mm、幅 10 mmの板を堰堤から2.0 mの長 さにわたり設置した.粗度間隔は、本章で使用している粒径の D_{50} をもとに設定した.

写真-3.3および図-3.3に、堰堤モデルの設置要領と荷重計測要領を示す.土石流荷重は、堰堤モデルの下 流側に1個の分力計と2個のロードセルを左右対称に配置して計測した.ロードセルはLMB-A-500N-Pを使用 した.このロードセルは単体で500Nまでの計測が可能である.サンプリング周波数は50Hzとし、50Hzを超 える高周波成分はローパスフィルターを用いて低減した.実験前には、ロードセルに防水処理を施したうえ で、静水圧の計測と金属製の重りを落下させ荷重が計測できることを確認している.また、堰堤モデルは上 端部で吊っており、底板との摩擦を受けないように工夫している.つまり、堰堤モデルが土石流から受ける 水平力は2つのロードセルと1つの分力計の合計値とつり合うようになっている.さらに、堰堤下部の水路底 面は水平とした.

(a) モデルA (*θ*_{LS} = 0°)

(b) モデル B (*θ*_{LS} = 30°)

写真-3.4 堰堤モデル

	衣=3.1	條祖儿		
呼称	比重	粒径	平均	質量
礫モデル・小		10-15 mm	12.5 mm	16 kg
礫モデル・中	2.6	16-25 mm	20.5 mm	12 kg
礫モデル・大		26-40 mm	33 mm	7 kg

び的三七 二

写真-3.5 礫モデル

表-3.2 実験ケース

前面傾斜角	堰堤	土石流	流量	実験回数				
$\theta_{LS} = 0$ °	モデルA	旅レー	※コ 0 06 m ³ /a	タケーフ5回				
$\theta_{LS} = 30^{\circ}$	モデル B	「「「「」「「」」(「」」(「」)(「」)(「」)(「」)(「」)(「」)(「」	示り 0.00 III/S					

3.2.2 堰堤モデル

小松ら²⁾の実験では、堰堤の前面の部材を $\theta_{LS} = 0^{\circ} \sim 30^{\circ}$ の範囲で10°ごとに変化させて土石流モデルの衝突 荷重を計測した.その結果、前面傾斜角が大きいほど荷重が低減されることを確認している.本研究では前 面傾斜角 $\theta_{LS} = 0^{\circ}$ (直立)と $\theta_{LS} = 30^{\circ}$ (傾斜)の2種類の実験結果に対して再現解析を行う.

写真-3.4に2種類の堰堤モデル(以下,モデルA,Bと呼ぶ)を示す.堰堤モデルは,直径 ϕ =16 mmの木 製円柱の内部を貫く直径 ϕ =6 mmのボルトによって部材相互を固定して製作した.前面の形状は,縦方向部 材に沿って7本の円柱を30 mmで等間隔に配している.これにより,部材にならって最下部水平部材の底面 からの高さが前面傾斜角によって異なり,モデルAでは55 mm,モデルBでは85 mmであり,30 mmほどの違 いを生じる.

3.2.3 土石流モデル

写真-3.5に3 種類の礫モデルを示している.表-3.1にそれぞれの諸元を示す.礫モデルは,呼称粒径10 mm, 20 mm, 30 mmを体積比1:1:1で混合している.礫材の比重は2.6,礫全体の総重量は35 kgである.流下方法は,礫モデルを堰堤模型から3.0 mの上流側に1.0 m長に渡って敷きならして設置しておき,その後方

(a) 堰堤傾斜角 $\theta_{LS} = 0^{\circ}$

(b) 堰堤傾斜角 θ_{LS} = 30°

(c) $t = t_0 + 1.0$ s

写真-3.6 堆積形状

(a) $t = t_0 s$

(b) $t = t_0 + 0.3 \text{ s}$

(d) $t = t_0 + 2.5 \text{ s}$

写真-3.7 捕捉堆積過程(モデルA, θ_{LS}=0°)

(d) $t = t_0 + 2.5 \text{ s}$

で前面深さ300 mmの高さに貯めた水を一挙に開放すると同時に,流量約0.06 m³/sの水が15 s間流されている. なお、この条件は、土石流の礫や流木が堰堤を乗り越えない限界となるように設定されたものである.

3.2.4 実験ケース

表-3.2に実験ケースを示す.実験ケースは、2ケースに区分して各ケース5回行った.以降では、表-3.2に 示す呼称を用いることとする.

3.3 実験結果²⁾

3.3.1 堆積形状

写真-3.6には、礫のみを用いた実験における最終的な堆積形状について、堰堤前面角ごとの比較を示す. まず、堰堤と接している部分の高さを比較すると、 $\theta_{LS}=0$ °では堆積高さ $h_s=192$ mmであったものが $\theta_{LS}=30$ ° では $h_s=215$ mmとなり、前面角が大きくなると土石流捕捉高が高くなっている.これは後述するように礫が せり上がり堆積するまでの時間がやや長くなることが影響している.一方、設計上の観点からは、前面傾斜 角を大きくすると、礫の乗り越えに対する配慮も必要となる.

堰堤から離れた堆積塊上面の形状については**写真-3**.6に黄色の曲線で示しているが、いずれのケースでも下に凸な曲線であるが、 $\theta_{LS} = 0$ °では接触面から上流に約5.0 cmほどの厚みで上に凸の曲線があり、続いて急に下降する直線となるのに対して、 $\theta_{LS} = 30$ °では接触面上部は上流側に薄く堆積し、上流に向かう堆積上面の傾きは、 $\theta_{LS} = 0$ °の場合より小さくなっている。つまり、堆積上面の形状は、前面角が大きくなるとより滑らかな下に凸な形状になっている。

3.3.2 衝突過程

写真-3.7にモデルA (θ_{Ls} = 0 °)の衝突過程を示す.**写真-3**.7(a)は、礫の先端が堰堤に到達した時間であ る.堰堤に近づく土石流は、底面粗度によって流水と礫材が上流側に向かって高く盛り上がる形状で接近し ている.**写真-3**.7(b)では、先行礫が堰堤下部に貯まっており、後続の段波が押し寄せている.また、後続 礫が集合運搬されて到達するようになる.特に、径の大きな白い礫が先端に集中して分級が生じ、早い時間 に衝突していることがわかる.**写真-3**.7(c)は、後述する荷重~時間関係において、土石流荷重が最も大き くなる時間である.この時に堰堤前面で停止した礫の高さが最高点になっている.**写真-3**.7(d)では、後続 礫が堰堤に捕捉され上流側に貯まって停止して、水が礫塊の間隙を流下し続けている.**写真-3**.7(e)では、 流水も終了して礫塊の停止状態(静止土圧状態)になっている.

写真-3.8にモデルB (θ_{Ls} = 30 °)の衝突過程を示す.写真-3.8(a)では,写真-3.7(a)と同様の土石流が接 近している.写真-3.8(b)は0.3 s後であるが,堰堤前面下部から斜め上方に停止した礫が貯まり始めている. 写真-3.8(c)は,1.1 s後の荷重が最大値に対応するものである.堰堤前面に沿って礫がせり上がって上部で は,反転運動も生じ明瞭に下に凸な塊が貯まっている.写真-3.8(d)では,礫は堰堤に捕捉され最終形状と ほぼ同じ形で停止して水が間隙を抜けて流れている.写真-3.8(e)では,流水がなくなり,礫塊が停止状態 になっている.

3.3.3 荷重~時間関係

図-3.4に計測された荷重~時間関係を示す.まず,全体の傾向から3つの領域に区分される.第I領域は, 礫が衝突してから最大衝撃荷重が生起するまでの $t = t_0 + 0.6 \sim 0.7$ s間である.第II 領域は,最大衝撃荷重から やや急勾配で荷重が低下する区間であり,約2~3 sが該当する.第III 領域は,上流側の堆積が形成し終わっ て,流水がなくなった後の領域である.この領域では,ビデオ観察によると堆積形状に変化は生じないが, 徐々に荷重が低下している.図-3.5に,衝突初期 $t = t_0 + 3.0$ sまでの荷重~時間関係を示す,各ケースを比較 すると,まず第I領域の中でも $t = t_0 + 0.5$ sまでは θ_{LS} の違いに関わらず同じ急勾配で荷重が大きくなっている. しかし, $\theta_{LS} = 0$ 。ではほぼ同じ勾配で $t = t_0 + 0.52$ sで最大値に達するのに対して, $\theta_{LS} = 30$ 。では, $t = t_0 + 0.55$ s から荷重増加が弱まり $t = t_0 + 0.6$ sで最大値に達している.

3.3.4 衝擊荷重~前面角関係

図-3.6に最大衝突荷重~前面傾斜角関係を示す.ここでは、最大衝突荷重と前面傾斜角の関係がより明らかになるように、小松ら²⁾が行った $\theta_{LS} = 10$ °および $\theta_{LS} = 20$ °の結果もプロットしている. $\theta_{LS} = 0$ °と比較すると、 $\theta_{LS} = 30$ °では荷重が約30%低減されている.このことから、前面傾斜角が大きくなると最大衝突荷重は

第3章 個別要素法による前面傾斜角の荷重低減効果解析

3.4 解析モデル

3.4.1 水路モデルおよび堰堤モデル

本解析では、前面傾斜角の低減効果メカニズムについて分析するものである。ここでは、直立堰堤である *θ*_{LS}=0°と前面傾斜角が最も大きい*θ*_{LS}=30°の2 ケースについて解析を行った. 図−3.7に礫モデルの粒径加積 曲線を示す.実験で用いた礫の粒径分布に基づき、3種類の粒径の実験と解析における礫径分布が近似する ようにランダムに与え、その合計質量が実験と同じ礫質量35 kg となるように調整した. 図-3.8に本解析で 使用した解析モデルを示す.図-3.8(a)に礫モデルを示す.礫モデルは球形要素を用いた.図-3.8(b)に底面 粗度モデルを示す.底面粗度は、実験と高さ・間隔が等しくなるように円柱形要素を配置した.図-3.8(c) に堰堤モデルを示す.堰堤モデルは複数の円柱形要素を剛結した集合体要素を用いた.堰堤モデルは被災し た梨子沢第1砂防堰堤を基準として1/40の相似比であり、実験と同様の寸法である、図-3.8(d)に直線水路の 俯瞰図を示す.水路は平面要素を使用している.図-3.9に礫の初期配置を示す.礫の初期配置は実験と同様 に堰堤から上流側3.0 m の位置にランダムに配置した. そのうえで堰堤手前0.3 mの位置まで流下させる解析 を行った.以上のように、衝突解析をするためのs=0°と30°において堰堤に最初の1個が衝突するまでの 個々の礫の位置や速度は全く同じ条件となっている.よって,同一の条件を用いることで,前面傾斜角がお よぼす影響を定量的に比較できるように設定している.表-3.3に,解析諸元を示す.初期の水深は,実験の 映像から0.15 mとし, 流速は2.0 m/sとした. 図-3.10に荷重評価モデルを示す. 堰堤モデルの後方に固定され た球形要素を付けて、ばね力を荷重としている.このばねは、接触判定を行わない常設の連結ばねを使用し ており,解析が安定する限界の大きなばね剛性を用いた.

線形的に低減されていることがわかる.

表-3.3 解析パラメータ						
	項目		値			
	初期流	速(m/s)	2.0			
流水	初期オ	0.15				
	抗	0.49				
「「「「」」」	円柱形	要素(個)	26			
	球形要	球形要素 (個)				
	平面要	4				
小哈	円柱形	51				
	球形要素 (個)	10~15mm	2552			
礫モデル		15~25mm	1101			
		25~35mm	190			
	礫間	法線方向 Kn	1.0×10^{6}			
西丰朋	(N/m)	接線方向 Ks	3.5×10 ⁵			
安糸囘 げわ宝粉	礫円柱間	法線方向 Kn	1.0×10^{6}			
るると対	(N/m)	接線方向 Ks	3.5×10 ⁵			
	摩擦	0.404				
連結ばね	軸剛性	2.0×10 ⁶				
計算条件	時間刻	1.0×10 ⁻⁶				

3.4.2 捕捉領域における流速分布モデル5)

本章における流下解析では既往の研究⁵で提案された流速分布モデルを用いた.図-3.11に衝突過程での流 速分布モデルを示す.図-3.11(a)の捕捉領域では,堰堤前面に礫が堆積すると,堆積した礫間をすり抜ける 流水の流速が落ちることを考慮し,水深を次式のように変化させた.

$$h = \frac{H - h_0}{2.5}s + h_0 \tag{3.1}$$

ここで、h:上昇後の水深、H:堰堤モデルの高さ、h₀:初期水深である.

sは図−3.11(b)に示すように透過部を含めた全体の断面積H_lと礫の投影面積の合計の比であり次式で表される.

$$s = \frac{\sum A_i}{H_l} \tag{3.2}$$

捕捉量が一定の値を超えた際の水深は,最大で堰堤高さとした.礫捕捉量に応じた水深上昇に伴い,水深 方向の流速は等分布となっている.

$$\widetilde{v}_r = \frac{h_0}{h} v_0 \tag{3.3}$$

ここで、 \tilde{v}_r :水深上昇時の流速である.

図-3.12および図-13にそれぞれ実験における水深と礫の堆積による水深上昇との比較を示す.解析による 水深上昇は、概ね実験の水深を再現できている.

(d) $t = t_0 + 3.0 \text{ s}$

図-3.14 堆積形状の比較 (*θLS*=0°)

3.5 解析結果

3.5.1 堆積形状

図-3.14および図-3.15に、それぞれ実験と解析の堆積形状の比較を示す.なお、解析結果の図は、実験の 堆積状況を礫の速度ごとに3つに分類し、色分けしたものである.速度を有する要素を緑色 (v > 0.3 m/s)、 概ね停止している要素を青色 ($v \le 0.3 \text{ m/s}$)、ほぼ速度を失っている要素を白色 ($v \le 0.05 \text{ m/s}$)に分けて礫

図-3.15 堆積形状の比較 (*θLS* = 30°)

の分布状態を示している.この速度分布による礫の着色は流下間,衝突直後,堆積完了時の礫の速度分布の 最頻値から決定した.図-3.14(a)および図-3.15(a)の $t = t_0$ sは,実験と解析においてほぼ同じ状態である. この時間を,荷重評価における衝突開始時間とした.図-3.14(b)および図-3.15(b)の $t = t_0 + 0.3$ sでは, $\theta_{LS} = 30$ °で礫の堆積状況が $\theta_{LS} = 0$ °に比べて礫の堆積高さが低くなっており,礫が堰堤全体を覆うまでの時間が遅

第3章 個別要素法による前面傾斜角の荷重低減効果解析

れている.これは、前面傾斜角を有しているため礫が堆積するのに時間を要しているからである.解析でも、 同様の傾向が見られる.図-3.14(c)および図-3.15(c)の $t = t_0 + 0.6$ s以降は、実験と解析の堆積過程を再現で きている.図-3.14(d)および図-3.15(d)の $t = t_0 + 3.0$ sにおける最終的な堆積形状を比較すると、実験では下 に凸となった形状で堆積し、解析の堆積形状はほぼ直線となっている.これは礫モデルとして球形要素を使 用しており、実礫に生じるかみ合わせを十分に表現できていないためと考えられる.しかし、衝突から礫全 体が捕捉し、安定(堆積)するまでの所要時間や概ねの堆積形状は再現できている.

3.5.2 荷重~時間関係

図-3.16に実験と解析の荷重~時間関係を示す.解析は、実験に比して荷重の高周波成分が大きいが、衝突後に急上昇し、その後収束する定性的な傾向は再現できている.具体的には、実験では $\theta_{LS} = 0$ °, $t = t_0 + 0.5$ sで最大荷重198 N、 $\theta_{LS} = 30$ °, $t = t_0 + 0.6$ s で最大荷重143 Nに達した.最大荷重は、前面傾斜角を有すると約30%軽減されており、最大荷重到達時間は 0.1 s ほど遅れている.一方、解析では、 $\theta_{LS} = 0$ °, $t = t_0 + 0.5$ sで最大荷重209 N、 $\theta_{LS} = 30$ °, $t = t_0 + 0.6$ s で最大荷重149 Nに達している.実験と比較して解析の方が最大荷重が大きくなるが、前面傾斜角による荷重の低減効果が再現できている.さらに、最大荷重が発生するまでの時間の遅れも再現できている。また、堆積終了時の荷重は、 $\theta_{LS} = 30$ °の方が堆積荷重が小さくなる点でも実験結果を再現しており、最大荷重の発生から堆積荷重までの過程を表現できていることがわかる.

3.6 荷重低減メカニズム

本項では、前項までの堆積形状と荷重~時間関係が概ね再現できているものと仮定して、荷重低減メカニズムについて考察する.図-3.17および図-3.18にそれぞれ*θLs*=0°、*θLs*=30°の実験で想定された荷重低減メカニズムの考察と解析の速度ベクトル図の比較を示す.なお、区分(I)~(IV)に分けて考察する.

図-3.17(b), 18(b)の区分(I)に、土石流の先端が堰堤に到達した時の状態を示す.この時、実験と解析 で荷重は生起しない.なお、解析の土石流では、両堰堤に対して同じ状態を生起しているが、実験では必ず しも同一状態に再現できない.

図-3.17(b), 18(b)の区分(II)に、解析における $t = t_0 + 0.2 \text{ s}$ の状態を示す.先頭部の礫が速度を失うことで、先行停止領域(デッドゾーン)を形成している.この形は直立堰堤では直角三角形に形成し、 $\theta_{LS} = 30$ 。では堰堤下部で鈍角な三角形を形成することになる.

図−3.17(b), 18(b)の区分(III)に, 解析のt = t₀ + 0.3 sの状態を示す.ここでは, 直立堰堤のデッドゾーンは第II段階のものと相似形で形成され, その高さは上流側へ伸びている.一方, 図−3.18(b)のθ_{LS} = 30 °の

場合,高さは堰堤頂部直下まで達しているが,底面は上部に若干拡がった程度で,デッドゾーン上面の角度 は区分IIより急になっている.また,実験で得られた予測では,θ_{LS} = 0°の堰堤前面よりも下流側で礫が停止 し,デッドゾーンを広く形成していると考えられたが,解析においてもその傾向が確認できる.なお,両方 ともデッドゾーン上面を流れる後続の礫の先端は,堤体頂部に向かって斜め上方に向かう運動をしている.

図-3.17(b), 18(b)の区分(IV)に、解析における $t = t_0 + 0.6$ sの状態を示す. 直立($\theta_{LS} = 0$ °)と前面傾斜 ($\theta_{LS} = 30$ °)の堰堤におけるデッドゾーンは、その頂部が堰堤の頂部まで達しており、停止礫塊上面の角度 は、前面傾斜を有している堰堤に比べて、直立堰堤の方が急になっている.また、停止礫の上面を滑動して いる後続の礫は接触することで勢いを失い、堰堤に直接接触できる流速ベクトルを有する礫が見当たらない.

3.6.1 運動量~時間関係

前面傾斜角を変化させた際に、堰堤に衝突した礫の運動の差異を検討するため、衝突礫の運動量を確認した. 図-3.19に運動量~時間関係を示す. ここでの堰堤に衝突した礫の運動量とは、堰堤前面を構成する円

柱形モデルと接触判定を受けた礫の(m_iv_i)を集計した値である.この際,速度 v_i は水平方向成分のみを対象としている.まず,直立堰堤($\theta_{LS} = 0$ °)方は, $t = t_0 + 0.51$ sにおいて最大値を示す.その値は,前面傾斜角($\theta_{LS} = 30$ °)の全運動量よりも大きいことがわかる.一方,前面傾斜角($\theta_{LS} = 30$ °)の場合, $t = t_0 + 0.62$ sで最大値となり,この直後の $t = t_0 + 0.75$ s以降の運動量は前面傾斜角($\theta_{LS} = 30$ °)の方が大きくなる.なお, $\theta_{LS} = 0$ °と $\theta_{LS} = 30$ °の運動量の最大値が生じる時間は,最大衝突荷重が生じる時間と一致している.

次に運動量は質量と速度の積であるため、どちらがこの差を生じる主因となるかを確認するために、図-3.20に、図-3.19でカウントされた礫の総質量~時間関係を、図-3.21に総速度~時間関係をそれぞれ示す. 図-3.20に示すように、堰堤に衝突した礫の総質量は最終的にθ_{LS} = 30°の方が大きく、約30%差が生じてい る.しかし、*t* = *t*₀ + 0.6 s前後の最大荷重が生じるまでの時間帯では、最大で約5%程度の差しかない、その うえで、図-3.21を見ると明らかに図-3.19と相関性があり、衝突した礫の速度差が生じている.このことか ら礫の減速が生じることで運動量が低減されていると考えられる.

3.6.2 デッドゾーン³⁾の比較

図-3.22に、最大荷重生起時の土石流モデルの衝突状況を示す。礫は速度に応じて色分けしており、概ね 停止している要素を青色 ($v \le 0.3 \text{ m/s}$)、速度を有する要素を緑色 (v > 0.3 m/s)に分けて表示し、速度の分 布状態を示す。この際、堰堤に衝突し、捕捉された礫は $v \le 0.3 \text{ m/s}$ 、後続の礫はv > 0.3 m/sとなっているこ とから、本研究における礫によるデッドゾーンは堰堤に捕捉されており、 $v \le 0.3 \text{ m/s}$ の礫群とした。また、 図-3.23には、最大荷重に至る直前の $t = t_0 + 0.4$ sにおいて速度を有していない礫のみを摘出したデッドゾー ン (青色の要素)を示す。なお、 $\theta_{LS} = 30$ °では0.1 s ほど遅れて最大荷重に達するので、概ね同じ堆積高さの デッドゾーンを形成するのに時間を要することになる。これは、図中に黄色で網掛けした領域に停止礫が移

46

図-3.23 先行停止領域(デッドゾーン)

動する必要があるためである.図中には、デッドゾーンの上面を沿った形で赤線を示している.これを比較 すると直立堰堤の傾斜の方が急なことがわかる.このためデッドゾーンの右下下部から左上の頂部にかけて の距離は明らかに*θ*_{LS} = 30 °の方が長くなっている.図-3.24には、このデッドゾーン上面の長さの時間変化

を示すが、最大荷重を迎える0.6 sまで一貫して直立堰堤の方がその長さが短くなっている.

さらに、デッドゾーンの上面長さが長くなることの影響をより詳細に分析する. 図-3.25に示す要領で、 堰堤衝突前に、先行停止礫 ($v \leq 0.3 \text{ m/s}$) と後続流内の礫 ($v \geq 0.3 \text{ m/s}$) との衝突回数をカウントした.なお、 表示している要素は先行停止礫は青色、後続流内の礫は実際の大きさの1/10として、緑色で表記している. 図-3.26に、礫1個あたりの先行停止礫塊との平均衝突回数の時間変化を示す.平均回数は、礫塊の衝突開始 から常に前面傾斜角のある方が、概ね2~3倍ほど多くなっている. 図-3.27には、堰堤と礫の衝突回数の累 積値の時間変化を示す.これより、直立堰堤の方が0.2 s $\leq t \leq 0.9 \text{ s}$ において一貫して衝突回数が多くなってい ることがわかる.これを踏まえて、図-3.21、図-3.26、図-3.27を合わせて考察すると、直立堰堤($\theta_{LS} = 0^\circ$) では、デッドゾーン上面の傾きが急で短いため、後続の礫が、その塊との間に相対的に少ない衝突回数を経 ることによって、堰堤に衝突していると示唆される.一方で、堰堤前面($\theta_{LS} = 30^\circ$)を傾けると後続の礫が、 デッドゾーンと何度も衝突することで減速される.よって、礫が堰堤に衝突する際の速度は、相対的に小さ くなることになる.このメカニズムによって前面傾斜角を大きくすると、最大衝突荷重は小さくなり、最大 衝突荷重の発生時間に遅れが生じる.

3.7 結 言

本章は,透過型の前面傾斜角が土石流衝突荷重に与える影響について,個別要素法における個々の要素の 運動過程を通して考察したものである.本章の成果は以下の通りである.

- 個別要素法を用いて、直線水路における土石流実験で得られた荷重~時間関係および前面傾斜角の影響 で最大荷重が変化することを再現できた.
- 2) 堰堤に衝突した礫は堰堤の上流側に停止し、蓄積された礫群の停止領域、すなわちデッドゾーンを形成 する.その際、前面傾斜角を与えることで、デッドゾーンの上面が伸びることを示した.
- 3) デットゾーンの上面が伸びると、後続の礫は停止礫塊と多く衝突(接触)するため、堰堤モデルに衝突 するまでに、礫の運動量が小さくなることが示唆される.このことから、前面傾斜角を有することで荷 重低減効果があることを示した.
- 4) デッドゾーンによる効果によって、摩擦・衝突エネルギーが堰堤の衝撃荷重を低減することが有意であれば、堰堤上流側の施工方法などの工夫によって、土石流の破壊力を低減する方法も考えられる.

なお,課題として,礫として球形要素を用いていることや簡易な流速分布モデルを用いていることから, 現地の堆積メカニズムを精緻に再現できていない.そのため,凹凸を含んだ集合体要素⁶の使用や,水と礫 の相互作用をより正確に再現できる解析法の使用による検討が求められる.また,上流側の複雑な河川形状 の影響や土石流の流れ方によって破壊を免れた実例検討などを加えることで,実用へ向けた検討が必要であ ると考えられる.

第4章 個別要素法による上流置減勢工の荷重低減効果解析

4.1 緒 言

第3章では新設構造において,堰堤前面角が傾斜した構造形式を採用すれば土石流衝突荷重を軽減できる ことを示した.しかし,構造形式を変えることは新設構造では可能であるが,既設構造では難しい.特に, 既設の堰堤の中には新しくレベルII荷重が導入された際に,要求性能を満たさない堰堤が生じる可能性があ る.その対策として,既設堰堤の部材を補強する方法や,堰堤の上流側に副堤を設けて本堤に作用する荷重 を低減させる方法等が検討されている¹⁾.

小松ら²は,前章で述べたように,長野県南木曽町で発生した土石流における被災事例を参考に,透過型の 前面傾斜角が衝撃荷重に及ぼす影響について検討した.その結果,堰堤前面下部に先行して到達した礫群が 停止し,後続の礫が到達する間に,摩擦により制動効果を発揮することを示した.さらに,先行停止礫(デ ッドゾーン)³の制動効果を人工的に向上させるために,既存堰堤前面の手前に小規模の透過型を設置するこ とを提案した⁴.実験では,衝撃荷重を低減できることを実測により確認したが,その詳細なメカニズムは未 解明のままである.そこで本章は,個別要素法を用いて上流置減勢工を設置した際の透過型に作用する土石 流荷重の低減効果に関する実験について再現解析を試みる.この際,デットゾーンの形成過程から荷重低減 メカニズムについて検討する.

4.2 既往の研究の概要²⁾

4.2.1 実験装置

実験に用いた器資材の概要は第3章において述べたものと同じである.ただし、この実験では、以下に述 べる上流置減勢工の設置要領を変化させて実験を行った.また、上流置減勢工設置のため、第3章と比較し て堰堤は約10 cm下流側に設置されている.

4.2.2 上流置減勢工

減勢工に関する既往の研究として、国土交通省⁵は不透過型の手前に大型布団篭を設置することによる揚圧 力の低減効果に関して研究を行っているが、土石流の衝突荷重を低減させる研究は行われていない.

本研究の防護対象となる透過型は平時に砂礫を流下させる機能を有するので、上流置減勢工もその機能を 有する必要がある.そこで、土石流衝突荷重の減勢工として最も簡易な形状である柱が等間隔に立っている 上流置減勢工を堰堤モデルの上流側に設置した.写真-4.1に上流置減勢工を示す.写真-4.1(a)に流下方向か ら見た上流置減勢工を示す.上流置減勢工の間隔は30 mmとした.これは最大礫径D₉₅の1.0 倍(以下,Dとす る.)である.写真-4.1(b)に側面から見た上流置減勢工を示す.上流置減勢工は堰堤モデルの捕捉面からの

(a) 正面

写真-4.1 上流置減勢工

(b) 側面

写真-4.2 上流置減勢工

写真-4.3 離隔距離

表-4.1 実験ケースと呼称名

ケース名	上流置減勢工高	離隔距離	土石流	流量	実験回数	
none	なし	1 <i>D</i>				
h1D	1 <i>D</i>		で飲みて	0.06 m3	5 (5)	
h2D	2 <i>D</i>		ID		0.00 III	5回
h3D	3D					

離隔距離Lを1D~2Dに変化させて実験を行った.写真-4.2に高さを変えた上流置減勢工3種類を示す.上流置 減勢工高は1D~3Dとし,底板とはボルトを用いて固定した.写真-4.3に水路モデルに設置した上流置減勢工 を示す.

4.2.3 実験ケース

実験は、上流置減勢工無と上流置減勢工高hを1D~3Dに変化させた4パターンと離隔距離Lを1Dおよび2Dに 変化させた2パターンの組み合わせで8ケース行った.本章では実験結果の中で、荷重低減効果が大きかった 離隔距離L=1Dの実験結果を示す.表-4.1に実験ケースを示す.各ケース5回ずつ行った.以後、実験ケース は堰堤モデルと上流置減勢工の条件を組み合わせて、表-4.1に示す呼称名を用いる.

4.3 実験結果

4.3.1 衝突過程

写真-4.4に上流置減勢工を設置しないケース (none)の衝突過程を示す.写真-4.4(a)は、土石流の先端が 堰堤に到達したときの状態である.径の大きい白い礫が先端に集中する分級現象が生じ、堰堤下部に衝突し 始めている.また、先端部の水は堰堤を抜け、礫のみが衝突している.写真-4.4(b)は、後述する荷重~時間 関係で、最大衝撃荷重時の状況である.このときに堰堤前面で止められた礫の高さは最高点に達している. 写真-4.4(c)は、すべての礫が衝突し終えて、水のみが礫塊の間隙を抜けて流下し続けている.

写真-4.5にh3Dの衝突堆積過程を示す.写真-4.5(a)は、土石流の先端が上流置減勢工に到達している.先 行礫は上流置減勢工によって捕捉され、後続の礫が接近しており、水のみが上流置減勢工と堰堤を抜けて流 下している.写真-4.5(b)は、後続の礫が上流置減勢工を乗り越え、礫が堰堤に衝突する状況のものである. 上流置減勢工により停止した礫を乗り超えた後続の礫が堰堤に衝突している.写真-4.5(c)は最大衝撃荷重時 の状況であり、減勢工無とよく似た堆積形状をしている.また、堰堤と上流置減勢工の間隙を飛び越すよう に衝突している.写真-4.5(d)は、すべての礫が衝突し終え、礫塊が停止状態となっている.

4.3.2 荷重~時間関係

図-4.1に各ケースの荷重~時間関係を示す.上流置減勢工を設置した場合, noneと比較して概して荷重が

低減されており、上流置減勢工高hが高いほどより荷重が低減されている.また、最大衝突荷重に至るまでの 時間も上流置減勢工の設置によってより長くなっている.図-4.2に最大衝突荷重~上流置減勢工高関係を示 す.上流置減勢工高が高くなるにつれ、最大衝突荷重は線形的に減少し、h3Dでは上流置減勢工無と比較して 最大衝突荷重が約18%低減している.

4.4 解析諸元

4.4.1 解析モデル

図-4.3に本解析における初期配置を示す.第3章で使用した解析モデルと異なる点は、上流置減勢工の有無と上流置減勢工を設置するために下流側に堰堤モデルを10 cm移動し設置した点である.これは、実験⁴と同様の条件である.

4.4.2 解析ケース

解析ケースを表-4.2に示す.本解析では、減勢工の荷重低減メカニズムについて検討する.すなわち、離隔距離を1Dにした時の結果に対して分析するものとする.

ケース名	減勢工高	離隔距離	土石流	
none	なし			
h1D	1 <i>D</i>	1.0	酸のフ	
h2D	2 <i>D</i>			
h3D	3 <i>D</i>			

4.5 解析結果

4.5.1 衝突過程

図-4.4および図-4.5に、それぞれnoneとh3Dの実験と解析結果の堆積形状を示す.なお、解析結果の図は、 第3章と同様に速度ごとに3種類に色分けしている.実験では上流置減勢工を設けることにより礫が堆積完了 するまでの時間に約0.5 sの遅れが生じている.解析でも同様の傾向が見られ、上流置減勢工の設置によりh3D では堆積完了までに約0.5 sの遅れが生じる.また、堰堤や上流置減勢工に衝突した礫は減速し、青色や白色 で示される減速・停止した領域、すなわちデッドゾーンを形成する.

4.5.2 荷重~時間関係

図-4.6に、各ケースの荷重~時間関係を示す.この時、上流置減勢工に土石流モデルの先頭部の礫が衝突 した時間を $t=t_0$ sとしている。各ケースを比較すると、上流置減勢工高が高くなるほど最大荷重に達するまで の時間が長くなっている。最大荷重に到達した時間は、h1Dで $t=t_0+0.6$ s、h2Dで $t=t_0+0.67$ s、h3Dで $t=t_0+$ 0.85 sとなり、いずれのケースにおいても最大荷重は礫の高さが最大に達した際に生じた。また、減勢工高を 高くすると堆積完了までの時間は長くなる。そのため最大荷重に到達するまでの時間も長くなる。これは図 中に矢印で示した荷重の立ち上がり時間が、noneでは $t=t_0+0.04$ sに対してh1Dでは $t=t_0+0.15$ s 、h2Dでは

 $= t_0 + 0.27$ s, h3Dでは $t = t_0 + 0.48$ sと遅れることと相関している.

図-4.7に、各ケースにおける最大荷重を示す.上流置減勢工を高くすることで荷重が線形に低減されており、上流置減勢工を設けない場合とh3Dでは最大荷重に約20%差がある.上流置減勢工高と最大衝突荷重の関係について実験結果を概ね再現できたことから、そのメカニズムについて検討する.

4.6 荷重低減メカニズム

ここでは,解析によって実験における礫の動きと衝突荷重が概ね再現できていることを踏まえて,上流置 減勢工を設置した際の荷重低減メカニズムについて述べる.

4.6.1 運動量~時間関係

各ケースにおける礫の衝突の影響を確かめるために、堰堤に衝突した礫の運動量を確認する.図-4.8に、 本堤に衝突した礫の運動量~時間関係を示す.上流置減勢工高が高くなると、本堤に衝突した礫の運動量も 低減されている.この際、上流置減勢工なしの運動量は*t* = *t*₀ + 0.39 sで最大値となっており、その他のどのケ ースよりも大きい値となっている.また、上流置減勢工を設置した場合では、*h*3Dの運動量は*t* = *t*₀ + 0.83 sで 最大値になり、その値は*h*3Dの場合と比較して約30%低減されている.各ケースにおいて、運動量の最大値は

最大荷重が生じた時間と概ね一致している.そのため上流置減勢工によって運動量が低減されている原因を 分析するため,質量と速度のどちらが運動量低減の主要因であるのか検討する.

図-4.9に各ケースにおいて最大荷重が生じた時間における衝突礫の総質量を示し,図-4.10に,総速度を示 す.これは最大荷重時に堰堤に衝突した礫の質量の合計と速度の合計である.これにより,要因分析をする と,最大衝突荷重生起時において,上流置減勢工高を高くすることにより質量と速度共に低減されているこ とが確認できる.特に,noneとh3Dを比較すると総質量は約10%低減されており,総速度は約20%低減され

図-4.12 デッドゾーンとの衝突回数の模式図

図-4.13 デッドゾーンとの平均衝突回数~時間関係

ている.

4.6.2 デッドゾーンの比較

図-4.11に、土石流モデルが上流置減勢工を越流した際のデッドゾーンの形状を示す.ここで、デッドゾー ンは礫の色が青および白で示される0.3 m/s以下の礫を指す.図-4.11 (a) にnoneのデッドゾーンの形状を示す. noneのデッドゾーンは堰堤に始めて礫が衝突した $t = t_0 + 0.1$ sの状況である. 礫は堰堤に衝突して初めて減速 し、デッドゾーンを形成する. その後、後続の礫はデッドゾーンを乗り越え堰堤に衝突し、減速することで デッドゾーンは徐々に上方に広がっていく.

図-4.11(b)~(d)にh1~3Dのデッドゾーンの形状を示す.上流置減勢工を設置したケースでは,礫は上流置 減勢工に衝突すると減速を始め、本堤に礫が到達する前にデッドゾーンを形成する.上流置減勢工を乗り越 えた礫は本堤に衝突し,減勢工と本堤間の間隙に落下するが,礫は速度を失って堆積し,減勢工高までデッ ドゾーンを形成する.間隙に礫が堆積を終えると、後続礫は減勢工前後のデッドゾーンを超越して本堤に衝 突する.

また、本堤に衝突した礫の総速度の最大値から、上流置減勢工高は礫の減速に影響を与えることがわかっ た. 上流置減勢工の減速効果を確認するため, 各ケースにおいてデッドゾーンの減速効果を比較する. 図-4.12 に、礫が本堤に衝突するまでのデッドゾーンの模式図と衝突回数を示す.デッドゾーンとの衝突回数は、t= tos以降,礫が堰堤に初めて衝突するまでにデッドゾーンと衝突した回数であり、平均衝突回数は衝突回数を 衝突礫数で割っている.図-4.13に各ケースにおける礫とデッドゾーンとの衝突回数~時間関係を示す.上流 置減勢工高が高くなるとデッドゾーンとの衝突回数は多くなる.これによって減速効果を生じていることが 確認できる. h3Dではt=t₀+0.56 s 以降, デッドゾーンとの衝突回数の増加が緩やかになっている. これは上 流置減勢工を超越した礫が本堤と上流置減勢工間のポケットに入り込んでデッドゾーンを形成している時間 であり、この時間はデッドゾーンによる制動効果は抑えられている.これによって上流置減勢工は本堤と上 流置減勢工間のデッドゾーンの形成に影響し、その結果、減速効果に影響を及ぼすことがわかった.また、 各上流置減勢工高で上流置減勢工が越流時のデッドゾーンを比較すると、上流置減勢工高が高いほど、デッ

第4章 個別要素法による上流置減勢工の荷重低減効果解析

^{時間 t (s)} 図−4.14 上流置減勢工に作用する荷重評価位置 図−4.15 上流置減勢工に作用した荷重~時間関係

(a) h1D

図-4.16 接触力図(上流置減勢工最大荷重時)

図-4.17 接触力図(堰堤モデル最大荷重時)

ドゾーンの上面長さは明瞭に長くなっていることがわかる.

4.6.3 上流置減勢工に作用する荷重

上流置減勢工の影響を調べるために、上流置減勢工に作用した荷重についても検討した. 図-4.14に示すよ うに、礫と上流置減勢工の上流側との接触力の総和を荷重とした. 図-4.15に、上流置減勢工に作用する荷重 ~時間関係を示す.上流置減勢工高が高くなると、上流置減勢工に作用する荷重が大きくなることがわかる. 上流置減勢工に最大荷重が生じる時間は, h1D, h2D, h3Dではそれぞれt = t₀ + 0.27, 0.24, 0.43 sとなる. 前 項で示した堰堤モデル(以後,本堤という.)での最大荷重の生起時間との差が上流置減勢工高が高くなるほ ど大きくなる.

図-4.16に、上流置減勢工に最大荷重が生じた際の礫と上流置減勢工間の接触力図を示す.すなわち、礫と

第4章 個別要素法による上流置減勢工の荷重低減効果解析

堰堤が衝突した際にその接触力を赤色の円柱で示したものである.この際,接触力が大きいほど円柱の直径 を大きく示している.また,礫は直径を1/5で表示している.図−4.16(a)にh1Dの接触力図を示す.h1Dでは, 礫と上流置減勢工間に大きな荷重は生起していない.図−4.16(b)にh2Dの接触力図を示す.h2Dでは上流置減 勢工の上部に荷重が生起しているものの,上流置減勢工全体に大きな荷重が生起しているとは言い難い.図 −4.16(c)にh3Dの接触力図を示す.h3Dになると,上流置減勢工の下部から上部に至るまで大きな荷重が作用 している.図−4.17に,本堤に最大荷重が生じた際の接触力図を示す.図−4.17(a)にnoneの接触力図を示す. noneでは荷重は堰堤に均等に作用している.図−4.17(b)~(d)にh1~3Dの接触力図を示す.上流置減勢工を設 置した場合には,堰堤モデルの底面から上流置減勢工高までの間には大きな荷重は生起していない.また, 上流置減勢工の上部には荷重が生じており,最大荷重時には,本堤の前後で上流置減勢工より低い位置にあ る礫を停止させている.

4.7 結 言

本章は,透過型の上流側に設置した上流置減勢工が土石流衝突荷重に与える影響について,個別要素法に よって運動過程を分析および考察したものである.本章の成果は,以下の通りである.

- 個別要素法を用いて、直線水路における土石流実験で得られた荷重~時間関係および上流置減勢工の影響により最大荷重が低減されることを再現できた。
- 2) 上流置減勢工を設置すると、上流置減勢工の上流部にデッドゾーンが形成される.また、減勢工高hが高いほど早期により広くデッドゾーンが形成され、後続の礫に対してより制動効果を発揮し本堤に衝突する礫の運動量を低減することがわかった.また、減勢工高hが高いほど衝突礫の総量(質量)も減少し、 衝突礫の総運動量を減少させる効果がある.
- 3) 上流置減勢工を設置することにより、上流置減勢工と本堤との間に落下した礫は水平方向の速度を失い、 衝突荷重を生じず、このことから、減勢工高hが高いほど荷重が低減することとなった.

実験では、上流置減勢工と本堤の離隔距離を大きくした場合の効果が不明確であったが、今後はそのメカ ニズムの分析や、実スケールでの構造物の検討を行う必要がある.

第5章 南木曽における堰堤破壊の原因究明のための縮小モデル衝突実験

5.1 緒言

第3章,第4章では、個別要素法によって実験規模の土石流衝突荷重と個々の礫の相互作用による荷重の 低減効果が再現できることを示した.ところで、個別要素法を用いて堰堤の破壊メカニズムを検討するため には、個別要素法による構造破壊の再現性に対する信頼性を検証しなければならない.そのため、縮小模型 による破壊実験を行い、その再現解析を行う必要がある.そこで本章では、写真-5.1に示すように平成26年 長野県の南木曽で発生した梨子沢第1砂防堰堤の損壊事例を対象として、報告書¹⁾で推定された梨子沢第1砂 防堰堤の破壊メカニズムの分析を参考として縮小モデル実験を行う.このとき、相似則のゆがみを考慮した 縮小模型を作製し、堰堤模型に土石流モデルを衝突させた際の堰堤の破壊や個々の部材の損傷状況を整理す る.

5.2 実験諸元

5.2.1 実験装置

図-5.1に、実験水路の概要図を示す.水路の全長は4.2 mで、幅0.3 m、深さ0.5 mである.上流端から2.0 m のところで勾配を変え、堰堤モデルの衝突時に段波形状になるように工夫した.ここで段波形状とは土石流の先頭部が切り立ち、礫が先頭部に集中する形状であり、被災事例においても段波による衝撃力が堰堤の破壊につながったと推測されている.なお、上流側をθ_u = 20 °、下流側をθ_l = 11.3 °とし、上流側は発生区間の勾配、下流側は流下区間の勾配を参考とした²⁾.底面は礫塊の加速を得るためにアクリル板を用いた.

5.2.2 土石流モデル

土石流モデルは、図-5.1に示すように礫塊に上流から水流を当てて流すものである.写真-5.2に礫の粒径 を示す.礫は粒径ごとに3種類あり、短径から長径が40-60mm(黒)、24-40mm(白)、15mm-24mm(灰) の角の取れた丸みのある形状である.それぞれ、25.5kg、31.5kg、18.0kgを混合して合計75kgとし、水路最 上流に長さ800mm、高さ200mmに盛って設置した.その上流に約150ℓの水を高さ400mmに貯めておき、一 気に開放するダムブレイク式で水を流し、ポンプで流量100ℓ/sの水を3.0s間にわたり与えて押し流した.こ の際、映像から礫の移動速度を求めると、土石流先頭部が堰堤に衝突した時の流速は約2.5m/sであった.

5.2.3 堰堤モデル

報告書1)を参考にして、越流礫によって支保斜材が先行損傷した影響を検討するために形状の異なる3種類

写真-5.1 梨子沢第1砂防堰堤

図-5.1 実験水路

の堰堤モデルを作製した.写真-5.3に堰堤モデルを示す.写真-5.3(a)に健全形状のType Aと部材の寸法を 示す. 堰堤高は288 mm, 主部材は直径15 mmのバルサ材の円管であり, これをプラスチックで連結した. な お、プラスチックの連結材はバルサ部材に比して十分大きな剛性を有している.写真-5.3(b)は上支保斜材 が先行破壊したと仮定するType B、写真-5.3(c)は全支保斜材を失ったType Cである.一方で、この3種類の 堰堤モデルはエポキシ樹脂によって接合部の連結材で剛結されており、木材の露出している部材間や、後述 する切り欠きを与えた継手部のみでしか破壊が生起しないことが考えられる.このことから,現地で生起し ていた押し込み変形が生起するとは考えづらい、そこで、押し込み変形の影響を検討するために下部水平材 に空隙を設けた堰堤モデルを作製した.写真-5.3(d)に押し込み変形を作為した堰堤モデルTypeDを示す. 下部水平材には15 mmの空隙を設け、最大で鋼管部材1本分の押し込み変形が生起しうる.本来であれば、 下部水平材と2列目柱部材の接合部を現地の溶接のように再現し、押し込み変形に伴う2列目柱部材の損傷の 影響を検討すべきである.しかし、主として損傷の影響を検討する部位が上支保斜材であることと、木材に おいて押し込みによる荷重を正確に伝達する機構を製作することは難しい. そこで, 鋼管の軸剛性と押し込 みに伴う局部変形の剛性が約90倍3)と大きな差があることに着目し、空隙でモデル化した. 図-5.2に主要部 を占める円管部材を示す.図-5.2(a)に鋼管母材を表す円管部材の寸法を示す.円管部材は,直径15 mmの 円柱形のバルサ材の中心部に12.5 mmの穴を開けて作成した.図-5.2(b)に継手部を表す切り欠きを与えた円 管部材を示す. 部材の赤く着色している箇所は実堰堤の継手部の位置であり、全周に渡って切り欠きを与え ている.これは、写真-5.1で示した被災事例において、堰堤が継手部でのみ破断していたことを考慮したも のである. 図-5.2(b)に継手部のモデルを示す. 強度減少効果をモデル化するために、健全な部材に幅5 mm で切り欠きを設けた.この切り欠き量を決定するために、断面分割法により梨子沢第1砂防堰堤の鋼管母材 と継手部の強度比を求める.図-5.3(a)に梨子沢第1砂防堰堤の鋼管の断面を示す.鋼管は、全断面を有効と して断面分割法により曲げ強度の計算を行った. 図-5.3(b)に継手部の断面を示す. 継手部は引張側の高力 ボルトを有効とする断面分割法によって曲げモーメント〜曲率関係を求めた. 図-5.4に断面分割法の計算結 果を示す.継手部断面の曲げ強度は鋼管母材の約70%となる.そこで,切り欠き量を変化させ,構造用木材 の強度試験法4に基づき、曲げ試験を行った.図-5.5に最大曲げモーメント~切り欠き関係を示す.切り欠 き量が増えると線形的に最大曲げモーメントが低下している.近似線から健全部材の70%強度になる切り欠 き量を $d_n = 0.4 \text{ mm}$ と決定した.

5.2.4 先行堆積礫

第3章,第4章の解析結果から土石流の衝突において,堰堤上流面に堆積した先行堆積礫塊が土石流の衝 突力に影響することがわかっている.また,報告書¹⁾で推定された破壊メカニズムにおいて,幾分かの時間 間隔で土石流が衝突したことが示唆されている.よって,本実験でも衝突する土石流塊とは別に,先行堆積

(a) Type A

(c) Type C

写真-5.3 堰堤モデル

図-5.2 部材モデル

礫を設置した.**写真-5**.4に先行堆積礫の初期配置を示す.先行堆積礫は堰堤天端との高さ比で示す.**写真**-5.4(a)に先行堆積礫を設置しない場合の初期配置を示す.段波を生起させるために礫径1つ分の移動床を配

写真-5.4 先行堆積礫

置している. 写真-5.4(b)に先行堆積礫高30 %の初期配置を示す. 先行堆積礫高30 %は, 2列目柱部材への 押し込み変形を検討するために, 土石流先頭部が下部水平材付近に衝突することを作為している. 写真-5.4(c)に先行堆積礫高50 %の初期配置を示す. この先行堆積礫高さは, 堰堤上部に土石流モデル先頭部が衝 突することを考慮したものである.

5.2.5 破壊に関する相似則検討

図-5.6に、土石流衝突による鋼製透過型砂防堰堤の破壊に影響する代表諸元を示す.まず、破壊現象を支配する要因として、破壊部位に衝突する巨礫の質量(*m_R*)とその速度(*v_R*)は次式で与えられる.

$$m_R \coloneqq C_{mR} \rho_R \frac{4}{3} \pi \left(\frac{D_R}{2}\right)^3 \tag{5.1}$$

ここで、 m_R : 巨礫の質量、 ρ_R : 巨礫の材料密度、 D_R : 巨礫の代表直径、 C_{mR} : 形状による巨礫の質量への影響である形状係数とした.

衝突速度は、次式で与えられる.

第5章 南木曽における堰堤破壊の原因究明のための縮小モデル衝突実験

表−5.1 相似則の比較					定義	H_{EL}	落下高さ
物理量	実物	実験 (1/n)	次元	$\pi_1 = H_s / H_{EL}$	堰堤高/水頭	$\frac{\underline{l_s}}{\underline{l_i}}$	部材長 鋼管直径
ひずみ (ε)	1	1	1	$\pi_1 = 1$	部材長/堰堤高	t_p	鋼管厚さ
応力(σ:[N/m ²])	1	1	L-1MT-2	$\frac{l_i}{H_S}$		$\underline{D_R}$	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
長さ (<i>l</i> :[m])	1	1 / n	L	$\frac{\pi}{D_n/t_n}$	鋼管径/鋼管厚	VR	
面積 (A:[m ²])	1	$1 / n^2$	L ²	<i>p</i> · <i>p</i>		-	
体積 (V:[m ³])	1	$1 / n^3$	L ³				-9690-
密度 (ρ:[kg/m ³])	1	1	ML-3		D_P	/	
質量 (<i>m</i> :[kg])	1	$1 / n^3$	M				
重力加速度 (g:[m/s ²])	1	1	LT ⁻²			hi .	H_{EL}
変位 (u:[m])	1	1 / <i>n</i>	L	$= H_{s} \left \begin{array}{c} \downarrow_{l_{i}} \\ \downarrow_{s} \\ $			
吸収エネルギー (E:[J])	1	$1 / n^3$	ML ² T ⁻²		The		Ļ
ポテンシャルエネルギー (U:[J])	1	1 / <i>n</i> ⁴	ML ² T ⁻²				
速度(v:[m/s])	1	$1/\sqrt{n}$	LT-1	^			
破壊エネルギー $(U_f: [J])$	1	$1 / n^4$	ML ² T ⁻²	赵-5.6	土石流モテル衝劣	ドに関	する相似則
密度 (ρ : [kg / m ³]) 質量 (m: [kg]) 重力加速度 (g: [m / s ²]) 変位 (u: [m]) 吸収エネルギー (E: [J]) ポテンシャルエネルギー (U: [J]) 速度 (v: [m/s]) 破壊エネルギー (U _f : [J])	1 1 1 1 1 1 1 1 1	$ \begin{array}{r} 1 \\ 1 / n^{3} \\ 1 \\ 1 / n \\ 1 / n^{3} \\ 1 / n^{4} \\ 1 / \sqrt{n} \\ 1 / n^{4} \\ 1 / n^{4} \\ \hline 1 / n^{4} \\ 1 / n^{$	ML-3 M LT ⁻² L ML ² T ⁻² ML ² T ⁻² LT ⁻¹ ML ² T ⁻²	H _s ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	D _p D _R D _R 手 手 上 石流モデル衝劣	海に関	す る相似貝

$$_{\rm R} = C_{\rm vR} \sqrt{2gH_{\rm EL}}$$

(5.2)

ここで, v_R: 巨礫の堰堤に対する衝突速度, H_{EL}: 土石流源頭部の標高, g: 重力加速度, C_{vR}: 河底条件に よる衝突速度への低減係数とした.

仮に、構造物と土石流形成に伴う礫径や水路の幾何学的相似を保ったうえでスケール比1/nの模型実験を 同一材料かつ重力加速度一定のもとで行うと、模型実験と実物との物理量の比率は表-5.1のようになる.こ こで、ひずみと応力は、部材の破壊の生起条件を同じにするため、実物と実験で同じになるものとしている. ところで、物体の衝突によって構造部材が曲げ破壊する場合には、物体の衝突エネルギーUと部材の吸収エ ネルギー容量*E*_{cap}との間に次の関係が成立する.

$$E_{cap} > U(非破壞)$$
 (5.3a)

$$E_{cap} = U(\mathbb{R}\mathbb{R}) \tag{5.3b}$$

$$E_{cap} < U(\bar{w} \pm) \tag{5.3c}$$

図-5.7に礫衝突によるはり部材の曲げ破壊実験の模式図を示す.この際、衝突エネルギーUは次式となる. $U = m_{cap}g(\Delta H + \delta_{f})$ (5.4)

ここで、 m_{cap} : 重錘質量、g: 重力加速度、 ΔH : 重錘の落差、 δ_f : 破断時の部材の変形量である. 図-5.8に曲げモーメント〜たわみ角関係を示す.ここで、 E_{cap} については次のように表される.

$$E_{cap} = \int_0^{\theta_f} M \, d\theta \tag{5.5}$$

ここで、 θ_f :破断面の許容塑性回転角⁵である.

図-5.8に示すように、鋼管部材では、降伏モーメントM_pまでに消費される弾性域の吸収エネルギーE_{el}と 塑性域の吸収エネルギーE_{pl}との和で表される.このとき、E_{el}に比してE_{pl}は極めて大きく、E_{el}より卓越する 曲げ変形では荷重点近くの塑性ヒンジ領域が支配的となる.よって、図-5.8のような曲げ変形の吸収エネル ギーE_{cap}は次式で与えられる.

$$E_{cap} = \int_0^{V_m} E_m \, dV = \int_0^{\delta_f} P d\,\delta = \int_0^{\theta_f} M_p d\theta \tag{5.6}$$

ここで、 $E_m: 1/n$ スケール部材の単位体積あたりの吸収エネルギー、 $V_m: 1/n$ スケールの部材体積、 $M_p:$ 部材の降伏モーメントである.

同一材料ではEmは等しいため、縮小模型のEcapは体積に比例する.これらの知見を基に、同一材料かつ重

図-5.9 曲げモーメント〜回転角関係

力場での模型実験の縮小率を求めると衝突エネルギーUは次式で表される.

$$U \propto \frac{1}{n^4} \tag{5.7a}$$

これに対して、部材の吸収エネルギーEcapは、

$$E_{cap} \propto \frac{1}{n^3}$$
 (5.7b)

となり、実物のある部材において式(5.3b)で表される限界状態であっても模型実験では、

$$U < E_{cap} \tag{5.8}$$

となり、衝突エネルギーが不足して破壊しない.

これを補正するために模型部材の有する*Ecap*を同一材料模型の1/n となるように工夫する. 鋼材でこれを行うことは加工上困難であるので, *Ecap*の小さいバルサ材を用いて*Ecap*が鋼管モデルの1/nとなる部材を作ることとした. ここで本実験におけるスケール比はn = 40.6である.

図-5.9に本研究で用いる部材に対する単純ばりの曲げ試験結果を示す.文献5)より,破断面の許容塑性回転角*θ_f* = 0.23としてバルサ材モデルのエネルギー吸収容量*E_{cap-balsa}を*求めると0.20 Jとなった.一方,STK490 による縮小モデルについては,図-5.3と同様の要領で1/n 縮小断面に対する断面分割法により*M*~ ϕ 関係を算出する.このとき,塑性ヒンジ長が鋼管直径の半分と仮定すると破断時の回転角を次式で求めることができる.

第5章 南木曽における堰堤破壊の原因究明のための縮小モデル衝突実験

写真-5.5 荷重計測装置

(a) $t = t_0 - 0.5 \text{ s}$

(a) $t = t_0 - 0.5 \text{ s}$

(a) $t = t_0 - 0.5 \text{ s}$

(b) $t = t_0$ s

(b) $t = t_0 s$

(c) $t = t_0 + 0.3 \text{ s}$

(b) $t = t_0 s$ (c) $t = t_0 + 0.3$ s 写真-5.7 先行堆積礫高 30% (S30)

写真-5.6 先行堆積礫高0%(S0)

(c) $t = t_0 + 0.3 \text{ s}$

(d) $t = t_0 + 0.5 \text{ s}$

(d) $t = t_0 + 0.5 \text{ s}$

(d) $t = t_0 + 0.5 \text{ s}$

写真-5.8 先行堆積礫高 50% (S50)

$$\theta_f = \varphi \frac{D_f}{2} \tag{5.9}$$

ここで、 φ :曲率、 D_f :鋼管直径である.

このとき,破断面の許容塑性回転角 $^{5} heta_{f} = 0.17$ における $E_{cap-steel}$ は8.05 Jとなる. すなわち, $E_{cap-steel}$ と $E_{cap-stalsa}$ の比は40.5となり、概ね条件を満足している.

報告書¹⁾での流速の推定値は9.7 m/sとされており、1/nに縮小した模型実験におけるフルード相似則⁰では、 $\sqrt{1/n}$ を用いる.よって、この場合は速度は9.7 × $\sqrt{1/40.6}$ = 1.52 m/sとすべきであるが、この速度では段波形 状とならなかったこと、またどの形状模型も破壊しないことから、前述のように衝突速度を約2.5 m/sとする 実験を行った.

5.2.6 事前実験

実験に先立ち、土石流モデルの衝突荷重を各高さごとに計測した.写真-5.5(a)に荷重計測装置を示す.
第5章 南木曽における堰堤破壊の原因究明のための縮小モデル衝突実験

この計測装置を堰堤モデルと同様の位置に設置して,衝突荷重計測を行った.荷重計測装置は高さ35 mm, 幅 15 mm の受圧板を,堰堤高と同じ288 mm の側板に7 段計 14 個のロードセルを配置したものである.写真 -5.5(b)に荷重計測装置の側面図を示す.受圧板の下から2~7 段目は堰堤モデルの横部材の高さと対応して いる.荷重の計測は総荷重(1~7 段小計)および,下段(1~2 段小計),中段(3~4 段小計),上段(5~7 段小計)に分けて示す.まず映像から土石流モデルのアプローチ形状と速度を確認した.写真-5.6(た行堆 積礫高0%(S0)の場合に荷重計測器へ土石流モデルが衝突した過程を示す.写真-5.6(a)のt=t₀-0.5 sは, 土石流モデル接近前の状態である.写真-5.6(b)のt=t₀sでは,先頭部が堰堤到達時,礫が堰堤高の40%ま で達する.その上を越流し堆積が進み,その後,写真-5.6(c)のt=t₀+0.3 sでは堰堤天端まで礫が到達する. 写真-5.6(d)では,越流は生起しておらず,写真-5.6(c)から大きく変化していない.

写真-5.7に,先行堆積礫高30% (S30)の衝突過程を示す.写真5-7(a)の $t = t_0 - 0.5$ sは土石流衝突前の状態である.写真5-7(b)の $t = t_0$ sでは,土石流モデルの先頭部が堰堤モデルに衝突しており,堰堤高の60%まで礫が到達している.続いて,写真5-7(c)の $t = t_0 + 0.3$ sでは,捕捉面に衝突した礫が天端高さまで達しており,このとき最大荷重に達している.写真5-7(d)の $t = t_0 + 0.5$ sでは,捕捉面より上流側に礫の堆積が進んでいる.

写真-5.8に,先行堆積礫高50% (S50)の衝突過程を示す.**写真-5**.8(a)の*t* = *t*₀ - 0.5 sは,土石流モデル接近前の状態である.**写真-5**.8(b)に示すように,先行堆積礫高さ50%では流下した土石流は先行堆積礫塊の上を滑動して,堰堤高の75%まで到達している.続いて,**写真-5**.8(c)では,礫が堰堤天端まで達している.**写真-5**.8(d)では,越流は生起しておらず,**写真-5**.8(c)から大きく変化していない.

図-5.10に,総荷重~時間関係を示す.ここで,総荷重とは14個のロードセルの値を積算したものである. まず,S0では,土石流衝突直後の0.34 sで最大の384 Nに達する.その後は,徐々に低下して2 s後では250 N となっている.一方,S30の場合は,0.32 sで最大荷重363 Nに達し,以後は徐々に低下し2.0 sにおける荷重は 232 Nになっている.S50の場合は,0.30 sで最大荷重339 Nに達し,以後2.0 sにおける荷重は200 Nになってい る.概して,先行堆積礫高が高くなるほど最大荷重が低減されている.図-5.10(b),(c),(d)にはそれぞれ,

			-	
ケース名	- 堰堤 モデル	先行 堆積礫高	継手 強度	判定
TA-S0-M100		0.0/	100 %	\bigcirc
TA-S0-M70		0 70	70 %	0
TA-S30-M100		20.9/	100 %	0
TA-S30-M70		30 70	70 %	0
TA-S50-M100		50.94	100 %	0
TA-S50-M70		30 %	70 %	0
TB-S0-M100	В	0.%	100 %	0
TB-S0-M70		0 70	70 %	0
TB-S50-M100		50.94	100 %	0
TB-S50-M70		30 78	70 %	×
TC-S0-M100		0.94	100 %	\triangle
TC-S0-M70	C	0 70	70 %	\triangle
TC-S50-M100		50.0/	100 %	×
TC-S50-M70		30 78	70 %	×
TD-S0-M70		0 %		0
TD-S30-M70	D	30 %	70 %	\triangle
TD-S50-M70		50 %		0

表-5.2 実験ケースと判定

○:損傷無し △:損傷 ×:破壊

(b) $t = t_0$ s

(c) $t = t_0 + 0.2 \text{ s}$

(d) $t = t_0 + 0.4 \text{ s}$

写真-5.9 TA-S0-M100

S0, S30, S50における荷重について、下段(1~2段小計)、中段(3~4段小計)、上段(5~7段小計)に分け て示す.これより、上段の最大荷重を見ると、S0、S30、S50の順に121 N、148 N、212 Nとなっており、堆 積礫高さが高いほど荷重が大きくなっている. 中段の最大荷重は, S0, S30, S50の順に112 N, 131 N, 93 N となっており, S30が最も荷重が大きく, S50が最も小さくなっている. 下段の荷重は, S0, S30, S50の順 に193 N, 98 N, 69 Nとなっている. 概して, 先行堆積礫の上面よりも少し上の領域に大きな衝撃荷重が生 起することがわかった.

5.2.7 実験ケース

以上の条件を組み合わせて、表-5.2に示す17ケースについて各々5回の実験を行った.以後、実験ケース 名は堰堤形状,継手強度,先行堆積礫高さを組み合わせて,記号で表す.例えば,TA-M70-S50とは,形状 がTypeAで継手強度が70%で先行堆積礫高さが50%のことである.

(a) $t = t_0 - 0.5 \text{ s}$

(b) $t = t_0 s$

(c) $t = t_0 + 0.2$ s

(d) $t = t_0 + 0.4 \text{ s}$

(e) $t = t_0 + 0.6$ s

写真-5.10 TB-S0-M100

(a) $t = t_0 - 0.5 \text{ s}$

(b) $t = t_0 s$

(c) $t = t_0 + 0.2$ s

(d) $t = t_0 + 0.4 \text{ s}$

(f) $t = t_0 + 2.0 \text{ s}$

5.3 実験結果

5.3.1 堰堤形状の影響

(1) TA-S0-M100

写真-5.9に、TA-S0-M100の衝突過程を示す.写真の視認性を高めるため、堰堤模型の外形を赤線で囲ん でいる. 写真-5.9(a)は、土石流モデルが堰堤に到達する前の状況である. その後、写真-5.9(b)のt = to sで 土石流モデルの先頭部は堰堤の捕捉面に到達している.以降では、土石流モデルの先頭部が堰堤の捕捉面に 到達した時間をt = to sとして表記する. 土石流の礫は堰堤に衝突しており, 先行している流水は堰堤下部を 通り抜けている. 写真-5.9(c)のt = to +0.2 sは,荷重計測時に最大荷重に達する時間近傍の状況であるが,堰 堤は初期形状を保っている.写真-5.9(d)のt=to+0.4sでは、堰堤天端まで礫が捕捉され、水流は激しく上部 を流れているが堰堤形状に変化はない.写真-5.9(e)のt = to +0.6 sでは,後続の礫が堆積した礫の後方から接 近しているが,一部の礫が堰堤を越流している.写真-5.9(f)のt = to +2.0 sでは, 土石流モデルの衝突が終了 し、流水も治まっており、堰堤は部分的損傷もなく破壊は生じなかった.

(a) $t = t_0 - 0.5$ s

(b) $t = t_0 \mathbf{s}$ (c) $t = t_0 + 0.2$ s

(f) $t = t_0 + 2.0 \text{ s}$

写真-5.12 TA-S50-M100

(a) $t = t_0 - 0.5 \text{ s}$

(b) $t = t_0 s$

(c) $t = t_0 + 0.2$ s

(d) $t = t_0 + 0.4 \text{ s}$

(e) $t = t_0 + 0.6 \text{ s}$ 写真-5.13 TB-S50-M100 (f) $t = t_0 + 2.0 \text{ s}$

(2) TB-S0-M100

写真-5.10に、TB-S0-M100の衝突過程を示す.写真-5.10(a)は、土石流モデルが堰堤に到達する前の状況 である. 写真-5.10(b) のt = to sでは堰堤高の40%まで礫が到達している. 写真-5.10(c)のt = to + 0.2 sでは, 荷重計測時に最大荷重となった時間で、堰堤天端まで礫が衝突しているが、堰堤は初期形状を維持している. 写真-5.10(d)のt=t0+0.4sでは堰堤天端まで礫が捕捉され、その後写真-5.10(e)のt=t0+0.6s、写真-5.10(f) のt = to +2.0 sの衝突終了時においても、堰堤には部分的損傷もなく破壊が生じない. つまり、TA-S0-M100の 過程とほぼ同じである.

(3) TC-S0-M100

写真-5.11に, TC-S0-M100の衝突過程を示す. 写真-5.11(a)は, 土石流モデルが堰堤に到達する前の状況 である. 写真-5.11(b)のt = to sでは堰堤高の40%まで礫が到達しているが、この時堰堤上部が下流側にやや 傾いている.写真-5.11(c)のt=to+0.2 sでは、堰堤天端まで礫が衝突しており、下流側への傾きは維持され ている. 写真-5.11(d) の $t = t_0 + 0.4$ sでは、堰堤天端まで礫が到達し、堰堤の傾斜が明瞭になっている. 写真

第5章 南木曽における堰堤破壊の原因究明のための縮小モデル衝突実験

(a) $t = t_0 - 0.5 \text{ s}$

(b) $t = t_0 s$

(c) $t = t_0 + 0.2$ s

(d) $t = t_0 + 0.3 \text{ s}$

(e) $t = t_0 + 0.4 \text{ s}$

写真-5.14 TC-S50-M100

(d) $t = t_0 + 0.6 \text{ s}$

(e) $t = t_0 + 0.8 \text{ s}$ 写真-5.15 TB-S50-M70 (f) $t = t_0 + 2.0 \text{ s}$

-5.11(e)のt = to +0.6 sでは、堰堤上部のみでなく下部にも変形が生じている.写真-5.11(f)の衝突終了時で は堰堤の2列目柱部材の下部が傾いており、損傷を生じた.その損傷状況については後述する.

5.3.2 先行堆積礫高の影響

(1) TA-S50-M100

写真-5.12に、TA-S50-M100の衝突過程を示す.写真-5.12(a)では、土石流モデルが堰堤に到達する前の 状況である. 写真-5.12(b)のt = to sでは堰堤高の80%高さまで礫が到達し,先行している流水は堰堤下部を 通り抜けており、堰堤に変形は見られない.写真-5.12(c)のt=to+0.2 sでは荷重計測時に最大荷重に達する 時間であるが、堰堤は初期形状を保っている.写真-5.12(d)のt = to + 0.4 sでは、堰堤天端まで礫が捕捉され、 水流は激しく上部を流れているが堰堤形状に変化はない.写真-5.12(e)のt = to + 0.6 sでは、一部の礫が堰堤 上部を越流している.写真-5.12(e)では衝突が終了し、流水も治まっており、堰堤は部分的損傷もなく破壊 はなかった.

第5章 南木曽における堰堤破壊の原因究明のための縮小モデル衝突実験

(d) $t = t_0 + 0.5 \text{ s}$

(f) $t = t_0 + 2.0 \text{ s}$

(2) TB-S50-M100

写真-5.13に, TB-S50-M100の衝突過程を示す. 写真-5.13(a)は, 土石流モデル衝突前の状況である. 写 真-5.13(b)のt = to sでは先行堆積礫50%に重ねて堰堤高の80%まで礫が到達しているが堰堤形状に変化はな い. 写真-5.13(c)のt = to + 0.2 sでは,荷重計測時に最大荷重に達する時間近傍であり,堰堤天端まで礫が到 達している.以降は,後続の礫が堆積し写真-5.13(f)では,流水の越流も治まっているが堰堤は初期形状を 保ち,破壊も損傷も生じなかった.

(3) TC-S50-M100

写真-5.14に, TC-S0-M100の衝突過程を示す. 写真-5.14(a)は前述のものと同様である. 写真-5.14(b)のt = tosで堰堤高の80%まで礫が到達するが, この時堰堤がやや下流側に傾いている. 写真-5.14(c)のt = to + 0.2 sでは,最大荷重において堰堤天端まで礫が衝突しており,最上流面柱材と2列目柱材がより下流側へ傾いている. 写真-5.14(d)のt = to + 0.3 sでは,堰堤の傾斜が明瞭になっており,柱部材の根元が折れ曲がり上部水 平材の接合部付近も屈曲している. 写真-5.14(e),(f)の衝突終了時では,堰堤堰堤が根元から完全に流出した.

写真-5.18 TD-S50-M70

5.3.3 継手強度の影響

写真-5.15に、TB-S50-M70の衝突過程を示す.写真-5.15(a) は堰堤モデルに土石流モデルが衝突する前の 状況である.写真-5.15(b) $ot = t_0$ sで堰堤高の80%まで礫が到達するが、この時点では写真-5.13(a) と同様 に堰堤は初期形状のままである.写真-5.15(c) $ot = t_0 + 0.4$ sでは、礫が頂部に衝突すると堰堤上部が下流に 向かって傾き始めている.写真-5.15(d) $ot = t_0 + 0.6$ sでは、上流側柱部材が継手部の位置で傾き始めて、柱 部材同士の平行性が失われている.また、頂部の変形に伴い礫塊の一部が天端部を乗り越えている.写真-5.15(e) $ot = t_0 + 0.8$ s以降では上流面柱部材と下部との連接が壊れるとともに、水平材の平行性および上下 流柱の平行性が失われ、多くの礫が流下している.そして、礫の流れが終了した写真-5.15(f)では、上部構 造が継手部で破断して流出している.継手部の損傷状況は後述する.

5.3.4 押し込み変形の影響

(1) TD-SO-M70

写真5-16にTD-S0-M70の衝突過程を示す.写真5-16(a)は土石流モデルが堰堤に衝突する前の状況である. 写真5-16(b)の $t = t_0$ sは,土石流の礫は堰堤に衝突しており,先行している流水は堰堤下部を通り抜けている. 写真5-16(c)の $t = t_0 + 0.2$ sは荷重計測時に最大荷重に達する時間のものである.この時点でやや押し込みが 生起し,堰堤上流の柱材に湾曲している.写真5-16(f)の $t = t_0 + 2.0$ sは衝突が終了し,流水が治まっている. 衝突後の堰堤は接合部に約3 mmの押し込みが生起していた.しかし,堰堤上流面に湾曲が見られたほか継 手部や柱材に損傷は見られず,破壊は生じなかった.

(2) TD-S30-M70

写真5-17にTD-S30-M70の衝突過程を示す.写真5-17(a)は土石流モデルが堰堤に衝突する前の状況である. 写真5-17(b)の $t = t_0$ sは、土石流の礫は堰堤に衝突しており、先行している流水は堰堤下部を通り抜けている. 写真5-17(c)の $t = t_0 + 0.1$ sでは水平材が押し込まれたことにより、上流側の柱材継手部を中心として、湾曲 を生じている.写真5-17(d)の $t = t_0 + 0.5$ sでは、水平材がさらに押し込まれ、堰堤上流側の湾曲は明瞭とな る.この柱材の継手部分が水平材直上に下流側に屈曲している.加えて、2列目柱材の上部が下流側に変位 することにより、上支保斜材の中央の継手部が曲げ変形し始めている.写真5-17(e)の $t = t_0 + 0.6$ sでは、水 平部の押し込みと上流側柱材の継手の変形は $t = t_0 + 0.1$ sとほぼ同じであるが、上支保斜材の継手部は上流側 下部に向けて明らかに曲げ変形している.写真5-17(f)の $t = t_0 + 2.0$ sは衝突が終了し、流水が治まっている. 第5章 南木曽における堰堤破壊の原因究明のための縮小モデル衝突実験

写真-5.21 損傷状況

衝突が終了し,流水も治まっているが,多数の損傷が生起しており,衝突後の堰堤の損傷状況を後述する. (3) TD-S50-M70

写真5-18にTD-S50-M70の衝突過程を示す.写真5-18(a)は土石流モデルが堰堤に衝突する前の状況である. 写真5-18(b)の $t = t_0$ sは、土石流の礫は堰堤に衝突しており、先行している流水は堰堤下部を通り抜けている. 写真5-18(c)の $t = t_0 + 0.2$ sは荷重計測時に最大荷重に達する時間のものである.この時点でやや押し込みが 生起し、堰堤上流の柱材に湾曲している.写真5-18(f)の $t = t_0 + 2.0$ sは、衝突が終了し、流水が治まっている. 衝突後の堰堤は接合部に約2 mmの押し込みが生起していた.しかし、堰堤上流面に湾曲が見られたほか継 手部や柱材に損傷は見られず、破壊は生じなかった.

5.3.5 堰堤モデルの損傷状況

写真-5.19に,実験終了後のTC-S0-M100の堰堤下部の柱部材の状況を示す.写真-5.19(a)の柱部材は根元 部で折れ曲がっており,写真-5.19(b)では曲げによって上流側に生じる引張力によりわずかに破断している.

写真-5.20には、TB-S50-M70の実験終了後の破断部を拡大して示す.上・下流側ともに、柱部材の継手部 が曲げ折られたように破断している.特に、上流側の破断面は上部が毛羽立つように引きちぎられており、 せん断破壊ではないことがわかる.また、写真-5.20(b)の上部からの写真は、破断した柱部材を除く水平材 等の破損は見られない.

写真5-21に衝突後の堰堤の損傷状況を示す.写真5-21(a)は、堰堤を後方から俯瞰して撮影したものであ る.上支保斜材は、4本のうち3本で継手部が上流側下部に向けて潰れるように曲げが生じているが破断はし ていない.写真5-21(b)に左岸から見た上流側柱材の継手部を示す.曲げによって下流側が引きちぎられる ように損傷が生じているが、破断はしていない.写真5-21(c)に衝突前後の映像のコマ撮りから得た水平材 の押し込み変形を示す.赤く着色されている継手部は幅5 mmであり、上部は約8 mmほど、下部は約6 mmほ ど押し込まれており、平均して約7 mmほど斜めに押し込まれていることがわかる.写真5-21(d)には除礫後 の堰堤を示す.南木曽のように堰堤は破壊に至らなかったが、支保斜材が水平材の押し込みに連動して損傷 することがわかる.

5.3.6 実験結果の総括

写真-5.22に,全ケースの実験終了後の堰堤の形状を示す.写真-5.22(a)~(f)はそれぞれ,TA-S0-M100, TB-S0-M100,TC-S0-M100,TA-S0-M70,TB-S0-M70,TC-S0-M70の実験結果である.先行堆積礫が無い場

第5章 南木曽における堰堤破壊の原因究明のための縮小モデル衝突実験

合は、堰堤の形状および継手強度によらず破壊は生起しなかった. 写真-5.22(g)~(i)はそれぞれ、TA-S50-M100, TB-S50-M100, TC-S50-M100の実験結果である. これより,先行堆積礫が存在した場合に,全支保斜材が失われた際に堰堤が根元から破壊・流出することがわかった. 写真-5.22(j)~(l)はそれぞれ,TA-S50-M70, TC-S50-M70の実験結果である. 先行堆積礫が存在し,継手強度が母材より弱い場合に,支保斜材が先行損傷した際に堰堤が破壊・流出した. この際,上支保斜材が先行損傷した場合は堰堤上部のみが破壊・流出し,全支保斜材が先行損傷した場合は堰堤が根元から破壊・流出した. 写真-5.22(m)~(n)はそれぞれ,TA-S30-M100, TA-S30-M70の実験結果である. この2つの実験ケースはTypeAの堰堤模型に対して先行堆積礫高30%の条件下で土石流モデルを衝突させた. 先行堆積礫高が異なっていても支保斜材が先行損傷していないTypeAの堰堤模型では損傷・破壊は生起しなかった. 写真-5.22(o)~(q)はそれぞれ,TD-S0-M70, TD-S50-M70の実験結果である. 押し込み変形を考慮した実験ケースでは,先行堆積礫が下部水平材の直下まで存在するS30の場合に押し込み変形が最も大きくなり最上流面継手部と上支保斜材継手部に損傷を生じた.

土石流衝突前に支保斜材が先行破壊している影響について考察すると、支保斜材に先行破壊が無い場合は、 継手の有無や、先行堆積礫の有無によらず破壊が生じないのに対し、上支保斜材が無いと破壊し易い.また、 継手強度が低下すると破壊し易く、加えて、先行堆積礫があると堰堤上部が破壊している.

最も被災事例と似ている結果となったのは,写真-5.22(k)に示すTB-SO-M70であり,柱部材の継手部で曲 げ破壊が生じ堰堤上部が流出した.また,継手部以外は損傷は見られない.これを第1章で述べた破壊メカ ニズムと比較すると,土石流先頭部の衝突により継手部が損傷し,上部水平材の損傷が堰堤捕捉面が下流側 に倒れこむという,越流による斜材の破壊を除いては推定メカニズムと同様である.しかし,越流により上 支保斜材が先行破壊するには堰堤が満砂状態になる必要があり,満砂状態では堰堤上流面に土石流が衝突し ないという問題もある.

第3章,第4章の解析結果では、先行停止礫の滑動面の礫間の衝突によって破壊力が減少すると考えられた.実際に、事前実験における荷重計測では先行堆積礫によって総荷重は低減されていた.しかし、TB-S50-M70を見ると、先行堆積礫によって上部に作用する荷重が大きくなっており、上部の部材が土石流によって破断した.

以上の結果から,継手部の強度が鋼管より小さいこと,また,上支保斜材を除去することの2つが,堰堤 上部が流出する要因であることを示した.しかし,上支保斜材が先行して破壊するためには,満砂状態とな り土石流の越流が生起する必要があるが,上支保斜材が損傷した後には,満砂状態なので堰堤上流面に土石 流が衝突できず,堰堤上部が破壊するメカニズムのシナリオに矛盾がある.写真-5.22(p)に示すTD-S30-M70のケースでは,押し込み変形が生起するように作製した堰堤模型を用いて,水平材の直下まで先行堆積 礫が存在した場合に押し込み変形が最も大きくなり,上支保斜材に損傷が生起した.これにより,越流礫が 直接支保斜材に衝突せずとも,押し込み変形が生じることで上支保斜材に損傷が生じ,堰堤形状がTypeBに 近づくことで堰堤上部が破壊・流出しうることを示した.

75

(f) TC-S0-M70

TC-S50-M100

TA-S30-M70

(q) TD-S50-M70

(1) TC-S0-M70

(o) TD-S0-M70

5.4 結言

本研究は,透過型の破損事例に対する破壊メカニズム推定を縮小モデル実験により検証したものである. 得られた成果は以下のようになる.

- 実験では、上支保斜材の先行損傷を考慮したケース、押し込み変形を考慮したケースどちらでも継手部の曲げ強度が母材鋼管の曲げ強度より小さいことが実損傷の再現に必須条件となった。
- 2) 2段の支保斜材のうち、上支保斜材が先行破壊したうえで、第2波以降の土石流が事前に堤体の中段まで 堆積した礫塊を乗り越えるように衝突することも必須条件となった.上支保斜材が先行して破壊するに は、堰堤が満砂状態となり越流を生じる必要がある.しかし、満砂状態では上支保斜材の先行破壊後に、
- 注部材に礫が衝突できないため、堰堤上部が破壊した現地の破壊メカニズムとは異なる可能性がある. 上支保斜材が健全に保たれている限り、継手部の強度が母材の断面強度比70%に低下していたとしても、 先行堆積礫の大小に関わらず、砂防堰堤に破壊や損傷に至る兆候は見られなかった.
- 4) 水平材の取付け部における押し込み変形を可能にしたモデルでは、水平材直下の高さまで先行堆積礫が 貯まった状態で土石流を受けると、土石流衝突を受ける上流側柱材の継手部が破壊するだけでなく、一 部の上支保斜材の継手部に損傷が生起し、現地の破壊状況に至る兆しが見受けられた。事前に行った荷 重計測実験において、下部水平材付近である中段の荷重が大きいほど継手部の押し込み変形が大きくなった。

相似則の制約からバルサ材を使用したことや、部材相互の接合にプラスチックを用いたことなど、実験の モデル化に課題がある.相似則の必要流速に比して大きな衝突速度を必要としたことも含めて、補完解析よ る検討が必要である.

第6章 南木曽における堰堤破壊の原因究明への個別要素法解析

6.1 緒 言

第5章では、南木曽¹⁾の被災事例をもとに縮小模型モデルを用いてその破壊メカニズムについて検証した. この時、先行堆積礫高、継手部の母材との強度比、押し込み変形の有無について、その影響を検討した.その結果、南木曽と同様の破壊形態を生じさせる条件として先行堆積礫が堰堤高の30%ほど存在し、接手部の強度が母材の70%ほど小さく、かつ下流側柱部材への押し込み変形を生じることが必要条件となる可能性が判明した.しかし、この実験結果は、堰堤破壊の包括的な条件を示しているが、堰堤の各部材がどのようなメカニズムで破壊したのかは、不明のままである.

そこで本章では、個別要素法の連結ばねモデルに、堰堤の部材や継手の破壊および鋼管のへこみ変形の効果を含む構成則を用いて再現シミュレーションを行う.その際、構成則にバルサ材の要素試験を用いており、破壊メカニズムについて分析する.これらに基づいて、個別要素法を構造破壊の要因推定の適用できるかについてモデル実験レベルで確認するものである.なお、第5章と同様に上支保斜材の先行損傷および下流側 柱部材のへこみ変形の影響について2段階で解析する.

6.2 縮小モデル実験の再現解析

6.2.1 解析モデル

実験における円管部材は,直径15 mmの円柱材の中心部に旋盤機械を用いて12.5 mmの穴を開けて鋼管を模した.また現地の堰堤の継手部と同じ位置には,最大抵抗曲げモーメントが鋼管部の70%となるように全周を深さ0.4 mmほど切り欠いている.これは,第5章で述べたように現地の鋼管と継手部を断面分割法により曲げモーメント〜曲率関係を求めた結果,継手部の最大曲げモーメントが鋼管母材の70%であったことを鑑みたものである.

解析モデルでは、実験で用いた堰堤模型の部材強度を表現するために、円柱形要素間に常設される連結ば ね³⁾を設ける.この連結ばねは1つの接続箇所につき6個のばね(軸方向1,せん断方向2,曲げ2,ねじり1)で 構成されており、その変形量から後述する構成則に基づき軸力、せん断力、曲げモーメントを計算するが、 いずれも破壊まで表現可能なものである.図-6.1に本解析で使用する解析モデルを示す.堰堤モデルは複数 の円柱形要素と集合体要素を連結ばねで組み合わせて作成した.接合部と部材の継ぎ目および部材の中間に 連結ばねを設け、後述する一定以上の荷重またはモーメントを受けた際に破断するように設定している.ま た、円柱形要素を組み合わせて剛体の集合体要素として、プラスチックの結合部材を再現した.つまり、こ の集合体要素内部は変形も破壊もしない.これは、実験で作成した樹脂の接合部が部材のバルサに比して十 分に強度が高いことを考慮したものである.

図-6.2に礫塊の初期配置を示す.水路は平面要素を使用しており,河床勾配,水路幅は実験と同じスケー ルである.礫モデルは球形要素を使用し,D₅₀(赤)(15-25 mm),D₈₀(黄)(25-40 mm),D₉₅(緑)(40-60 mm) と色を変え,粒径はそれぞれの範囲内でランダムに与えた.要素の初期配置は,先行堆積礫と礫1個分の高さ にあたる移動床を配置し,土石流モデルは上流側にランダム発生させた礫モデルを落下法³⁾で上流に配置し, 流速分布モデル⁴⁾を用いて流下させた.なお,堰堤衝突解析はこの状態から礫塊を先行停止礫の手前まで流下 させ,この状態を改めて初期条件とした.これにより堰堤モデルを変えた場合でも同一条件で解析できる.

6.2.2 流速分布モデル

図-6.3に修正した流速分布モデルを示す.図-6.3(a)に各領域における流速分布の側面図を示す.水路上流

から初期配置に至るまでの流下間の解析にあたっては,第2章で述べた流速分布モデルを用いた.初期配置 以降の堰堤衝突前の解析においては,先行堆積礫が存在することにより,先行堆積礫中を浸透する流水の影 響を考慮する必要がある.そのため,事前に礫の透水係数試験を行い,その結果から堆積礫中を浸透する流 速vsを0.26 m/sとした.そのうえで土石流モデルが堰堤に衝突した時間以降にこの浸透流速vs以下となった礫 を新たな堆積礫として取り扱う.堆積礫中を浸透する流水によって流入する流水流量と堰堤の捕捉面から下 流側に流出する流水流量に差が生まれる.このことから連続の式に従い次式によって水深を上昇させる.

$$\Delta Q = Q_{in} - Q_{out} = \left\{ v_{int} B h_{int} - \left(v_s B h_s + v_{int} B h_f \right) \right\} \Delta t$$
(6.1)

$$\Delta h = \frac{\Delta Q}{Bv_{int}} = \frac{Q_{in} - Q_{out}}{Bv_{int}}$$
(6.2)

$$L_s = \frac{\Delta h}{\arctan\theta_{\rm b}} \tag{6.3}$$

ここで、 ΔQ :流水の上流からの流入量と下流側からの流出量の差、 Q_{in} :上流からの流水流入量、 Q_{out} :土石 流モデル先頭部からの流水流出量、 v_{int} :初期の流水流速、B:水路幅、 h_{int} :初期水深、 h_s :堆積礫高、 Δh :水深上昇量、 θ_b :水路勾配である.また、 L_s :堆積礫の流下方向の範囲であり、堆積に応じて上流側に拡大

する.

6.2.3 連結ばねの構成則

表-6.1に解析諸元を示す.接触ばねの係数は文献5),6)を参考に決定した.礫の摩擦係数はφ = 30°とし,時間刻みは要素内で最も質量の軽いバルサを模した円柱形要素の固有周期の1/100を目安に計算が安定する値を用いた.

次に,連結ばねの構成則はバルサ材の強度試験結果から決定した.図-6.4に強度試験要領⁷を示す.図-6.4(a)に引張試験要領を示す.引張試験でバルサを900mmと長い丸棒を使用しているのはバルサが柔らかく, チャックで固定する際に上下端の変形に伴って中央部が湾曲し試験前に破断するのを防ぐためである.図-6.4(b)に曲げ試験要領を示す.曲げ試験は中空に加工した丸棒に対して支点での潰れ防止のため中空部の直

表-6.1 解析諸元			表−6.2 連結ばねの諸元				
тан		虚	項目		鋼管部	継手音	
			軸剛性 EA (N)	軸剛性 EA (N)		1.25×1	
		円柱形要素 (kg/m³)	180	降伏軸力 (N)	降伏軸力 (N)		1360
堰堤モデル		円柱形要素 (個)	459	- <u>破断ひずみ</u> - <u></u> ー <u></u> 一		0.032	0.032
		集合体要素(個)	84	降伏モーメント	ー 降伏モーメント M_y (N·m)		0.093
		₩形更萎(kg/m ³)	2600	破断回転角 θ_f (rates)	破断回転角 $\theta_f(rad)$		0.206
		项///安亲(Kg/III)	2000	<u>せん断剛性 GA</u>	せん断剛性 GA (N)		712
		球形要素(個)	1.51	破断変形 (mm)	破断変形 (mm)		3.75
D ₉₅ (40-50 mm)		D ₉₅ (40-50 mm)	151				
土石流	モデル	球形要素(個)			堰堤	先行	継手
		$D_{90}(24-40 \text{ mm})$	503	<u> </u>	モデル	堆積礫高	強度
				TA-S0-M100	ТуреА	0 %	100 %
		球形要素(個)	1590	TA-S30-M100		30 %	
		D_{50} (15-24 mm)	1389	TA-S50-M100		50 %	
			1.0×1.06	TA-S0-M70		0 %	
	郔間		1.0×10°	TA-S30-M70		30 %	70%
接触		接線方向 K _s (N/m)	3.5×10^{5}	TA-S50-M70		50 %	
げわ	磁田社	注創古向 K (N/m)	1.0×10^{5}	<u>TB-S0-M100</u>		0 %	100 %
1242	採口住	$(\mathbf{X}_n) \to \mathbf{X}_n$	1.0^10	TB-S50-M100	TypeB	50 %	100 /0
	間	接線方向 K _s (N/m)	1.5×10^{4}	<u>TB-S0-M70</u>	TypeD	0 %	70 %
演春 经 粉 h		0.2	<u>TB-S50-M70</u>		50 %	/0 /0	
顶.农际数 <i>1</i>		0.2	TD-S0-M70		0 %		
摩擦係数 φ		0.58	TD-S30-M70	TypeD	30 %	70%	
時間刻み At (s)		1.0×10 ⁻⁷	TD-S50-M70		50 %		
町町刻が Δl (S)		1.0/10					

第6章 南木曽における堰堤破壊の原因究明への個別要素法解析

径と同じ径の鉄棒を挿入した.図-6.4(b)にせん断試験要領を示す.潰れ防止として鉄棒を挿入するのは曲げ 試験と同様である.図-6.5に、それぞれの強度試験結果と解析モデルを比較して示す.図-6.5(a)に引張試験 の結果による軸力の構成則を示す.引張試験結果は破線で,解析に用いた構成則を実線で示す.軸力はバイ リニアモデルとして、実験と同じ変形量で破断するモデルとした.図-6.5(b)に曲げ試験結果による構成則を 示す.曲げばねの構成則は曲げモーメント〜回転角関係に基づいて完全弾塑性でモデル化し破断回転角⁸⁰f_f = 0.23としたうえで破断までのエネルギーが強度試験と同じになるように最大曲げモーメントを与えた.その ため、解析モデルの最大曲げモーメントは試験結果の88%となっている.図-6.5(c)にせん断試験結果による 構成則を示す.せん断ばねは、破断変形と吸収エネルギーが同じとなるような線形とした.このため、解析 モデルの最大せん断力は試験値の75%となっている.鋼材の変形性状は、軸力、曲げ、せん断によらず降伏 点に達すると剛性が小さくなり、山なりのような荷重〜変形関係で破断に至る.バルサと比較すると軸力と 曲げの変形性状は鋼材と類似している.図-6.5(d)に押し込み変形を考慮した構成則を示す.第5章の実験で は下部水平材に対し15mmの空隙を設けた.そのため、15mmまでは抵抗することなく変形し、以降は母材の 軸力剛性と同様の構成則とした.表-6.2に図-6.4の強度試験結果をもとに設定した連結ばねの諸元を示す.

表-6.3に解析ケースを示す.解析ケースは先行停止礫高を堰堤高比として0%,30%,50%の3種類,継手 強度100%,70%の2種類と堰堤モデル3種類の組合せで計13ケース行った.これは第5章における実験で行っ た上支保斜材の先行損傷の有無,継手の母材強度比,先行堆積礫高の影響と併せて押し込み変形を考慮した 堰堤モデルの影響を検討する.

6.3 解析結果

6.3.1 堰堤形状および継手強度の影響

(1) TA-S50-M70

図-6.6(a)に示すt = tosでは、堰堤に変形は生じない、図-6.6(b)

の $t = t_0 + 0.2$ sでは,堰堤天端まで礫が到達しており,堰堤全体が下流側にわずかに変形しているものの要素間の連結ばねに破断は生じない.図-6.6(c)の $t = t_0 + 0.5$ sでは,土石流モデルの堆積が完了しており,同様に破断箇所は無い.このように,継手強度70%でも破壊が生起しないので,健全モデルであるTA-S50-M100でも同様に破壊は生起しなかった.

(2) TB-S50-M100

図-6.7にTB-S50-M100の解析結果を示す. 図-6.7(a)の $t = t_0$ sでは, 堰堤に変形は生じない. 図-6.7(b)の $t = t_0 + 0.2$ sでは, 堰堤天端まで礫が到達しており, 堰堤上部が下流側に変形しているものの要素間の連結ばねに 破断は生じなかった. 図-6.7(c)の $t = t_0 + 0.5$ sでは, 満砂状態になっており, 最終的に破断は生じなかった. (3) TB-S50-M70

図-6.8にTB-S50-M70の解析結果を示す.図-6.8(a)の $t = t_0$ sは1個目の礫が衝突した瞬間であるが,先行停止礫が50%まであったので,堰堤高さの約70%まで達している.堰堤は初期形状のままである.図-6.8(b)の $t = t_0 + 0.14$ sでは,礫は堰堤上端に達している.この際,上流側の継手3箇所が破壊した.これに連動して上部水平材も全て破断している.上部水平材が破断することによって,下流側柱部材1箇所も破壊している.図-6.6(c)の $t = t_0 + 0.18$ sでは,上流側柱部材は1本を残して堰堤下部と切り離され,下流側継手は2箇所破壊した.図-6.8(d)の $t = t_0 + 0.34$ sでは,残りの下流側継手2本が破壊し上部構造全てが流出を開始した.

6.3.2 押し込み変形の影響

(1) TD-S0-M70

図-6.9にTD-S0-M70の衝突過程を示す.以降,先行堆積礫高0%における土石流モデル先頭部が堰堤に衝突

した時間を $t = t_0$ sとする. 図-6.9(a)の $t = t_0$ sでは、先頭部衝突時に約5割の高さまで礫が到達している. 図-6.9(b)の $t = t_0 + 0.1$ sでは、堰堤高さの約8割まで礫が到達した. 図-6.9(c)の $t = t_0 + 0.2$ sでは、堰堤天端まで礫が到達し、この際水平材の押し込みは7.5 mmとなっており、以降もこの押し込み変形量からあまり増減していない. 図-6.9(d)の $t = t_0 + 0.3$ s、図-6.9(e)の堆積が完了した $t = t_0 + 1.0$ sでも各部材に破断は生起しなかった.

(2) TD-S30-M70

図-6.10にTD-S30-M70の衝突過程を示す.図-6.10(a)では図-6.9(a)と比較して流下がやや遅れ,礫先頭部 が堰堤に衝突していない.図-6.10(b)の $t = t_0 + 0.1$ sでは堰堤の約7割まで礫が到達した.この際,水平材の押 し込みは9.8 mmとなっており,以降もこの押し込み変形量からあまり増減していない.図-6.10(c)の $t = t_0 +$ 0.5 sで上支保斜材のうち,中央の2本が2列目の継手部で破断した.図-6.10(d)の $t = t_0 + 0.6$ sで左岸側の上支 保斜材が同様に2列目の継手部で1本破断した.図-6.10(e)に堆積が完了した $t = t_0 + 1.0$ sの堆積状況を示す. 上支保斜材のうち3本が上部から2か所目の継手部で破断した以外に損傷部位は無かった.また,堰堤モデル を越流した礫で直接上支保斜材に衝突した礫は無かった.

(3) TD-S50-M70

図-6.11にTD-S50-M70の衝突過程を示す.図-6.11(a)では、図-6.9(a)と比較して流下が遅れており、土石 流モデルの先頭部はまだ堰堤に衝突していない.図-6.11(b)の $t = t_0 + 0.1s$ では礫が堰堤の約7割の高さまで到 達している.図-6.11(c)の $t = t_0 + 0.2$ sでは、礫が天端高さまで到達し、この際水平材の押し込みは5.2 mmと なっており、以降もこの押し込み変形量から大きく増減していない.図-6.11(d)の $t = t_0 + 0.3s$ では、礫が越流 を始めている.図-6.11(e)の $t = t_0 + 1.0$ sでは堆積が完了し、一部越流した礫が生じているが各部材に破断は 生起しなかった.

6.3.3 破壊現象の考察

表-6.4に実験と解析における損傷・破壊傾向の比較を示す.上支保斜材の先行損傷の有無,継手の母材強

度比,先行堆積礫高の影響と併せて押し込み変形を考慮した堰堤モデルの影響による損傷と破壊の有無は解 析で明確に再現されている.そのうえで,押し込み変形モデルでは,実験と同様にS30,S0,S50の順で押し 込み変形量が大きく,総じて実験よりも押し込み変形量が大きくなった.そこで,堰堤の破壊・損傷の要因 をTB-S50-M70(上支保斜材の先行損傷の影響)とTD-S30-M70(押し込み変形の影響)に分けて分析する.

(1) 上支保斜材先行損傷の影響

TB-S50-M70の解析ケースにおいて、解析の継手の破壊原因を曲げ、軸力、せん断と分離して、継手部のば ねの応答を確認する. 図-6.12に、TB-S50-M70の解析結果において最初に破断した上流側柱部材中央部の連 結ばねの時刻歴応答を示す. 図-6.12(a)の軸力~時間関係、図-6.12(c)のせん断力~時間関係を見るといず れのケースにおいても降伏点まで達しておらず弾性応答範囲にある. しかし、図-6.12(b)の曲げモーメント ~時間関係では、 $t = t_0 + 0.14$ sの降伏モーメントに到達し、その直後にわずか10 msで破断回転角に至り破断 している. 他の破断箇所についても検証したが、同様に曲げモーメントによって破断に至っていた. 図-6.13 に、各解析ケースの連結ばねの回転角 θ が最大となった部材の曲げモーメント~回転角関係と部材の最大応答 値を示す. TB-S50-M70は、赤点で示したように破断角 $\theta_f = 0.21$ まで達して矢印のように急に抵抗モーメント を失い、破断している. しかし、その他のケースでは継手部および当該箇所の断面における回転角は全て弾 性範囲内に収まっているので、破断の可能性が無いことがわかる. ただし、先行停止礫高50%ではモーメン トが大きくなり、TypeBの方がTypeAよりモーメントが大きくなっている. このとき、TB-S50-M100では、継 手強度70%の降伏モーメント以上の曲げモーメントが作用しており、これがTB-S50-M70において弾性範囲を 超えたことで曲げ破壊に至ったと示唆される.

(2) 押し込み変形の影響

写真-6.1に第5章で行った TD-S30-M70の実験結果を再掲する.実験(写真-6.1)と解析(図-6.10)の時 刻歴応答を比較すると、実験の損傷は最上流面柱部材では写真-6.1(d)の *t* = *t*₀+0.5 s で生じ、上支保斜材の2

84

曲げモーメント~回転角関係 図-6.13

(a) $t = t_0 - 0.5 \text{ s}$

(d) $t = t_0 + 0.5 \text{ s}$

(b) $t = t_0 s$

(e) $t = t_0 + 0.6 \text{ s}$ 写真-6.1 TD-S30-M70

(f) $t = t_0 + 2.0 \text{ s}$

か所目の継手部に顕著な曲げ変形が確認されたのは、写真-6.1(e)の $t = t_0 + 0.6$ sであった.その際、礫は満 砂となり,越流が生起していた.一方で,解析では上支保斜材の継手部が降伏モーメントに達し,破断に至 ったのは礫が天端より高く堆積し越流している図-6.10 (c), (d)の t=t₀+0.5 s と t=t₀+0.6 s であり,実験と 解析で損傷に至る時系列は概ね一致していたことがわかる.損傷個所を比較すると、実験では、最上流面柱 部材の継手部と上支保斜材の上部から2か所目の継手部が損傷したが破断はしなかった.解析では,最上流 面柱部材は降伏モーメントに達しなかったが、上支保斜材の損傷個所は実験結果と一致している.

このことから, TD-S30-M70 で破断した上支保斜材の連結ばねの内部応答を確認する. 図-6.14 に上支保斜

材の連結ばねの内部応答を示す.図-6.14(a)に示す軸力のばねでは,降伏軸力と比較して約12%しか軸力が 生じていない.図-6.14(b)の曲げばねでは,破断した上支保斜材4本中3本が降伏モーメントに達し曲げ変 形によって破断していることがわかる.図-6.14(c)のせん断ばねでは,最大で破断荷重の約10%のせん断力 しか生じていない.図-6.15に先行堆積礫高を変えた3つの解析結果(TD-S0-M70, TD-S30-M70, TD-S50-M70)の上部水平材4本に作用した軸力の合計値を示す.ここでは,TD-S30-M70の軸力の最大値が320Nと 最も大きくなった.これは0%と比較して上部に礫が到達しやすく,かつ,捕捉面が50%と比較して広くな っており,捕捉面に作用する荷重が大きくなったためと考えられる.

6.4 結 言

本章では,個別要素法を用いて透過型の実験結果をもとに,土石流が堰堤に衝突した際に,上支保斜材が 先行損傷したケースと押し込み変形が生じたケースで堰堤全体の破壊に与えるメカニズムについて検証した ものである.

実験において構造破壊を忠実に再現するため、要素に引張、曲げおよびせん断試験を行い、これをバイリ ニアモデルとして、連結ばねの剛性に用いた.また、継手部については強度低下モデルを与えることで実験 と同じ結果を得た.

- 1) 実験では押し込み変形を生起させたS30のみ損傷したが、解析でも実験と同様の損傷傾向を再現すること ができた.
- 2) 解析の堰堤破壊生起条件は実験と良く一致しており、先行停止礫の存在、下流側の斜材の先行破壊および継手強度の低下に関する破壊生起の必要条件が再確認できた.
- 3) 破壊時の継手部のばね変形の応答分析から,破壊要因はせん断力の影響よりも,曲げモーメントが支配 的であることを示した.
- 4) 解析では越流した礫のうち、上支保斜材に直接衝突した礫は無く、礫が上支保斜材に直接衝突しなくと も押し込み変形が生起することによって上支保斜材が損傷することを示した。
- 5) 下部水平材に押し込み変形を生起させたモデルの解析結果の上部水平材の軸力~時間関係は,S30で最も 軸力が大きくなっていた.
- 6) 母材の破断に至るまでのエネルギーと曲げ強度,継手部の曲げ強度は、バルサ材で概ね再現できている. 透過型の損傷に影響する母材と継手部の強度比、先行堆積礫高、押し込み変形の考慮の有無のパラメー タは実規模での検討に対してもある程度適用が可能である.

バルサ材に切り欠きを与えて作成した継手部は,最大曲げモーメントを再現できている反面,破断ま でのエネルギーまでは再現できていない点や縮小模型の接合構造に課題が残る.

第7章 南木曽における実規模透過型砂防堰堤の損傷メカニズム解析

7.1 緒 言

第5章および第6章では、損傷を伴う縮小模型実験を通して、上支保斜材の損傷が上部構造の全壊をもた らすが、その起因として2列目柱部材の押し込み変形が重要であり、同時に継手強度、先行堆積礫高が影響す ることを示した.

そこで本章では、南木曽の実破壊事例において得られている基本条件を基にして個別要素法の解析を行い、 破壊メカニズム推定に対する適用性を確認する.すなわち、報告書¹⁾に示された流動深や礫径分布をもとに土 石流周辺の流速分布モデルを作成し、土石流礫塊を堰堤に衝突させることにより衝突荷重を生起させる.ま た、鋼管およびその継手部の強度について実部材の構成則と断面形状をもとに曲げモーメント〜曲率関係を 断面分割法で求め、曲げ変形に対する構成則として用いる.個別要素法解析に基づいて、梨子沢第1砂防堰堤 の被災状況の再現性とその破壊メカニズムを分析するものである.

7.2 流速分布モデルの提案

7.2.1 被災事例の概要¹⁾

表-7.1に、南木曽で発生した土石流の諸元を示す.この土石流では、1時間降水量約90 mmの降雨により、 18,800 m³の土砂が流出し、この内4,700 m³が堰堤に捕捉された.土石流ピーク流量は730 m³/sであり、流速は マニング則から9.7 m/sであったと推定されている¹⁾.第1章で述べた梨子沢第1砂防堰堤のメカニズムは現地 で調査された部材の損傷状況から推定されたものであり、定量的な評価や数値解析による分析が十分に行わ れているとは言い難い.図-7.1に、被災後に行われた小梨子沢の粒径加積曲線を示す.最大転石径は3.0 mで あり、30 ton程度の巨礫が流下したことになる.これらの推定水深と流速から土石流モデル全体の流量を求め、 流下する礫量と流水量の合計が土石流モデル全体の流量となるように流速分布モデルを設定する.以下にそ の詳細を述べる.

7.2.2 流速分布モデルの概要²⁾

本章では,個々の礫に作用する流体力の計算をする際に,流速分布モデルを使用した.流体力の基本式等 は第2章で述べた手法を使用した.本項では被災事例を再現するにあたって,流速分布モデルを修正し,流 下する土石流範囲と堆積した礫の範囲に分け,流水の流量を考慮した.ここでは,第2章で述べた基本式か ら改良した点のみを示す.

(a) 流下領域

図-7.2に示すように、流速分布モデルの仮定として、①河底勾配と水面勾配が等しく河川断面を礫と流水

表-7.1 土石流諸元 ¹⁾			
項目	値		
流速(m/s)	9.7		
水深(m)	3.3		
土石流ピーク流量 (m ³ /s)	730		
流出土砂量(m ³)	18,800		
	4,700		
最大礫径(m)	1.6		
最大転石径(m)	3.0		
河床勾配	1/5		

図-7.2 流速分布モデル

が流れる.また,②流下断面内において礫は不規則に流下する.流速分布の向きは,水路底面の勾配と等しい.流下領域での流速分布は,第2章で述べた基本式に従い上流側の礫モデルの後端から下流側の礫モデル の先端に向かって低減される.また水深方向にも同様に流速が低減される.

(b) 接近領域

堀口ら³は流水を擬水滴要素を用いて再現し,実験と再現解析から底面水抜きスクリーンにおける土石流モ デルの停止機構について検討した. 擬水滴要素では粒子の一つ一つが水滴であるため連続の式を常に満足す るが,流速分布モデル²では堆積礫の中を浸透する流水の影響を検討できない. そこで,堆積礫内を浸透する 流水を考慮し,連続の式を満足する流速分布モデルについて検討した. この際に,流下する土石流モデルの 先頭部に, 図-7.2(a)に示す流下断面*a-a*、の前後に単位長Lの領域を設定して切り出し,範囲内に存在する礫の 速度に応じて,茶色の網掛けで示す停止した堆積部とその上部を流れる水色の網掛けの流下部に分けた. こ の土石流モデル先頭部から単位長Lの領域は,土石流モデルが堰堤に捕捉された場合,堰堤の捕捉面に固定さ れる. 図-7.2(b)に区分した水と礫の流れを示す. ここでは,堆積部と流下部それぞれに礫が占める断面積と 流水が占める断面積に分けて考える. 図-7.2に示す記号は,流下部の全断面積(*A_{f-total}*),堆積部の全断面積(*A_{s-g}*),堆積部の水の断面積(*A_{f-w}*), 堆積部の水の断面積(*A_{f-w}*), 堆積部の水の断面積(*A_{f-w}*), 堆積部の水の断面積(*A_{f-w}*), 本路底面から端下部上面まで の深さ(*h_{total}*),水路底面から堆積部上面までの深さ(*h_s*),堆積部の上面から流下部上面までの深さ(*h_f*)であ る.

このとき、流れが定常であると仮定すると、流下する土石流モデルの流量Qに対して、次の式が成立する.

$$Q_{f-total} = Q_{f-w} + Q_{f-g} \tag{7.1a}$$

$$Q_{f-g} = A_{f-g}v_g \tag{7.1b}$$

$$Q_{f-g} = nQ_g \tag{7.1c}$$

$$Q_{f-w} = Q_{f-total} - Q_g = v_w A_{f-w}$$
(7.1d)

ここで、 $Q_{f-total}$:水と礫の混相流としての流量、 Q_{f-g} :先行停止礫の上面を流れる礫の全流量、n:土石流モデル先頭部からの領域内にある礫の要素数、 Q_{f-w} :先行停止礫上面を流れる流水の流量、 Q_g :1個あたりの礫の流量である.

図-7.2(a)に示す堰堤直上流における水と礫の混相流のモデルでは、上流から流入している水と礫の流れに 対して、先行して停止して堆積している先行停止礫が存在するものとする. なお、先行停止礫の占有域は流 入した礫が堰堤に捕捉されて堆積すると徐々にその上面が上昇する. 前述した上流部の流れに対しては、連 続の式が次式のように成立する.

$$Q_{s-w} = v_{s-w} A_{s-w} \tag{7.2a}$$

$$Q_{f-w} + Q_{s-w} = Q_w \tag{7.2b}$$

ここで、 Q_{s-w} :先行停止礫塊内を流れる流水の流量、 Q_w :土石流モデル単位領域内全体の流水流量とする. この領域の流量計算を行うための流水の速度は、停止礫内を流れる速度と、その上部を流れる流水の速度 に差を設けるものとして、流量を次式で与える.

$$Q_{s-w} = A_{s-w}v_{s-w} = v_{int}A_{s-w} \tag{7.3a}$$

$$Q_{f-w} = v_{f-w} A_{f-w} \tag{7.3b}$$

流量計算においては、堆積礫を対象とした透水係数から浸透流速を決定し、堆積礫間を浸透する流水流量 を推定すべきである.しかし、本解析においては堆積礫中の間隙の断面積*A_{s-w}を時々刻々*計算することがで きるため、断面を浸透する流水流速は初期流速とした.

このとき、堆積礫に作用する流体力の計算を行うための流速vsは、Poiseulle・Kudou⁴⁾の推定式から間隙率e = 0.5として透水係数を計算し簡易に1.0 m/sで与えた.間隙率e = 0.5は、第5章で行った実験において現地の 礫径分布に合わせた礫モデルを使用した際の間隙率を用いている.先行堆積礫の上部を流下する土石流モデ ル内の礫は、流速1.0 m/sよりも減速した場合には堆積したとみなし、堆積部の高さとして初期の先行堆積礫 高h_{s-int}を新たに堆積した礫の高さh_sまで更新する.更新された堆積部の高さより上部にある礫には土石流モ デルに作用する流水流速に基づく流体力を与え、堆積部より下部にある礫には浸透流速1.0 m/sに基づく流体 力を与えた.このとき、先行停止礫の上を流れる土石流モデルの水深h_fが堆積礫上を流下する最も高い座標に 位置する礫モデルの座標とすると、連続の式から停止礫上面を流れる流水の速度は次のように求められる.

$$v_{f-w} = \frac{Q_{f-w}}{A_{f-w}} = \frac{Q_w - Q_{s-w}}{A_{f-w}} = \frac{Q_w - A_{s-w}v_{s-w}}{A_{f-w}}$$
(7.4)

ここで、 v_{f-w} :堰堤直上流の流速である.

(c) 捕捉領域

図-7.2(b)の礫や流水の面積は、時々刻々にa-a'断面を各地点で算出すべきものである.しかし、計算負荷 が大きいため、次のようにモデル化した.まず、流下する礫の先端が堰堤前面に到達するまでは、接近領域 の流速分布で先行堆積礫上を流れるものとする.続いて、礫が堰堤に衝突し、堆積状態になったものを捕捉 礫と定義し、その砂防堰堤接触部の最大高さと河底勾配の傾斜変換点上における初期の先行堆積礫高h_{s-int}を 線形に結んで、下部を先行停止領域とする.つまり、先行停止領域は、捕捉過程の進展に伴って更新される. そのうえで、先行停止領域の上部を流れる流水高さh_{flow}を構造物の捕捉による相互作用を受けない流路の流 下解析(以後接近解析と呼ぶ)に対して、係数処理して次式で与える.

$$h_{flow} = C_f h_{total} + h_{int} \tag{7.5}$$

$$C_f = \frac{h_s - h_{s-int}}{x_f} x \tag{7.6}$$

ここで、 C_f :流下時における水深の低減係数である. C_f は先行堆積礫の上面を結んだ直線の傾きである.x: 傾斜変換点から土石流モデル先頭部までの距離. x_f :傾斜変換点から堰堤捕捉面までの距離である.なお、 本解析では $0 \leq C_f < 0.2$ の値となった.また、堰堤天端を乗り越え下流側に流出した礫は水深決定のための処理 の対象とせず、初期の流速と水深を与えた.

ここまで述べた流速分布モデルの条件によって,流下方向の流水量は堆積礫の影響を考慮した上で連続の 式を満たすように修正されている.しかし,一度減速し停止した礫が流下部と堆積部とを往来することが困 難な点や,流下方向と水深方向を2次元の流れで取り扱っている点,および堰堤天端を通過し,天端高を超え る要素を越流した礫と定義した点,その際の水深と流速を簡易に初期値とした点などが課題である.

7.3 解析の設定条件と流下確認解析

7.3.1 解析モデル

図-7.3に本解析で使用する礫モデルを示す. 礫モデルは球形要素を用いて, Do-Dso (0.2-0.95 m), Dso-D95

(0.95-1.6 m), *D*₈₀-*D*₉₅ (1.6-3.0 m) としそれぞれ赤,黄,緑の色としたうえで,個体総量20000 m³を流下させる.層厚について水深より低く2.5 mの高さで,安息角形状で堆積している.図-7.4に,水路モデルの概要図を示す.水路モデルは,三角形の平面要素を用いており,勾配は現地の堰堤周辺の平均値から11.3 °とした.水路長は400 mで,堰堤の上流側には20 mの水平部を設けている.水路底面には,底面粗度として直径0.5 mの円柱形要素を純間隔1.5 mで配置した.粗度の大きさと純間隔はマニング則から算出した.図-7.5に堰堤周辺の水路の断面図を示す.図-7.5(a)に示す水路断面は台形となっており,両岸の勾配は非対称である.図-7.5(b)に,上方からの水路俯瞰図を示す.水路幅は常に一定とした.

図-7.6(a), (b)に堰堤モデルの側面図と正面図を示す.堰堤モデルは複数の円柱形要素を連結ばねで結合 している.このときの連結ばねの位置を図中に破線で示している.黒い破線は母材を,赤い破線は現地の継 手部の位置を表している.緑の破線は,後述する押し込み変形を考慮した連結ばねを挿入している.図中に 赤い丸で囲んだ継手部は現地で破断した部位であり,本解析において変形および破壊を照査する.図-7.6(c) に堰堤モデルの俯角図と部材の名称を示す.堰堤モデルの各部材の名称は,縦に配置した部材を柱部材,水 平に配置した部材を水平材,斜めに配置された部材を支保斜材と呼称する.表-7.2に解析諸元を示す.流速 分布モデルは,検討会¹⁾で推定された初期流速vint = 9.7 m/sを用いた.これは流入部で与える初期の数値であ

値					
1.27×10^{7}					
3.25×10 ⁶					
2.59×10^{8}					
6.78×10^{7}					
2.41×10^{6}					
6.45×10 ⁷					
2.36×10 ⁶					
6.45×10 ⁷					
2.36×10 ⁶					
2.00×10 ³					
1.00×10^{7}					
3.50×10 ⁶					
1.00×10-6					

図-7.7 断面分割法の影響範囲

り,現地の調査結果¹に示されたものである.なお,土石流モデル先頭部の流速は前述した手法によって求め られる.要素間ばねは文献5)を参考に一次元の波動論から弾性波の伝搬速度と一般的な礫のポアソン比0.23を 用いて決定した.時間刻みは,要素間ばねの剛性と最も軽い礫の質量から求められる固有周期の1/100を目安 に,計算が安定する値を用いた.

7.3.2 構成則

本解析における連結ばねは、1箇所の接合部につき軸力1つ、せん断力2つ、曲げばね3つの計6つのばねを挿 入している.連結ばねの構成則は、鋼管と継手部それぞれの断面特性から算出した値を用いる.このとき、 曲げばねの構成則は断面分割法で求め、軸力ばねとせん断力ばねは断面積と鋼材の応力~ひずみ関係から推 定する.本研究における堰堤モデルは、円柱形要素および集合体要素に含まれる円柱形要素の端面で接合さ れており、直角に接合された場合には、集合体要素を介して相手要素にせん断力として力が伝達される.図-7.7(に断面分割法の影響範囲を示す.図-7.7(a)に示す鋼管は全断面を引張、圧縮に対して有効とした.図-7.7(b)に示す継手部は、圧縮側はフランジプレートおよびボルトを有効とし、引張側はボルトのみを有効と した.図-7.8に、断面分割法で算出した鋼管および継手部の構成則を実線で示す.図-7.8(a)にモーメント~ 曲率関係を示す.継手部の最大曲げモーメントは、母材鋼管の約70%となる.このとき、構成則は破断に至 るまでのエネルギーと破断時の曲率が断面分割法の計算結果と等価となるようにバイリニアで与えた.曲率 から連結ばねの破断角を決定するために、鋼管では塑性ヒンジ長が鋼管径の半分%との構成則、図-7.8(c) にせん断力の構成則をそれぞれ示す.それぞれ鋼管母材に比して継手部の最大値は1/3程度となっている.イ

第7章 南木曽における実規模透過型砂防堰堤の損傷メカニズム解析

ンプットデータは、部材の変形時に破断までのエネルギーと破断ひずみが断面分割法の計算結果と等しくな るように決定した.また、第5章および第6章において押し込み変形が堰堤の損傷に影響することがわかっ ている.そのため、現地で押し込み変形が生じた下部水平材には、星川ら⁸⁾の修正エリナス式で算出した鋼管 の局部変形時の剛性を用いた.図-7.9に鋼管の軸剛性と修正エリナス式の比較を示す.図-7.9(a)に示す修正 エリナス式では、中空鋼管の局部変形の剛性は39kN/mmである.図-7.9(b)に示す鋼管の軸剛性3,465kN/mm と比較すると修正エリナス式による局部変形の剛性は1%程度であり、局部変形は鋼管の軸変形に比して容易 に生起しやすいことがわかる.

7.3.3 流下確認解析

以上を踏まえて、流速分布モデルを用いて、土石流モデルが堰堤に到達するまでの流下解析を行う.初期 流速と初期水深、水路の断面積から流入する礫と水を含む土石流の流量は437 m³/sとなった.そのうえで、土 石流モデル内の流水の割合は、間隙率e=0.5と仮定し、初期の流量をQ_{f-w} =146 m³/sとした.また、堰堤モデ ルの破壊の有無を解析によって検証するにあたって、流下解析における土石流モデルの先頭部が堰堤に衝突 する直前で一度解析を止め、先頭部から約5,000 m³を抽出し、計算を再開することで堰堤に衝突させる.これ は、土石流モデルの後方は堰堤まで到達せずに計算が終了するため、計算負荷を軽減するために行ったもの である.

図-7.10に土石流モデルの流下過程を示す.図-7.10(a)に示す流下領域では、土石流モデルの先頭部がやや 尖っているような形状で流下し、明確な段波形状は確認できない.図-7.10(b)に示す先行堆積礫到達前では、 流下領域と比較すると緑色で示される巨礫が先頭部および上部に集中し、分級が生起していることが確認で きた.図-7.10(c)の土石流モデルが先行堆積礫上に至った際には、先頭部の減速によって、一部の突出した 礫を除いて段波形状が生じた.図-7.10(d)の堰堤到達時は、段波形状を維持したまま堰堤に到達した.図-7.11 に土石流モデル先頭部の座標と、平均速度の関係を示す.このとき下流側の堰堤位置を0m(基準)、上流側

の流下前の土石流モデル先頭部を-80 mとして表示した.平均速度は,流下領域で6.8 m/sまで加速し,接近領 域では8.5 m/sに至る.捕捉領域では,堆積礫上で一度流速が8.0 m/sまで減速する.その後再び加速し堰堤衝 突直前では12.2 m/sとなった.これは,提案した流速分布モデルを用いることで,礫の堆積が進行した際に, 上部を流下する土石流モデル中の流水流量が相対的に増加したためである.従来の流速分布モデルでは礫が 堆積した際に,土石流モデルの流入量と流出量の差から水深を上昇させ,水深上昇量に応じて流速を変化さ せていた.提案した流速分布モデルでは,時々刻々変化する土石流モデルの流下高さの範囲内の流水流量を 算出することで,流速と水深を固定することなく土石流モデルの流下解析が可能となり,堆積礫上を流下す る土石流モデル内の流水流量が増加した際に一時的に加速する状況を解析することができた.第5章の実験 において,一部の突出した礫が一体となって流下する土石流モデルのほかに,捕捉過程によって堰堤衝突後 にせり上がり,越流していく様子が確認されている.本研究の流速分布モデルを導入することにより,堰堤 に衝突後に停止する礫とそれを乗り越えて越流する礫の表現が可能となり,巨礫が堰堤に衝突した際の影響 を検討することができる.

7.3.4 解析ケース

梨子沢第1砂防堰堤の堰被災後に開かれた検討会¹では、堰堤に衝突した土石流が先行堆積礫となり、これ によって後続の土石流が堰堤の上部に衝突したことから、堰堤が破壊に至ったと推測されている.この推定 破壊メカニズムに基づき、著者らが行った実験では、上支保斜材が先行損傷したと仮定した縮小模型実験で は、堰堤高さの50%まで先行堆積礫が存在した場合に堰堤上部が破壊・流出した.また、押し込み変形を考 慮した縮小模型実験では、堰堤高さの30%まで先行堆積礫が存在した場合に押し込み変形が大きくなり、越 流礫が直接衝突することなく上支保斜材が損傷に至った.これらの実験結果から、本解析においては先行堆 積礫高について、堰堤高さに対する比率で表現し、30%と50%の2種類の解析を行う.表-7.3に解析ケースを 示す.解析ケースは、先行堆積礫高、継手部の母材強度比、押し込み変形考慮の有無を組み合わせ、4ケース の解析を行った.ケース名は、先行堆積礫高30%をS30、継手部の母材強度比70%をM70、押し込み変形を考 慮したケースは末尾にdを付け、これらを組み合わせてS30-M70dのように設定した.

7.4 解析結果

7.4.1 衝突過程

(a) S30-M70

図-7.12にS30-M70の衝突過程を示す.土石流モデルの先頭部が堰堤モデルに到達した時間を $t = t_0$ sとした. 図-7.12(a)の $t = t_0$ sでは礫が堰堤高の約4割の位置まで到達している.図-7.12(b)の $t = t_0 + 2.0$ sでは、土石流 モデルの先頭部が堰堤高の8割程度の高さまで到達している.しかし、土石流の後続は到達しておらず、堰堤 付近のみ礫が堆積している.このとき、堰堤の形状に大きな変化は見られない.図-7.12(c)の $t = t_0 + 4.0$ sで は、概ね土石流モデルが堰堤天端付近まで到達している.図-7.12(d)の $t = t_0 + 6.5$ sでは、礫が堰堤天端を越 流し始めている.このとき、堰堤モデルは全体的にやや下流側に傾いている.図-7.12(e)の $t = t_0 + 8.0$ sでは、 礫の一部が堰堤を越流し天端に乗りかかり、各柱部材の根元部で顕著に変形を生じている.

(b) S30-M70d

図-7.13にS30-M70dの衝突過程を示す.図-7.13(a)に示す*t*=*t*osでは,図-7.13(a)と同様である.図-7.13(b) の*t* = *t*o + 2.0 sでは,土石流モデルの先頭部の到達位置は図-7.12(b)と同様である.しかし,このとき下部水 平材4本はそれぞれ約100 mmほど下流側に押し込み変形を生じている.図-7.13(c)の*t* = *t*o + 4.0 sでは,下部 水平材に押し込み変形が200 mmほど生起しており,土石流モデルが堰堤天端付近まで到達している.図-7.15(d)の*t* = *t*o + 6.5 sでは,最上流面柱部材の上部の継手が全て破断しており,上部水平材が上に凸を生じる ように変形している.また,2列目柱部材4本のうち3本が継手部で破断している.図-7.13(e)の*t* = *t*o + 8.0 sで

第7章 南木曽における実規模透過型砂防堰堤の損傷メカニズム解析

図-7.16 S30-M70dの内部応答

表-7.4 各ケースの内部応答の比較

── 部材名	モーメント			
	最上流面	2列目	上支保	押し込み変形
ケース名	柱部材	柱部材	斜材	
S30-M70	1,356	527	227	3.0 (3.0)
S30-M70d	2,472	1,948	491	227 (340)
S30-M100d	1,911	1,321	381	190 (227)
S50-M70d	1,650	1,453	293	160 (167)

単位:モーメントM (kN・m),押し込み変形 δ (mm)

は堰堤上部が継手部の破断により完全に流出している. 下部水平材は最上流面柱部材の破断以降さらに押し 込まれ約300 mmほど押し込み変形を生じている.

(c) S30-M100d

図-7.14にS30-M100dの衝突過程を示す.図-7.14(a)に示す $t = t_0$ sでは図-7.14(a)と同様である.図-7.14(b) の $t = t_0 + 2.0$ sでは、土石流モデルの先頭部の到達位置は図-7.12(b)と同様である.しかし、このとき下部水 平材4本はそれぞれ約70 mmほど下流側に押し込み変形を生じている.図-7.14(c)の $t = t_0 + 4.0$ sでは、下部水 平材に押し込み変形が約150 mmほど生起しており、土石流モデルが堰堤天端付近まで到達している.図-7.14(d)の $t = t_0 + 6.5$ sでは、下部水平材の押し込み変形が約200 mmほど押し込まれており、最上流面柱部材 の湾曲が明瞭となった.このとき礫の一部は天端よりも高い位置まで到達している.図-7.14(e)の $t = t_0 + 8.0$ sでは礫が堰堤を越流しており、2列目の柱部材に変形が見受けられる.

(d) S50-M70d

図-7.15にS50-M70dの衝突過程を示す.図-7.15(a)に示すt=tosでは,初期の先行堆積礫により堰堤高の約 6割ほどの位置まで礫が到達している.図-7.15(b)のt=to+2.0sでは,礫が,堰堤天端付近まで到達している. このとき,下部水平材4本はそれぞれ約100mmほど下流側に押し込み変形を生じている.図-7.15(c)のt=to+ 4.0sでは,下部水平材に押し込み変形が約150mmほど生起しており,土石流モデルが堰堤天端付近まで到達 している.図-7.15(d)のt=to+6.5sでは,下部水平材の押し込み変形が160mmほど押し込まれており,最上 流面柱部材の湾曲が明瞭となった.このとき,礫の一部は天端よりも高い位置まで到達している.図-7.15(e) のt=to+8.0sでは,礫が堰堤を越流しており,2列目の柱部材に変形が見受けられる.

7.4.2 各種パラメータの破壊への影響

図-7.16に、堰堤の破壊が生起したS30-M70dの連結ばねのうち、最上流面柱部材継手部の応答を示す.最上流面柱部材が示すように連結ばねは曲げによって降伏モーメントに達して破断した.図-7.16(a)、(c)に示す軸力、せん断力の応答は、継手部が曲げによって破断するまでの時間では、それぞれ降伏点の10%、25%と非常に低い値を示している.表-7.4に、継手部の平均応答値を示す.この値は、S30-M70dの最上流面継手部の最初の1本が破断に至る時間の応答であり、これは部材の破断による応力再分配の影響を無視するためであ

第7章 南木曽における実規模透過型砂防堰堤の損傷メカニズム解析

る. このとき,押し込み変形の値のみt=to+8.0 sのものを括弧内に併記した. これは被災事例と比較するため である. S30-M70dを除くと,S30-M100d,S50-M70d,S30-M70の順に応答が大きくなっている. このことか ら,連結ばねの応答に与える影響は,押し込み変形の影響の方が継手強度の影響より大きいことを示してい る. 第5章および第6章において,先行堆積礫高が水平材直下まで存在し,土石流の先頭部が下部水平材付 近に衝突すると,押し込み変形が大きくなることがわかっている.本解析においても,S30-M100dの結果か ら押し込み変形が大きくなると応答も大きくなる.しかし,継手部が母材強度の場合,応答が母材の降伏点 まで達しないために破壊が生起しなかった.また,S30-M70では応答が降伏点と比較して最大でも約60%と 小さくなり,継手部の破断には至らなかった.S50-M70dは,押し込み変形を考慮した解析の中では,押し込 み変形量が最も小さくなっており,その他の応答値も,S30-M70dおよびS30-M100dと比較して小さくなって いる.つまり,全ケースを通じて,押し込み変形が大きいほど各部材の応答が大きい.現地で生起していた 押し込み変形量は中空鋼管の直径609 mmに対して535 mmであり,被災事例と同様に堰堤上部が流出したS30-M70dの押し込み量は340 mmであった.現地の観測結果よりも押し込み量が小さくなった原因は,堆積礫に作 用させる流速と作用時間が影響していると考えられる.

損傷が生起したS30 - M70dの上部流出過程を,検討会で推定された破壊メカニズムと比較する.検討会で 推定された破壊メカニズムでは,最上流面継手部の破断および下部水平材の押し込み変形,2列目柱部材継 手部の破断,上支保斜材継手部の破断という順番で堰堤が破壊したと推定されている.本解析においては, 図-7.13(b)の最上流面継手部の破断および下部水平材の押し込み変形が生起した後,図-7.13(c)の2列目柱部 材継手部の破断と図-7.13(d)の上支保斜材継手部の破断が同時に生起した.解析結果と推定メカニズムでは, 総じて堰堤の上流側から下流側の部材の順に破断が生起している点では同様であった.しかし,解析では上 部水平材と天端の接合部に破断は見られなかった.これは,越流礫が直接上部水平材に衝突する前に最上流 面柱部材の継手部が破断したためである.越流が生起するためには堰堤の捕捉面が満砂状態となる必要があ ると考えられる.今後は,満砂に至る時系列に影響する土石流モデル先頭部の形状や,先行堆積礫が満砂に 近い状態での後続の衝突など,越流礫が直接天端付近に衝突する条件の解析も検討する必要がある.

7.5 結 言

本章では、流下する土石流の礫量と堆積した礫内を浸透する流水流量を考慮した流速分布モデルを提案し、 部材のパラメータを断面分割法で求め、連結ばねの構成則として導入した個別要素法によって堰堤の破壊メ カニズムを推定した.以下にその成果を示す.

- 先行堆積礫を考慮した流速分布モデルは、連続の式を満たしたうえで土石流の流下過程を再現し、これ により流水が堆積礫上部を流下する際に一時的に加速することが確認された。
- 2) 先行堆積礫高,継手部の母材強度比,押し込み変形の有無という要因により堰堤上部が流出し,現地の破壊性状を再現することができた.
- 各解析ケースの比較から、押し込み変形の有無が部材の内部応答に最も大きく影響することがわかった.
 また、押し込み変形は下部水平材直下まで先行堆積礫が存在している場合に大きくなった.
- 4) 継手強度が母材と同じ場合、内部応答が降伏点まで達しないため部材の破断に至らなかった.
- 5) 押し込み量は上部が流出したケースで340 mmとなり,現地で生じていた押し込み量535 mmと比較すると 小さい値となった.これは,堆積礫に作用させる流速と作用時間が関係しているものと考えられる.
- 6) 解析結果と推定メカニズムを比較すると、天端水平材の破断の有無が異なった.これは、堰堤が満砂となる前に部材が破断に至ったためである.

今後は、河川形状や土砂の粒径分布の影響を考慮した流速分布のモデル化および越流礫が堰堤下流側の部 材に直接衝突するケースの検討が必要がある.

第8章 個別要素法解析を用いた補強対策効果分析

8.1 緒 言

前章では、南木曽¹の被災事例を基にして、断面分割法によって母材鋼管と継手部の構成則を計算し、導入した個別要素法解析によって被災事例を再現するとともに構造破壊のメカニズムを部材要素レベルで明らかにできることを示した.このことは、堰堤が大規模に破壊するようなことが生起すると早急にその原因究明の検討がなされるが、破壊に至った荷重要因と構造要因を究明する際に、提案する個別要素法が有用であることを示している.

一方,原因究明後の対策として再建する場合には,多くの場合は現行設計荷重に対する抵抗力に上乗せを 図った構造設計を行う必要が生じる.その際には,新しい技術,いわゆる補強対策が適用されるが,その方 策の効果を評価する手法が必要である.また,補強対策の効果を評価するにあたって本研究の解析手法を用 いることができるか検討できていない.そこで本章では,前章までに行った南木曽における被災事例に対し て最も可能性の高いと考えられる破壊メカニズムを前提として,各種補強対策を施した際の効果の検討例を 示す.

8.2 補強対策の概要

透過型の補強対策は、既存不適格となる透過型に対して行われる.まず第1のケースとして、第4章で示 した上流置減勢工²⁾を併設する補強対策の検討を行う.この補強対策は、堰堤の上流側に一定の地積が必要 となるが、被災地の透過型の再建にあたって、基礎や側方コンクリート堰堤に対する検討・修正を行うこと なく本堤を建設できる利点がある.また、被災地以外の同様な構造に対する補強対策にも適用可能である. 第2のケースは、南木曽¹⁾の事例でも確認された継手破壊を抑制するために継手のボルト本数を増やす補強対 策の有効性を検討する.最後の第3のケースでは、國領ら³⁾の研究で提案されている継手の補強カバーの有効 性に関する検討である.この補強対策は、継手カバーの被覆領域やカバーの鋼材を自由に変更できるので、 必ず母材の曲げ強度以上の強度を支えられる利点がある.

8.2.1 上流置減勢工²⁾設置

レベルII荷重導入後に既存不適格となる構造物に対する補強法として、小松ら²は上流置減勢工を設置し た際の土石流モデルの衝突荷重を整理し、荷重低減率を上流置減勢工の高さと本堤からの離隔距離をパラメ ータとして定式化した.そのうえで、レベルII荷重を生起させた際に構造限界となる実物大の堰堤モデルに、 上流置減勢工を設置した際の構造応答を弾塑性解析によって検討した.その結果、本堤に作用するレベルII

荷重を有効に低減することが可能であることが明らかになっている.小松²が提案した上流置減勢工の荷重 低減率を次式で示す.

(離隔距離
$$L = 1D_{95}$$
) $R_r = 6.9h_{ed} + 1.9$ (8.1)

(離隔距離 $L = 2D_{95}$) $R_r = 4.0h_{ed} + 0.8$ (8.2)

ここで、R_r:荷重低減率、h_{ed}:上流置減勢工高さの最大礫径D₉₅比である.

小松²は、実物大解析において、事前に行ったレベルII荷重での構造応答から15.7 %の荷重低減効果が得ら れる上流置減勢工高さ2D,離隔距離1Dの上流置減勢工を設置した.本章では、第7章で堰堤破壊をもたら した、先行堆積礫高さ30 %を前提とした上流置減勢工を設置する.すなわち、先行堆積礫を捕捉可能な上流 置減勢工高さ3D, h_{ed} = 4.8 mとした.この際、第4章の解析結果から、本堤と上流置減勢工間のポケットに 落下した礫は水平方向の速度を失う効果を発揮させるため、最大礫径がポケットに十分に落下しうる離隔距 離L = 2Dとした.よって式(8.2)より荷重低減率 R_r は12.8 %と期待される.

8.2.2 継手部ボルト本数増加¹⁾

梨子沢第1砂防堰堤は,被災後の処置として,下流側の部材の径厚比を小さくし,継手部のボルト本数を 16本から24本に増加して再建設された.なお,ボルト本数の増加数について,締め付け工具の側面から施工 可能な最大の本数が24本であったことで決定しており,その補強後の向上効果は検討されていない.そこで, 本項では継手部のボルトを増加させた際の強度を断面分割法で計算し,継手部の構成則として導入したこと による効果の分析を行う.

図-8.1に断面分割法の計算における継手部の断面を示す.継手部のボルト本数の増加以外に計算条件に変化はない.図-8.2に断面分割法の計算結果を示す.第7章と同様に継手部の塑性ヒンジ長⁴はボルト長とし

第8章 個別要素法解析を用いた補強対策効果分析

た.鋼管母材と比較すると最大曲げモーメントは約95%であり,第7章で継手部が破断した解析ケースの最 大曲げモーメントより約25%大きくなっている.そのうえで,得られた構成則を継手部の位置に導入した. 8.2.3 継手部補強カバー³設置

國領ら³は、既存不適格となる堰堤の継手部に対する補強法として補強カバーを設置することを提案し、 その補強効果を弾塑性解析によって検討した.本項においては、補強カバーを設置した際の強度を断面分割 法で計算し,最大曲げモーメントが鋼管母材と同一となる補強カバーの面積を設定する.そのうえで,**第7** 章で破断したケースにおいて、継手部の構成則として導入し、その補強効果を検討する. 図-8.3に補強カバ ーを付けた際の継手部の断面を示す.図-8.3(a)に継手部の補強カバーの有効断面積を赤く網掛けで示す. 補強カバーは鋼管中央からの角度6~と有効断面積としてフランジプレートより,外周側への厚さtをパラメー ターとし,最大強度に影響する.図−8.3(b)に継手部の側面図を示す.補強カバーは長さをIとし,製作上の 観点から補強カバーの厚さtと同じ長さを用いた.長さをIとフランジプレート2枚の厚さ82 mmを足した値を 塑性ヒンジ長んとした.断面分割法で得られた曲率に塑性ヒンジ長んを乗じて破断回転角を求めるため,こ の塑性ヒンジ長しは破断までのエネルギーに影響する.図-8.4に断面分割法の計算結果として曲げモーメン トー回転角関係関係を示す.継手のボルトの配置状況から,角度 = 70°に固定したうえで,厚さtを変化さ せて計算を行った.そのうえで,最大曲げモーメントM_pと補強カバー厚tの関係を整理した.図-8.5に最大 曲げモーメント〜補強力バー厚関係を示す. t = 8 mmで鋼管母材と降伏曲げモーメント M_p が同等となった. そこで、設計想定として母材と同じ強度を採用するものとした場合を想定し、 θ = 70°, t = 8 mmの計算結果 を用いる.図-8.6にt = 8 mmの補強カバーを設置した継手部と鋼管母材の曲げモーメント〜回転角関係を示 す. なお, 図中の破線は構成則を表す. 構成則は, 曲げモーメント~回転角関係から, 破断までのエネルギ ーが断面分割法の計算結果と等価となるように設定した.補強カバーを設置したケースでは,ボルト増設時 同様に得られた構成則を第7章の継手部の位置に導入した.

8.3 解析モデルと解析ケース

8.3.1 解析モデル

図-8.7に本解析で用いる上流置減勢工モデルを示す.上流置減勢工は鋼管径を本堤と同様のD = 60.96 cm とし本堤捕捉面の柱部材と同等の間隔で配置した.なお、上流置減勢工は鋼管を本堤の母材と同じものとし ているため堤体破壊は生起しないと考えられるので剛体モデルとしている.その際、上流置減勢工設置前の 先行堆積礫量と上流置減勢工がある場合の先行堆積礫量を第7章の解析と同量としている.これは、事前に 流下した土石流が堰堤に衝突・堆積したものが先行堆積礫であり、上流置減勢工の存在により、その堆積形 状が変化することを考慮したものである.図-8.8に初期配置を示す.図-8.8(a)に上流置減勢工設置時の初 期配置を示す.底面に沿って上流端は堆積礫高30%より高く堆積している.また、土石流モデルの配置は前 章の先行堆積礫直前まで流下したものと同様である.図-8.8(b)にボルト増設時および補強カバー設置時の 初期配置を示す.これは、上流置減勢工設置時と同様に第7章の解析において土石流モデルが先行堆積礫の 直前まで流下した状況である.

8.3.2 解析ケース

表-8.1に本章で解析を行う全解析ケースを示す.各補強対策ごとに計3ケースの解析を行った.

8.4 解析結果と補強対策の評価

8.4.1 上流置減勢工²⁾設置時

図-8.9に上流置減勢工設置時の衝突過程を示す.図-8.9(a)に示すt=tosは、上流置減勢工に土石流モデル

(b) ボルト増設および補強カバー設置時 図-8.8 初期配置

表-8.1 解析ケース

補強対策 および ケース名	先行 堆積礫高	継手強度	押し込み変形
上流置減勢工設置		母材比 70 %	修正エリナス式によろ
ボルト増設(16→24本)	30 %	母材比 95 %	(笠7音 S20 M70d)
補強カバー設置		母材比 100 %	(分/早 330-M/0d)

の先頭部が到達した時間である. 図-8.9(b)の $t = t_0 + 2.0$ sでは,一部の小礫が本堤に衝突している. このと き下部水平材4本はそれぞれ約5 cmほど下流側に押し込み変形を生じている. 図-8.9(c)の $t = t_0 + 4.0$ sでは, 下部水平材に押し込み変形が約10 cmほど生起しており,土石流モデルが堰堤高の7割付近まで到達している. 図-8.9(d)の $t = t_0 + 6.0$ sでは,礫が堰堤高の約7割まで到達している. 図-8.9(e)の $t = t_0 + 8.0$ sでは,下部水平 材の押し込み変形が16 cmほど押し込まれており,最上流面柱部材の湾曲が明瞭となった.このとき礫の一 部は越流している.

第7章の堰堤上部が流出したケースでは,継手部の1本が降伏曲げモーメントに達したことから,次々と 最上流面柱部材の継手部が破断し,堰堤上部が破断・流出した.本章においても第7章で破壊が生起した解 析ケースの継手部の応答を確認することでその補強対策の効果を検証する.

図-8.10に2列目柱部材に対する押し込み変形量の時刻歴応答を示す. 図-8.10(a)に示す上流置減勢工無 しのケースでは, *t* = *t*o+5.5 sで継手部が破断するまでにおいて,押し込み変形量の最大値が239 mm,平均値 が227 mmであった. 一方,図-8.10(b)の上流置減勢工を設置したケースでは,*t* = *t*o+5.5 sまでに,押し込み 変形量の最大値は169 mm,平均値は123 mmであり,最大値で30%,平均値で46%押し込み変形量が減少し ている.式(8.2)では荷重において13%の低減効果が期待されていたが,この押し込み変形に対する荷重効果 はその3倍程度の低減効果が得られた.

図-8.11に第7章で破断が生起したケースと上流置減勢工を設置したケースの最上流面柱部材の継手部の 曲げ応答の比較を示す.図-8.11(a)の第7章で破断したケースでは,t=to+5.5 sで継手部が破断に至ってい る.図-8.11(b)の上流置減勢工を設置したケースでは,t=5.5 sまでに曲げ応答の最大値が降伏曲げモーメン トの94%,全ての継手部の最大曲げモーメントの平均値が降伏曲げモーメントの74%であった.この継手 部の曲げモーメントにおいて,一見,荷重効果の低減率は26%と押し込み変形よりも小さく見えるが,上流

置減勢工を設置しない場合には,降伏曲げモーメントによって継手部の曲げ応答値が頭打ちになっているためである.

8.4.2 継手部ボルト本数増加¹⁾

図-8.12にボルト本数を増設したケースでの衝突過程を示す.図-8.12(a)に示す $t = t_0$ sでは、土石流モデルの先頭部が堰堤に衝突している.図-8.12(b)の $t = t_0 + 2.0$ sでは、堰堤高さの7割ほどの位置まで礫が到達している.このとき下部水平材4本はそれぞれ10 cmほど下流側に押し込み変形を生じている。図-8.12(c)の $t = t_0$ +4.0 sでは、下部水平材に押し込み変形が12 cmほど生起しており、土石流モデルが堰堤天端付近まで到達している。図-8.12(d)の $t = t_0$ +6.0 sでは、下部水平材の押し込み変形が15 cmほど押し込まれており、最上流面柱部材の湾曲が明瞭となった。このとき礫の一部は天端よりも高い位置まで到達している。図-8.12(e)の $t = t_0$ +8.0 sでは礫が堰堤を越流しており、2列目の柱部材に変形が見受けられる。

図-8.17 最上流面柱部材の曲げ応答

図−8.13に2列目柱部材に対する押し込み変形量の時刻歴応答を示す. 図−8.13(a)に示す第7章で継手部 が破断したケースでは*t* = *t*₀+5.5 sで継手部が破断するまでに,押し込み変形量の最大値は239 mm,平均値は 227 mmであった.一方,図−8.13(b)のボルトを増設したケースでは,*t* = *t*₀+5.5 sまでに,押し込み変形量の 最大値は180 mm,平均値は169 mmであり,最大値で25%,平均値で26%押し込み変形量が減少している.

図-8.14に第7章で継手部が破断が生起したケースとボルト本数を増設したケースの最上流面柱部材の継 手部の曲げ応答の比較を示す.図-8.14(a)の第7章で継手部が破断したケースは,前項と同様である.図-8.14(b)のボルトを増設したケースでは,無補強の継手部が降伏曲げモーメントに達するt=to+5.5sにおける 曲げモーメントが,降伏曲げモーメントの68%,t=to+5.5sまでの最大曲げモーメントの平均値は,降伏曲 げモーメントの55%と顕著に小さくなっているが,これは図-8.12で示したように押し込み変形が小さくな っているためである.継手部の補強では,堰堤に作用する外力は同じであるため応答値は変わらないはずで あるが,図-8.14(a)において,I,II,IIIと示した部分は塑性応答域に入っているため,曲げ変形が大きくな る.このことは,図-8.14(a)に示したように後部の押し込みを大きくすることになる.このような効果から,

第8章 個別要素法解析を用いた補強対策効果分析

ボルト補強により降伏曲げモーメントの値が大きくなると、構造全体が弾性応答域で対応することにより破壊を防止できる. つまり、補強レベルは、同一土石流が再来するという前提条件では、母材強度の95%でも 十分だったことになる.

8.4.3 補強カバー³⁾設置時

図-8.15に補強カバー設置時の衝突過程を示す.図-8.15(a)に示す $t = t_0$ sでは土石流モデルの先頭部が堰堤 に衝突している.図-8.15(b)の $t = t_0 + 2.0$ sでは、土石流モデルの先頭部の到達位置は図-8.8(b)と同様であ る.このとき下部水平材4本はそれぞれ7 cmほど下流側に押し込み変形を生じている.図-8.15(c)の $t = t_0 + 4.0$ sでは、下部水平材に押し込み変形が11 cmほど生起しており、土石流モデルが堰堤天端付近まで到達し ている.図-8.15(d)の $t = t_0 + 6.0$ sでは、下部水平材の押し込み変形が約14 cmほど押し込まれており、最上流 面柱部材の湾曲が明瞭となった。このとき礫の一部は天端よりも高い位置まで到達している。図-8.15(e)の $t = t_0 + 8.0$ sでは礫が堰堤を越流しており、2列目の柱部材に変形が見受けられる。

図-8.16に2列目柱部材に対する押し込み変形量の時刻歴応答を示す. 図-8.16(a)に示す第7章で継手部が 破断したケースでは *t* = *t*₀+5.5 sで継手部が破断するまでに,押し込み変形量の最大値は239 mm,平均値は 227 mmである.一方,図-8.16(b)の補強カバーを設置したケースでは,*t* = *t*₀+5.5 sまでに,押し込み変形量 の最大値は172 mm,での平均値は142 mmであり,最大値で28 %,平均値で38 %押し込み変形量が減少して いる.

図-8.17に第7章で継手部の破断が生起したケースとケースIIIの継手部の曲げ応答の比較を示す.図-8.17(a)の第7章で継手部が破断したケースは、前項と同様である.図-8.17(b)の補強カバーを設置したケ ースでは、*t* = *t*₀+5.5 sまでに、曲げ応答の最大値が降伏曲げモーメントの63%、全ての継手部の最大曲げモ ーメントの平均値が降伏曲げモーメントの46%であった。前項と同様に、堰堤に作用する外力は同じである ため、継手部の破断は生起しなかった。

以上,継手部の強度を母材強度と同等とすれば,南木曽の堰堤に衝突したものと同じ規模の土石流の再来 に対して十分な抵抗力が得られることがわかった.これは前項において,ボルト本数24本とした場合に,母 材強度の95%の継手強度が得られて破壊しなかったことと同等の結果である.

しかし,再建においてより大きな土石流荷重に対応する必要が生じた場合に,ボルト増設では施工の関係 上95%強度以上に大きくすることはできない.図-8.5に示した結果から,補強カバーでは市販の鋼材を用い た場合に,θ=70°において,t=22 mmの補強カバーを用いた場合に,降伏曲げモーメントが6266 (kN・m)と なり,母材の170%まで補強可能である.また,角度を大きくした場合にも更に補強効果が期待でき,設計 自由度が高いといえる.

106

8.6 結 言

本章では,既存不適格構造に対する補強法を第7章で堰堤上部が流出した解析ケースに対して施し,補強 効果を個別要素法解析に適用した際を検討した.以下にその成果を示す.

- 上流置減勢工を設置した場合の梨子沢第1砂防堰堤の破壊事例で破断した継手部に発生する曲げモーメントにおける荷重効果は、小松ら²⁾の提案した荷重低減効果の2~3倍ほど大きくなる.よって、明確な破断抑制効果が得られた.
- 2) 継手部の最大曲げモーメントを大きくするボルト数を増設する方法,または補強カバーを取り付ける方 法では,母材の有する最大曲げモーメントと同程度に高めると継手部の破断は生じなくなる.
- 3) 上述のように、提案する個別要素法は、既存堰堤に対する荷重低減策や補強対策について、その効果を 検討する場合において有効な検討方法となりうる.

第9章 結 論

9.1 緒 言

本研究は、近年の大規模土石流の規模や発生頻度がより高くなる傾向を踏まえて、南木曽 ¹における堰堤 破壊事例を対象として、鋼製透過型砂防堰堤の破壊時における原因、すなわち土石流の堰堤衝突の影響もし くは部材強度の影響、および構造破壊プロセスの分析を検討したものである.続いて、同破壊事例の縮小模 型を用いた破壊実験について、その破壊メカニズムを部材レベルの断面力に関する分析を通じて明らかにし た.これは、同時に縮小模型の破壊傾向の再現性を確認したことになる.その後、南木曽の実破壊事例にお いて得られている基本条件を基にして個別要素法で破壊メカニズム推定に対する適用性を確認した.鋼管お よびその継手部の強度を実部材の構成則と断面形状をもとに曲げモーメント〜曲率関係を断面分割法で求め、 曲げ変形に対する構成則として用いる解析を行い、梨子沢第1砂防堰堤の被災状況の再現性とその破壊メカ ニズムを分析した.以下に、その成果および今後の課題と展望について述べる.

9.2 本研究の成果

(1) 第1章

第1章は,近年の我が国における気象条件の変化に伴う土砂災害について分析したうえで,土石流に関する既往の研究について整理した.そのうえで,現行の設計法の想定を超えた土石流が鋼製透過型砂防堰堤に 作用し,破壊を伴う被災事例が存在することを示した.このため,堰堤の破壊事例の検証に対する個別要素 法の適用性確認が求められていることを示した.

(2) 第2章

第2章は、提案手法である個別要素法を用いて、球形要素、円柱形要素、三角形要素を構成要素とし、構造応答を表現するための円柱形要素を連結ばねで常時連結するモデルを提案した.加えて、本研究の特徴である連結ばねの構成則に破壊条件を導入して構造破壊をシミュレーション可能な個別要素法について述べた.

(3) 第3章

第3章は、鋼製透過型砂防堰堤の前面傾斜角が土石流衝突荷重に与える影響について、個別要素法における個々の要素の運動過程を通して考察した.本章の成果は、以下の通りである.

- a) 個別要素法を用いて,直線水路における土石流実験で得られた荷重~時間関係や前面傾斜角の影響で最 大荷重が変化することを再現できた.
- b) 堰堤に衝突した礫は堰堤の上流側に停止して蓄積されて礫群の停止領域, すなわちデッドゾーンを形成 する. その際, 前面傾斜角を与えることで, デッドゾーンの上面が伸びることを示した.
- c) デットゾーンの上面が伸びると、後続の礫は停止礫塊と多く衝突(接触)するため、堰堤モデルに衝突す るまでに、礫の運動量が小さくなることが示唆される.このことから、前面傾斜角を有することで荷重低 減効果があることを示した.

(4) 第4章

第4章は、鋼製透過型砂防堰堤の上流側に設置した上流置減勢工が土石流衝突荷重に与える影響について、 個別要素法によって運動過程を通して分析および考察したものである.本章の成果は、以下の通りである.

- a) 個別要素法を用いて,直線水路における土石流実験で得られた荷重~時間関係や上流置減勢工の影響に より最大荷重が低減されることを再現できた.
- b) 上流置減勢工を設置すると、上流置減勢工の上流部にデッドゾーンが形成される.また、それに本堤との間にポケットが形成され、そのポケット内部に落ち込んだ礫は速度を失っているためデッドゾーンの役割を果たすことを示した.よって、上流置減勢工は本堤前でのデッドゾーン形成を促進することになる.
- c) 上流置減勢工により形成されたデッドゾーンは本堤に衝突する礫の運動量を低減する.これは、デッド ゾーン上面と後続礫が衝突を繰り返し、その速度を失わせるためである.また、ポケットに落ちた礫は、 速度を失っていることや、デッドゾーンで捕捉された礫の影響で上流置減勢工を高くすると、衝突礫の速 度が低下するだけでなく、衝突礫の総量(質量)も減少し、衝突礫の総運動量を減少させる効果がある.

(5) 第5章

第5章は、鋼製透過型砂防堰堤の破損事例に対する破壊メカニズムの推定を縮小モデル実験により検証したものである.本章の成果は、以下の通りである.

- a) 実験により、上支保斜材の先行損傷を考慮したケース、押し込み変形を考慮したケースどちらでも継手 部の曲げ強度が母材鋼管の曲げ強度より小さいことが実損傷の再現に必須条件であることを示した.
- b) 2段の支保斜材のうち、上支保斜材が先行破壊したうえで、第2波以降の土石流が事前に堤体の中段まで 堆積した礫塊を乗り越えるように衝突することも必要条件となった.
- c) 上支保斜材が先行して破壊するには,堰堤が満砂状態となり越流を生じる必要がある.しかし,満砂状態 では上支保斜材の先行破壊後に,柱部材に礫が衝突できないため,堰堤上部が破壊した現地の破壊メカニ ズムとは異なることが考察として得られた.
- d) 上支保斜材が健全に保たれている限り,継手部の強度が母材の断面強度比 70%に低下していたとしても, 先行堆積礫の大小に関わらず,砂防堰堤に破壊や損傷に至る兆候は見られなかった.
- e) 水平材の取付け部における押し込み変形を可能にしたモデルでは、水平材直下の高さまで先行堆積礫が 貯まった状態で土石流を受けると、土石流衝突を受ける上流側柱材の継手部が破壊するだけでなく、一部 の上支保斜材の継手部に損傷が生起し、現地の破壊状況に至る兆しが見受けられた。
- f) 水平材直下である先行堆積礫高 30%で押し込み変形が最も大きくなったが、これは事前実験において水 平材付近の土石流衝突荷重が最も大きくなる条件と一致していることを示した。

(6) 第6章

第6章は、個別要素法を用いて鋼製透過型砂防堰堤の被災事例をもとに、土石流が堰堤に衝突した際に、 上支保斜材が先行損傷したケースと押し込み変形が生じたケースで堰堤全体の破壊に与えるメカニズムにつ いて検証したものである.

なお、実験において構造破壊を忠実に再現するため、要素に引張、曲げおよびせん断試験を行い、これを バイリニアモデルおよび完全弾性モデルとして、連結ばねの剛性に用いた.また、継手部については強度低 下モデルを与えると破壊判定が実験と同じ結果を得た.本章の成果は、以下の通りである.

- a) 実験では、押し込み変形を生起させ、下部水平材の直下まで礫が堆積した、先行堆積礫高 30 %のみ損傷 した. 解析では、実験と同様の損傷傾向を再現することができた.
- b) 解析による堰堤の破壊生起条件は実験と良く一致しており,先行停止礫の存在,下流側の斜材の先行破 壊および継手強度の低下に関する破壊生起の必要条件が再確認できた.
- c) 破壊時の継手部のばね変形の応答分析から,破壊要因はせん断力の影響よりも,曲げモーメントが支配

的であることを示した.

- d) 越流した礫のうち、上支保斜材に直接衝突した礫は無く、礫が上支保斜材に直接衝突しなくとも押し込 み変形が生起することによって上支保斜材が損傷することを示した.
- e) 下部水平材に押し込み変形を生起させたモデルの解析結果の上部水平材の軸力~時間関係は, S30 で最も 軸力が大きくなっていた.
- f) 母材の破断に至るまでのエネルギーと曲げ強度,継手部の曲げ強度は、バルサ材で概ね再現できている. 透過型の損傷に影響する母材と継手部の強度比、先行堆積礫高、押し込み変形の考慮の有無のパラメータ は実規模での検討でもある程度適用が可能であることを示した.

(7) 第7章

第7章は、流下する土石流の礫量と堆積した礫内を浸透する流水流量を考慮した流速分布モデルを提案し、 部材のパラメータを断面分割法で求め、連結ばねの構成則として導入した個別要素法によって堰堤の破壊メ カニズムを推定したものである.本章の成果は、以下の通りである.

- a) 先行堆積礫を考慮した流速分布モデルは,連続の式を満たしたうえで土石流の流下過程を再現し,これ により土石流モデルが堆積礫上部を流下する際に一時的に加速することが確認された.
- b) 先行堆積礫高,継手部の母材強度比,押し込み変形の有無という要因により堰堤上部が流出し,現地の破 壊性状を再現することができた.
- c) 各解析ケースの比較から,押し込み変形の有無が部材の内部応答に最も大きく影響することがわかった. また,押し込み変形は下部水平材直下まで先行堆積礫が存在している場合に大きくなった.
- d) 継手強度が母材と同じ場合,内部応答が降伏点まで達しないため部材の破断に至らなかった.
- e) 押し込み量は上部が流出したケースで 340 mm と現地で生じていた押し込み量 535 mm と比較すると小 さい値となった.これは,堆積礫に作用させる流速と作用時間が関係しているものと考えられる.
- f) 解析結果と推定メカニズムを比較すると、天端水平材の破断の有無が異なった.これは、堰堤が満砂とな る前に部材が破断に至ったためである.

今後は、河川形状や土砂の粒径分布の影響を考慮した流速分布のモデル化や越流礫が堰堤下流側の部材 に直接衝突するケースの検討が必要がある.

(8) 第8章

第8章は,既存不適格構造に対する補強法を第7章で堰堤上部が流出した解析ケースに対して施し,補強効果を個別要素法解析に適用した際を検討したものである.本章の成果は,以下の通りである.

- a) 各補強効果による継手部の構成則の変化を断面分割法で推定できた.
- b) 各補強法を適用することで、本来堰堤上部が流出に至った規模の土石流モデルを衝突させた際に、堰堤 が破断することなく土石流を捕捉した.
- c) 各解析ケースの比較から、上流置減勢工を設置した際には、押し込み変形が小さくなることがわかった.

9.3 今後の課題と展望

9.3.1 今後の課題

(1) 堰堤直上流の河川形状の変化を反映させることの問題

第7章における土石流モデルは、透過型砂防堰堤の不透過部である嵌め入れを考慮し、台形形状の水路モ デルを用いて堰堤に土石流モデルを衝突させた.一方で、現地では上流から梨子沢第1砂防堰堤近傍に向か って河川幅が拡幅している.最終的に満砂となり、堰堤上部が流出したことは疑いようがないが、堆積過程 に河川形状の変化が与えた影響については今後検証が必要である.

(2) 鋼管の変形に伴う強度変化の問題

第1章で述べたように、鋼管の肉厚が薄く、径厚比が大きい場合に、鋼管の局部座屈、押し込み変形、強 度低下が生じ易い傾向がある.しかし、本研究で用いた鋼管の構成則はバイリニアモデルであり、変形に伴 う強度低下については検討できていない.そのため、今後はより現実に即した連結ばねの構成則との比較の 上、解析におけるバイリニアの適用可能範囲について検討する必要がある.

(3) 結合部に集合体要素を用いることの改善

本研究では、透過型砂防堰堤の形状を円柱形要素でモデル化するにあたり、集合体要素と連結ばねを用いている.そのため、結合部は剛体となり破断が生起せず、実堰堤をモデル化できているとは言い難い.今後は結合部の損傷を考慮できるモデル化の検討が必要である.

(4) 相似を考慮した縮小実験と実規模解析の工学的対応関係

本研究では、相似則のゆがみを考慮し、部材の材料強度を弱めることで、梨子沢第1堰堤の損傷を再現し、 それにより破壊に関する必要条件を整理した.一方で、実規模堰堤の実断面を対象とした解析と、縮小モデ ルを対象とした実験・解析の工学的な対応関係は整理できておらず、今後の検討が必要である.

9.3.2 今後の展望

本研究で行った実験では、相似則のゆがみを考慮して、破壊を伴う縮小模型実験を行うにあたり、鋼材よ りも弱い木材を用いる手法を確立した.また、材料試験を行い、使用した部材の構成則を得ることで再現解 析を容易にした.これは、縮小率が小さいほど、模型の製作や材料試験が容易となる.そのため、鋼製透過 型砂防堰堤以外の構造物にも破壊を伴う縮小模型実験とそのメカニズム解析に相似則のゆがみを考慮した検 討要領として用いることができる.

また,土石流モデルの捕捉や流下の解析に用いていた流速分布モデルを,流水の流入量と流出量の差を計 算することで,水深や速度を変化させ,時々刻々連続の式を満たすように改良できた.これにより,球形要 素を用いて土石流衝突荷重を再現することができた.これは,多数の要素が流下する土石流の解析における 計算負担を小さくするためであり,今後更なる計算機の発展に合わせより複雑な解析を短時間で行うことが 可能となると考えられる.

謝 辞

本論文は、防衛大学校名誉教授 香月智先生と防衛大学校システム工学群建設環境工学科 別府万寿博教 授のご指導の下まとめられたものです.香月先生には本科学生の頃より後期課程の卒業に至るまで大変お世 話になりました.特に、前期課程の時分から研究がうまくいかず、度々テーマが変わっていた私を決して見 捨てることなくご指導頂きました.決して優秀でもなく、目の前の課題に真摯に取り組めてもいなかった未 熟な私が卒業まで研究に取り組むことができたのは香月先生の叱咤激励によるものです.ここに甚大なる謝 意を表します.別府教授には、香月先生の退官に伴い指導教官を引き継いで頂きました.常に研究内容を卒 業論文としてまとめ、整合性を持たせることに主眼を置くようご指導頂きました.また、研究と育児の両方 に集中できるように、時には助言をいただき、時には心を砕いて頂きました.指導教官の退官という不安定 な状況にもかかわらず研究に集中でき、個々の成果を卒業論文として整理することができたのは紛れもなく 別府教授のご指導の賜物です.ここに深く感謝致します.

防衛大学校システム工学群建設環境工学科 堀口俊行准教授には本科学生の頃より後期課程の卒業に至る まで多大なるご指導を頂きました.特に、本科学生の頃に研究室に配属されて以降、解析の何たるかを基礎 から叩き込んで頂きました.また、ご自身の海外出張や講義など多忙にも関わらず、誰よりも長く研究室に 居られ不明点があれば昼夜を問わずご教授頂きました.進捗の遅い私の研究が整理できたのは堀口准教授の 熱心なご指導のおかげです.ここに深く感謝致します.

九州大学農学研究院環境農学部門水野秀明准教授には、本論文をまとめるうえで貴重なご指導、ご助言を 頂きました.防衛大学校システム工学群建設環境工学科宮田喜壽教授には、研究成果の整理方法について丁 寧にご指導頂きました.同 八木宏教授には流速分布モデルに関して貴重なご指導を頂きました.各先生方 には、ご多忙の中副査を引き受けて頂きましたことを深く感謝申し上げます.

陸上幕僚監部防衛部防衛課開発室 田村尚之2等陸佐には,研究や卒業後の進路についてご助言を頂きま した.ここに謝意を表します.

防衛大学校システム工学群建設環境工学科 藤掛一典教授には,研究を進めるうえで激励の言葉を頂きま した.同 黒田一郎教授には,実験にあたって器材の支援や多くのご助言を頂きました.同 篠田昌弘教授 には,講義を通じて地盤や施工に関してご教授頂きました.同 市野宏嘉准教授には,研究に関して心温か い激励を頂きました.同 野々山栄人准教授には,研究に関する助言に加え,後輩指導や研究室運営に関し てもご助言頂きました.同 山本阿子助教には,多くの激励の言葉を掛けて頂きました.心より感謝申し上 げます.

防衛大学校理工学研究科前期課程 渡邊大貴氏,同 小泉香那子氏,同 宮原邑太氏,同 斎藤和樹氏に は実験の支援および研究室の雑務に協力を頂きました.ここに謝意を表します.

当時防衛大学校理工学研究科後期課程 小松喜治氏には研究に関して多大なる助言を頂きました.当時防 衛大学校理工学研究科前期課程 松村健太郎氏には,同期として研究室の業務に協力頂き,親身になって支 えて頂きました.当時防衛大学校本科 大野峻矢氏(本科 65 期)には実験やデータ整理において多大なる支 援を頂きました.深く感謝致します.

防衛大学校システム工学群建設環境工学科 技術員 高橋峰雄氏には,実験装置の作成や実習工場との調 整等で非常にお世話になりました.ここに感謝の意を表します.

水落信恵女史には,諸業務を快くお引き受け頂き,温かい励ましの言葉を頂きました.ここに感謝の意を 表します.

令和5年3月

参考文献

第1章

1)国土交通省:令和3年の土砂災害, https://www.mlit.go.jp/river/sabo/jirei/r3dosha/r3doshasaigai.pdf(令和5年1 月閲覧)

2)気象庁:全国の1時間降水量50mm以上の年間発生回数, https://www.data.jma.go.jp/cpdinfo./extreme/extrem e_p.html(令和5年1月閲覧)

3)国土交通省 国土技術政策総合研究所:砂防基本計画策定指針(土石流・流木対策編)解説,国土技術政策総合研究所資料No.904, 2016.

4)国土交通省 国土技術政策総合研究所:土石流・流木対策設計技術指針,土石流・流木対策設計技術指針 No905, 2016.

5)平松晋也,福山泰治郎,山田孝,逢坂興宏,中谷加奈,松本直樹,藤村直樹,加藤誠章,島田徹,久保 毅,松尾新二朗,西尾陽介,吉野弘祐:平成26年7月9日長野県南木曽町で発生した土石流災害,砂防学会誌, Vol.67, No.3, pp.38-48, 2014.

6)国土交通省中部地方整備局多治見砂防国道事務:梨子沢流域砂防堰堤に関する検討会, 2014.

7)新潟県土木部砂防課:根知川第10砂防堰堤対策検討会,第3回討議資料,2018.

8)砂防鋼構造物研究会,砂防鋼構造物被災調査委員会:調査報告「大武川第5砂防堰堤被災について」,http: //www.koseisabo.gr.jp/cms/wp-content/uploads/2020/07/%E8%AA%BF%E6%9F%BB%E5%A0%B1%E5%91%8A% E2%91%A2.pdf, 2019. (令和5年1月閲覧)

9)新編·構成砂防構造物設計便覧(令和3年度版),構成砂防構造物委員会, 2021

10) 芦田和男: 土石流概論, 新砂防, Vol.44, No.6, p.41-47, 1992.

11)高橋保,小林幸一郎:粘性土石流の流動機構に関する研究,京都大学防災研究所年報,第36号B-2,1993
12)和田孝志,古谷智彦,中谷加奈,水山高久,里深好文:土石流先頭部における大粒子集積に影響を及ぼ す要素に関する実験的研究,砂防学会誌,Vol.67, No.6, pp.56-63, 2015.

13)下田義文,鈴木真次,石川信隆,古川浩平:個別幼少によるコンクリート製砂防ダムの衝撃破壊シミュレーション解析,土木学会論文集, Vol.480/VI-21, pp.97-106, 1993.

14)尾崎幸忠,鴨川善宣,水山高久,葛西俊一郎,嶋丈二:流木が混入した土石流の鋼製透過型ダムによる 捕捉形態の調査,砂防学会誌, Vol.51, No.2, p.39-44, 1998.

15)大同淳之,吉栖雅人,中嶋健太:土石流による衝撃力,水工学論文集,第38巻, pp.557-562, 1994.

16)三好岩生, 鈴木雅一: 土石流の衝撃力に関する実験的研究, 新砂防, Vol.43, No.2 (169), pp.11-19, 1990.

17)水山高久:砂防ダムに対する土石流衝撃力算定とその問題点,新砂防, Vol.112, pp.40-43, 1979.

18)大坂剛,高橋英一,國友優,山越隆雄,能和幸範,木佐洋志,石塚忠範,宇都宮玲,横山康二,水山高 久:桜島における土石流荷重計による単位体積重量測定,砂防学会誌,Vol.65, No.6, pp.46-50, 2013.

19)鈴木真次,石川信隆,鳥場利郎,古川浩平:シート状圧電素子による衝撃力の面的測定法の開発,土木 学会論文集, Vol.553/VI-33, pp.73-80, 1996.

20)松澤遼,嶋丈示,武田一平,石川信隆,水山高久:礫衝突に対するコンクリート砂防堰堤の現行設計法の問題点と衝撃解析,砂防学会誌,Vol.69,No.5, pp.59-65, 2017.

21)山本彰,山本修一,鳥井原誠,平間邦興:砂防ダムに作用する土石流の衝撃力に関する研究,砂防学会誌,Vol.51, No.2, pp22-30, 1998.

22)水山高久,下東久已,中西宏,松村和樹:鋼管透過型砂防ダムに対する土石流荷重に関する実験的研究, 新砂防, Vol.37, No.5, 1985.

23)小松喜治, 堀口俊行, 香月智, 竜川太志:土石流衝突荷重に与える構造透過性の影響に関する研究, 砂防学会誌, Vol.74, No.3, pp.60-67, 2021.

24)水山高久:土石流の実験と相似則,砂防学会誌, Vol.46, No.3, pp.35-39, 1993.

25)酒巻勝,伊藤康人,大野友則:衝撃実験に用いる試験体寸法と相似則の適用,土木学会第49回年次学術 講演会,I-782, pp.1560-1561, 1994.

26)江頭進治,竹林洋史,萬矢敦啓,原田大輔:土石流・掃流砂・浮遊砂・泥流の統一解釈,土木学会論文集 B1(水工学), Vol.76, No.2, I 1123-I 1128, 2020.

27)江頭進治,宮本邦明:土石流のメカニズム(1)-移動床上の土石流-,土と基礎,Vbl.48,No.8, pp.46-52, 2000.

28)宮本邦明,伊藤隆郭:土石流の数値シミュレーションと相似則,砂防学会誌, Vol.55, No.6, pp.40-51, 2003

29)政枝憲太郎,香月智,石川信隆,松村和樹,竹内大輔:支持フレーム付きセル型砂防ダムの衝撃挙動と 相似則に関する実験的検討,構造工学論文集,Vol.47A, pp.1595-1603, 2001.

30)手嶋良祐,別府万寿博,市野宏嘉,福永一基:重力場における縮小模型実験に対する相似則の提案と検証,構造工学論文集,Vol.6700A, pp.826-837, 2001.

31)下迫健一郎:水理模型実験、コンクリート工学、39巻、9号、pp.134-137、2001.

32) 星川辰雄,石川信隆,彦坂熙,阿部宗平:局部変形とひずみ速度効果を考慮した鋼管固定はりの衝撃応 答変位,土木学会論文集,No.513/I-31, pp.101-115, 1995.

33) 菅沼淳,河野順平:局部変形を有する鋼管の曲げ変形特性,構造工学論文集, Vol.65A, pp.236-249, 2019.

34)鋼管杭・鋼矢板技術協会港湾技術委員会:径厚比を考慮した鋼管杭のM-φ関係の提案,

http://www.jaspp.com/shiryou/index.html, 2018. (2023.1閲覧)

35)水山高久,中西宏,松村和樹:大口径鋼管に対する衝撃載荷試験,新砂防, Vol.38, No.4, pp.10-15, 1985.

36)弓削康平,都井祐,寺岡勝:鋼管柱・H型はり接合部の終局強度解析(その2)-鋼管の径厚比の影響-,清 算研究,41巻,7号,pp.611-614,1989.

37)國領ひろし, 堀口俊行, 別府万寿博, 園田佳巨, 石川信隆:フランジ継手を有する鋼管はり部材の動的載荷性 能実験, 構造工学論文集, Vol.67A, pp.779-793, 2021.

38) 國領ひろし, 堀口俊行, 別府万寿博, 園田佳巨, 石川信隆: 礫の衝突位置の違いによるフランジ継手付き鋼管 はりの耐荷性能, 土木学会論文集A2(応用力学), Vol.76, No.2, I 289-I 300, 2020.

39)園田佳巨, 土屋羊平, 玉井宏樹, 嶋丈二:鋼製透過型砂防堰堤の耐荷性能に関する基礎的研究, 構造工 学論文集, Vol.62A, pp.1019-1030, 2016.

40)國領ひろし,嶋丈示,園田佳巨,石川信隆:鋼製透過型砂防堰堤の保有耐力照査に関する一考察,砂防 学会誌, Vol.74, No.3, pp.3-14, 2021.

41)嶋丈示,松澤遼,山口聖勝,武田一平,石川信隆,水山高久:礫衝突を受ける鋼製透過型砂防堰堤の現 行設計法の問題点と衝撃解析,砂防学会誌, Vol.70, No.1, pp.54-59, 2017.

42)小松喜治, 堀口俊行, 香月智:鋼製透過型砂防堰堤の二段階設計に対応する補強効果解析, 土木学会論文 集A2(応用力学), Vol.75, No.2, I_361-I_370, 2019.

114

43)Cundall, P. A. and Strack, O. D. L. : A discrete numerical model for granular assemblies, Geotechnique, Vol.29, No.1, pp.47-65, 1979.

44)Favier J.F., Abbaspour-Fard M.H., Raji A.O. and Kremmer M. : Shape representation of Axi–symmetrical arbitrary particles in discrete element simulation using multi-element model particles, Engineering Computations, Vol.16, pp.467-480, 1999.

45)渡邊亮,久志本築,石原真吾,加納純也:離散要素法における粒子摩擦係数および転がり摩擦係数の決 定法,粉体工学会誌,56巻,4号,pp.218-225,2019.

46)瀬戸内秀規:球要素間の回転剛性を導入した個別要素モデル,土木学会論文集A2(応用力学), Vol. 68, No.1, pp.18-29, 2012.

47)山本彰,山本修一,鳥井原誠,平間邦興:砂防ダムに作用する土石流の衝撃力に関する研究,砂防学会誌,Vol.51, No.2, pp22-30, 1998.

48)Motohiko H, Yoshihiro U: Application of the distinct element method to the numerical analysis of debris flows, 土木学会論文Vol.8, No.2, pp 31-41, 1991.

49)水野英明,水山高久,南哲行,倉岡千郎:個別要素法を用いた鋼管製透過型砂防ダムの土石流捕捉効果 に関するシミュレーション解析,砂防学会誌, Vol.52, No.6, pp.51-54,2015.

50)別府万寿博: MPS 法による石礫型土石流モデルのシミュレーション解析,砂防学会誌, Vol.68, No.2, pp.51-54,2015.

51)内藤直人,前田健一,今野久志,牛渡裕二,鈴木健太郎,川瀬良司:落石衝撃力に及ぼす敷砂緩衝材の 底面境界剛性の影響に関するDEM解析,土木学会論文集A2(応用力学),Vol.72,No.2,(応用力学論文集 Vol.19),I 429-I 440, 2016.

52)森口周二,太田勇真,高瀬慎介,寺田賢二郎,阿部慶太,青木尊之:個別要素法を用いた大規模土砂流動 実験の再現解析,土木学会論文集A2(応用力学),Vol.72, No.2, I 449-I 457, 2016.

53)原木大輔,香月智,田代元司:円柱形要素を用いた個別要素法による落石防護網の衝撃応答解析,土木 学会論文集A, Vol.65, No.2, pp.536-553, 2009.

54)小泉香那子,堀口俊行,高橋利延,橋口寛史:平面要素集合体の重錘モデルを用いた実物大落石防護網のシミュレーション,構造工学論文集,Vol.68A, pp.931-943, 2022.

55)片桐信,高田至郎:連続体破壊解析のためのFEM-DEM結合解析法の提案,土木学会論文集,No.780/I-70, pp.15-25, 2005.

56)所千晴: 粒子破壊モデルを組み込んだ離散要素法による粉砕プロセスのシミュレーション-High Pressure Grinding Roll への適用-, 環境資源工学, 68巻, pp.137-142, 2022.

57)古川愛子,好川浩輝,清野純史:改良版個別要素法を用いた無筋コンクリート橋脚の振動台実験の再現 解析,土木学会論文集A1(構造・地震工学),Vol. 73,No. 4(地震工学論文集第36巻),I 32-I 47, 2017.

58)小松喜治, 堀口俊行, 香月智, 石川信隆, 水山高久: 鋼製透過型砂防堰堤の前面傾斜角が土石流衝突荷 重に及ぼす影響, 構造工学論文集, Vol.64A, pp779-778, 2018.

59)小松喜治, 堀口俊行, 香月智, 石川信隆:前置減勢工による土石流衝撃荷重低減効果に関する実験, 構造工学論文集, Vol.65A, pp.867-875, 2019.

第2章

1)Cundall, P. A. and Strack, O. D. L. : A discrete numerical model for granular assemblies, Geotechnique, Vol.29, No.1, pp.47-65, 1979.

2)原木大輔,香月智,田代元司:円柱形要素を用いた個別要素法による落石防護網の衝撃応答解析,土木学 会論文集A, Vol.65, No.2, pp.536-553, 2009.

3)山口功,木田隆,岡本修,狼嘉彰:クォータニオンとオイラー角によるキネマティックス表現の比較に ついて,航空宇宙技術研究所資料636号, pp.1-15, 1991.

4)香月智,渋谷一,大隅久,國領ひろし,石川信隆:個別要素法による透過型砂防堰堤の流木混じり土石流 捕捉解析,土木学会論文集A2(応用力学),Vol.69, No.1, pp.16-29,2013.

5)伯野元彦:破壊のシミュレーション-拡張個別要素法で破壊を追う-,森北出版, pp.40-53, 1997.

第3章

1)国土交通省中部地方整備局多治見砂防国道事務:梨子沢流域砂防堰堤に関する検討会, 2014.

2)小松喜治, 堀口俊行, 香月智, 石川信隆, 水山高久: 鋼製透過型砂防堰堤の前面傾斜角が土石流衝突荷重 に及ぼす影響, 構造工学論文集, Vol.64A, pp779-778, 2018.

3)Song D., Gordon G., D., Xu M., Choi G., E., Li S., Zheng Y. : Quantitative analysis of debris-flow flexible barrier capacity from momentum and energy perspectives, Engineering Geology Vol.251, pp.81-92. 2019.

4)足立昭平:人工粗度の実験的研究,土木学会論文集104号, pp.33-44, 1964.

5)香月智,渋谷一,大隅久,國領ひろし,石川信隆:個別要素法による透過型砂防堰堤の流木混じり土石流 捕捉解析,土木学会論文集A2(応用力学),Vol.69,No.1,pp.16-29,2013.

6) 堀口俊行,嶋丈二,松原智生,舘澤寛,香月智,石川信隆,水山高久:礫の凸凹を考慮した個別要素法に よる鋼製透過型砂防堰堤の土石流捕捉解析,砂防学会誌, Vol.69, No.1, pp.30-37, 2016

第4章

1)国土交通省水管理・国土保全局砂防部保全課:土砂災害対策の強化に向けた検討会,ハード対策分科会討 議資料,2014.

2)小松喜治, 堀口俊行, 香月智, 石川信隆, 水山高久: 鋼製透過型砂防堰堤の前面傾斜角が土石流衝撃荷重 に及ぼす影響, 構造工学論文集, Vol.64A, pp.779-788, 2018.

3)Song D., Gordon G., D., Xu M., Choi G., E., Li S., Zheng Y. : Quantitative analysis of debris-flow flexible barrier capacity from momentum and energy perspectives, Engieering Georogy Vol.251, pp.81-92. 2019.

4)小松喜治, 堀口俊行, 香月智, 石川信隆:前置減勢工による土石流衝撃荷重低減効果に関する実験, 構造 工学論文集, Vol.65A, pp.867-875, 2019.

5)国土交通省:大規模河道閉塞の対策,第12回若手砂防・土木技術者のための奥飛騨研修会,2018.

第5章

1)国土交通省中部地方整備局多治見砂防国道事務:梨子沢流域砂防堰堤に関する検討会, 2014.

2)Toshiyuki H and Vincent R : Post-analysis simulation of the collapse of an open sabo dam of steel pipes subject-ed to boulder laden debris flow. International Journal of Sediment Research 35(6), pp.621-635, 2020.

3) 星川辰雄,石川信隆, 彦坂熙, 阿部宗平:局部変形とひずみ速度効果を考慮した鋼管固定はりの衝撃応答 変位,土木学会論文集, Vol.513/I-31, pp.101-115, 1995.

4)森林総合研究所:木材工業ハンドブック,丸善出版, pp.1073-1142, 2004.

5)國領ひろし,堀謙吾,堀口俊行,石川 信隆: 鞘管に支持された鋼管部材の耐荷性能に関する実験的考察, 鋼構造論文集 第25巻第100号, pp.57-71, 2018. 6)水山高久:土石流の実験と相似則,砂防学会誌, Vol.46, No.3, pp.35-39, 1993.

第6章

1)国土交通省中部地方整備局多治見砂防国道事務:梨子沢流域砂防堰堤に関する検討会, 2014.

2)原木大輔,香月智,田代元司:円柱形要素を用いた個別要素法による落石防護網の衝撃応答解析,土木学 会論文集A, Vol.65, No.2, pp.536-553, 2009.

3)伯野元彦:破壊のシミュレーションー拡張個別要素法で破壊を追うー,森北出版, pp.40-53, 1997.

4)香月智,渋谷一,大隅久,國領ひろし,石川信隆:個別要素法による透過型砂防堰堤の流木混じり土石流 捕捉解析,土木学会論文集A2(応用力学),Vol.69,No.1,pp.16-29,2013.

5) 堀口俊行,合田明弘,嶋川理,山田正:透過型砂防堰堤に作用する流木混じり土石流荷重の検討,土木学 会論文集A2(応用力学), Vol.76, No.2,(応用力学論文集Vol.23),I 325-I 336, 2020.

6) Toshiyuki H and Vincent R : Post-analysis simulation of the collapse of an open sabo dam of steel pipes subject-ed to boulder laden debris flow. International Journal of Sediment Research 35(6), pp.621-635, 2020.

7)森林総合研究所:木材工業ハンドブック,丸善出版, pp.1073-1142, 2004.

8)國領ひろし, 堀謙吾, 堀口俊行, 石川 信隆: 鞘管に支持された鋼管部材の耐荷性能に関する実験的考察, 鋼構造論文集 第25巻第100号, pp.57-71, 2018.

第7章

1)国土交通省中部地方整備局多治見砂防国道事務:梨子沢流域砂防堰堤に関する検討会, 2014.

2)香月智,渋谷一,大隅久,國領ひろし,石川信隆:個別要素法による透過型砂防堰堤の流木混じり土石流 捕捉解析,土木学会論文集A2(応用力学),Vol.69, No.1, pp.16-29,2013.

3) 堀口俊行, 香月智:底面水抜きスクリーン実験に対する水と礫の分離挙動シミュレーション, 土木学会論文 集A2(応用力学), Vol.70, No.2, (応用力学論文集Vol.17), I 429-I 440, 2014.

4)西方卯佐男,工藤アキヒコ,玉野浩之,浅田昌蔵:粗粒材の透水係数算定式に関する一検討,第34回地盤 工学会研究発表会,1999.

5)伯野元彦:破壊のシミュレーションー拡張個別要素法で破壊を追うー,森北出版, pp.40-53, 1997.

6)浅津直樹,運上茂樹,星隈順一,近藤 益央:軸方向鉄筋の座屈解析による鉄筋コンクリート橋脚の塑性ヒンジ長に関する研究,土木学会論文集,2001巻 682 号/I-56, p.177-194,2001.

7) 菅沼淳,河野順平:局部変形を有する鋼管の曲げ変形特性,構造工学論文集, Vol.65A, pp.236-249, 2019. 8) 星川辰雄,石川信隆, 彦坂熙, 阿部宗平:局部変形とひずみ速度効果を考慮した鋼管固定はりの衝撃応答 変位,土木学会論文集, Vol.513/I-31, pp.101-115, 1995.

第8章

1)国土交通省中部地方整備局多治見砂防国道事務:梨子沢流域砂防堰堤に関する検討会,2014.

2)小松喜治, 堀口俊行, 香月智, 石川信隆:前置減勢工による土石流衝撃荷重低減効果に関する実験, 構造 工学論文集, Vol.65A, pp.867-875, 2019.

3) 國領ひろし, 堀口俊行, 別府万寿博, 園田佳巨, 石川信隆:礫衝突を受けるフランジ継手を補強した鋼管はりの 耐荷性能に関する一考察, 構造工学論文集, Vol.67A, pp.779-793, 2021.

4) 菅沼淳, 河野順平:局部変形を有する鋼管の曲げ変形特性,構造工学論文集, Vol.65A, pp.236-249, 2019.

第9章

1)国土交通省中部地方整備局多治見砂防国道事務:梨子沢流域砂防堰堤に関する検討会, 2014.

本研究に関連して発表した論文等

1 学術論文

No.	著者,題目等	関連する章
1	<u>嶋川理</u> ,小松喜治,堀口俊行,香月智:前面傾斜角を有する透過型砂防堰堤に作用 した土石流荷重の検討,土木学会論文集 A2(応用力学), Vol.75, No.2(応用力学論 文集 Vol.22), I_175 - I_185, 2019.2	第3章
2	<u>嶋川理</u> ,小松喜治,堀口俊行,香月智,別府万寿博:個別要素法による前置減勢工 の荷重低減メカニズムの分析,構造工学論文集,Vol.66A, pp.941-950, 2020.2	第4章
3	<u>嶋川理</u> , 堀口俊行, 別府万寿博, 香月智: 鋼製堰堤の全体破壊に及ぼす接合部の押 し込み変形の影響, 構造工学論文集, Vol.68A, pp.896-906, 2022.3	第5音
4	<u>嶋川理</u> , 堀口俊行, 別府万寿博, 香月智: 鋼製透過型砂防堰堤の先行部材損傷が構造頑健性に及ぼす影響, 材料, Vol. 71, No. 8, pp. 691-698, 2022.8	おっす
5	<u>嶋川理</u> , 堀口俊行, 別府万寿博, 香月智: 個別要素法による透過型砂防堰堤の破壊 メカニズムに関する検討, 土木学会論文集 A2 (応用力学), Vol.77, No.2 (応用力学 論文集 Vol.24), I_381-I_392, 2021.2	第6章
6	<u>嶋川理</u> , 堀口俊行, 別府万寿博, 香月智: 鋼製堰堤の破壊形態に及ぼす接合部の押 し込み変形影響解析, 鋼構造論文集, 29 巻, 116 号, pp.116_29-116_39, 2022.12	
7	<u>嶋川理</u> , 堀口俊行, 別府万寿博, 香月智: 個別要素法を用いた透過型砂防堰堤の損 傷事例解析, 土木学会論文集 A2 (応用力学), Vol.79, No.15 (応用力学論文集 Vol.25), ID: 22-15044, 2023.3	第7章

2 口頭発表

No.	著者,題目等	関連する章
1	嶋川理, 堀口俊行, 香月智: 個別要素法による実災害における透過型砂防堰堤の再	第3章
	現シミュレーション,平成 30 年度全国大会第 73 回年次学術講演会,2018.8	
2	<u>嶋川理</u> ,小松喜治,堀口俊行,香月智,別府万寿博:個別要素法を用いた鋼製透過	
	型砂防堰堤に作用する荷重評価手法,第46回土木学会関東支部技術研究発表会,	
	2019.3	
3	嶋川理, 堀口俊行, 小松喜治, 香月智: 個別要素法による鋼製透過型砂防堰堤に作	
	用する荷重評価法,2019年度砂防学会研究発表会,2019.5	
4	<u>嶋川理</u> , 堀口俊行, 小松喜治, 香月智: 堰堤の前面傾斜角が土石流衝突荷重に与え	
	る影響に関する個別要素法解析,令和元年度全国大会第 74 回年次学術講演会,	
	2019.9	
5	堀口俊行, <u>嶋川理</u> ,小松喜治,香月智:透過型砂防堰堤における前面形状が土石流	
	荷重に与える影響,第12回構造物の衝撃問題に関するシンポジウム,2019.12	

6	嶋川理, 堀口俊行, 伊藤一雄: 個別要素法を用いた土石流衝突荷重の推定法の提案,	第3章
	防衛施設学会年次フォーラム 2020, 2020.2	
	Osamu Shimakawa, Toshiyuki Horiguchi, Yoshiharu Komatsu, Satoshi Katsuki :	
7	Examination of shape efficacy of steel pipe open sabo dam according to Impulsive Load of	
	Debris Flow, INTERPRAEVENT2020, 2021.5	
8	嶋川理, 堀口俊行, 小松喜治, 香月智: 低減対策工が土石流衝突荷重に与える影響	第4章
	の個別要素法解析, 令和2年度土木学会全国大会第75回年次学術講演会, 2020.9.	
	Osamu Shimakawa, Toshiyuki Horiguchi, Yoshiharu Komatsu, Satoshi Katsuki : Load	
9	reduction mechanism analysis of an energy dissipaters as a protective barrier using DEM,	
	COMPSAFE2020, 2020.12	
	嶋川理, 堀口俊行, 別府万寿博, 香月智: 鋼製堰堤の破壊に及ぼす接合部の押し込	第5章
10	み変形の影響,第13回構造物の衝撃問題に関するシンポジウム,2022.1	
11	嶋川理, 堀口俊行, 別府万寿博, 香月智:透過型砂防堰堤における破壊検証実験の	第6章
	再現シミュレーション,令和2年度土木学会関東支部技術研究発表会,2021.3	
12	<u>嶋川理</u> , 堀口俊行, 別府万寿博, 香月智: DEM を用いた透過型砂防堰堤における	
	破壊メカニズムの検討, 令和 3 年度土木学会全国大会第 76 回年次学術講演会,	
	2021.9	
13	嶋川理, 堀口俊行, 別府万寿博, 香月智: 押し込み変形が作用する透過型砂防堰堤	
	の破壊再現シミュレーション,令和3年度土木学会関東支部技術研究発表会,2022.3	
14	嶋川理, 堀口俊行, 別府万寿博, 香月智: 押し込み変形を考慮した土石流衝突実験	
	の再現シミュレーション,令和4年度砂防学会研究発表会,2022.5	
15	<u>嶋川理</u> , 堀口俊行, 別府万寿博, 香月智: 個別要素法による透過型砂防堰堤の破壊	第7章
	メカニズムの検討,令和4年度土木学会全国大会第77回年次学術講演会,2022.9	
16	<u>嶋川理</u> , 堀口俊行, 別府万寿博, 香月智: DEM を用いた透過型砂防堰堤の補強対	第8章
	策の検討,令和4年度土木学会関東支部技術研究発表会,2023.3	